org.matsim.contrib.common.stats.Correlations.java Source code

Java tutorial

Introduction

Here is the source code for org.matsim.contrib.common.stats.Correlations.java

Source

/* *********************************************************************** *
 * project: org.matsim.*
 * Correlations.java
 *                                                                         *
 * *********************************************************************** *
 *                                                                         *
 * copyright       : (C) 2009 by the members listed in the COPYING,        *
 *                   LICENSE and WARRANTY file.                            *
 * email           : info at matsim dot org                                *
 *                                                                         *
 * *********************************************************************** *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *   See also COPYING, LICENSE and WARRANTY file                           *
 *                                                                         *
 * *********************************************************************** */

/**
 * 
 */
package org.matsim.contrib.common.stats;

import gnu.trove.iterator.TDoubleDoubleIterator;
import gnu.trove.map.hash.TDoubleDoubleHashMap;
import gnu.trove.map.hash.TDoubleIntHashMap;
import gnu.trove.map.hash.TDoubleObjectHashMap;

import java.io.FileNotFoundException;
import java.io.IOException;

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;

/**
 * @author illenberger
 * 
 */
public class Correlations {

    /**
     * @param valuesX
     *            a set of values
     * @param valuesY
     *            a set of values
     * @return a map where the keys are the elements of <tt>valuesX</tt> and
     *         where the values are the mean of a subset of <tt>valuesY</tt> the
     *         index of which is equal to elements of <tt>valuesX</tt> with
     *         equal value.
     */
    public static TDoubleDoubleHashMap mean(double[] valuesX, double[] valuesY) {
        return mean(valuesX, valuesY, new DummyDiscretizer());
    }

    /**
     * 
     * @param valuesX
     *            a set of values.
     * @param valuesY
     *            a set of values.
     * @param binwidth
     *            the bin width for a {@link LinearDiscretizer} applied to
     *            elements of <tt>valuesX</tt>.
     * @return a map where the keys are the elements of <tt>valuesX</tt> and
     *         where the values are the mean of a subset of <tt>valuesY</tt> the
     *         index of which is equal to elements of <tt>valuesX</tt> with
     *         equal value. The elements of <tt>valuesX</tt> are discretized
     *         with <tt>binwidth</tt>.
     */
    public static TDoubleDoubleHashMap mean(double[] valuesX, double[] valuesY, double binwidth) {
        return mean(valuesX, valuesY, new LinearDiscretizer(binwidth));
    }

    /**
     * 
     * @param valuesX
     *            a set of values.
     * @param valuesY
     *            a set of values.
     * @param discretizer
     *            a discretizer applied to the elements of <tt>valuesX</tt>.
     * @return a map where the keys are the elements of <tt>valuesX</tt> and
     *         where the values are the mean of a subset of <tt>valuesY</tt> the
     *         index of which is equal to elements of <tt>valuesX</tt> with
     *         equal value. The elements of <tt>valuesX</tt> are discretized
     *         with <tt>discretizer</tt>.
     */
    public static TDoubleDoubleHashMap mean(double[] valuesX, double[] valuesY, Discretizer discretizer) {
        if (valuesX.length != valuesY.length)
            throw new IllegalArgumentException("Both arrays must not differ in size!");

        TDoubleDoubleHashMap sums = new TDoubleDoubleHashMap();
        TDoubleIntHashMap counts = new TDoubleIntHashMap();

        for (int i = 0; i < valuesX.length; i++) {
            double key = valuesX[i];
            key = discretizer.discretize(key);
            sums.adjustOrPutValue(key, valuesY[i], valuesY[i]);
            counts.adjustOrPutValue(key, 1, 1);
        }

        TDoubleDoubleIterator it = sums.iterator();
        for (int i = 0; i < sums.size(); i++) {
            it.advance();
            it.setValue(it.value() / (double) counts.get(it.key()));
        }

        return sums;
    }

    /**
     * 
     * @param valuesX
     *            a set of values.
     * @param valuesY
     *            a set of values.
     * @param discretizer
     *            a discretizer applied to the elements of <tt>valuesX</tt>.
     * @return a map where the keys are the elements of <tt>valuesX</tt> and
     *         where the values are descriptive statistics objects of a subset
     *         of <tt>valuesY</tt> the index of which is equal to elements of
     *         <tt>valuesX</tt> with equal value. The elements of
     *         <tt>valuesX</tt> are discretized with <tt>discretizer</tt>.
     */
    public static TDoubleObjectHashMap<DescriptiveStatistics> statistics(double[] valuesX, double[] valuesY,
            Discretizer discretizer) {
        if (valuesX.length != valuesY.length)
            throw new IllegalArgumentException("Both arrays must not differ in size!");

        TDoubleObjectHashMap<DescriptiveStatistics> map = new TDoubleObjectHashMap<DescriptiveStatistics>();

        for (int i = 0; i < valuesX.length; i++) {
            double x = discretizer.discretize(valuesX[i]);
            DescriptiveStatistics stats = map.get(x);
            if (stats == null) {
                stats = new DescriptiveStatistics();
                map.put(x, stats);
            }
            stats.addValue(valuesY[i]);
        }

        return map;
    }

    /**
     * Writes a tab-separated file with the keys of <tt>values</tt> in the first
     * column and the values of <tt>values</tt> in the second column.
     * 
     * @param values
     *            a map of values.
     * @param filename
     *            the file name.
     * @param xLabel
     *            the header for the values of the first row.
     * @param yLabel
     *            the header for the values of the second row.
     * @throws FileNotFoundException
     * @throws IOException
     * @deprecated
     */
    public static void writeToFile(TDoubleDoubleHashMap values, String filename, String xLabel, String yLabel)
            throws IOException {
        StatsWriter.writeHistogram(values, xLabel, yLabel, filename);
    }

}