Java tutorial
/* * LensKit, an open source recommender systems toolkit. * Copyright 2010-2014 LensKit Contributors. See CONTRIBUTORS.md. * Work on LensKit has been funded by the National Science Foundation under * grants IIS 05-34939, 08-08692, 08-12148, and 10-17697. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ package org.lenskit.transform.quantize; import org.apache.commons.math3.linear.ArrayRealVector; import org.apache.commons.math3.linear.RealVector; import org.lenskit.data.ratings.PreferenceDomain; import org.junit.Before; import org.junit.Test; import static org.hamcrest.Matchers.*; import static org.junit.Assert.*; /** * @author <a href="http://www.grouplens.org">GroupLens Research</a> */ public class PreferenceDomainQuantizerTest { PreferenceDomain domain; @Before public void setUp() { domain = new PreferenceDomain(0.5, 5.0, 0.5); } @Test public void testMakeValues() { RealVector vals = PreferenceDomainQuantizer.makeValues(domain); RealVector evals = new ArrayRealVector(new double[] { 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }); assertThat(vals.getDimension(), equalTo(evals.getDimension())); for (int i = 0; i < vals.getDimension(); i++) { assertThat("element " + i, vals.getEntry(i), closeTo(evals.getEntry(i), 1.0e-6)); } } @Test public void testHalfStars() { Quantizer q = new PreferenceDomainQuantizer(domain); assertThat(q.getCount(), equalTo(10)); assertThat(q.getIndexValue(q.index(4.9)), closeTo(5.0, 1.0e-6)); assertThat(q.getIndexValue(q.index(4.7)), closeTo(4.5, 1.0e-6)); assertThat(q.getIndexValue(q.index(3.42)), closeTo(3.5, 1.0e-6)); assertThat(q.quantize(4.9), closeTo(5.0, 1.0e-6)); assertThat(q.quantize(4.7), closeTo(4.5, 1.0e-6)); assertThat(q.quantize(3.42), closeTo(3.5, 1.0e-6)); } }