org.nd4j.linalg.util.BigDecimalMath.java Source code

Java tutorial

Introduction

Here is the source code for org.nd4j.linalg.util.BigDecimalMath.java

Source

/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.util;
// Code 

import org.apache.commons.math3.util.FastMath;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.security.ProviderException;

/**
 * BigDecimal special functions.
 */
public class BigDecimalMath {

    /**
     * The base of the natural logarithm in a predefined accuracy.
     * \protect\vrule width0pt\protect\href{http://www.cs.arizona.edu/icon/oddsends/e.htm}{http://www.cs.arizona.edu/icon/oddsends/e.htm}
     * The precision of the predefined constant is one less than
     * the strings length, taking into account the decimal dot.
     * static int E_PRECISION = E.length()-1 ;
     */
    static BigDecimal E = new BigDecimal(
            "2.71828182845904523536028747135266249775724709369995957496696762772407663035354"
                    + "759457138217852516642742746639193200305992181741359662904357290033429526059563"
                    + "073813232862794349076323382988075319525101901157383418793070215408914993488416"
                    + "750924476146066808226480016847741185374234544243710753907774499206955170276183"
                    + "860626133138458300075204493382656029760673711320070932870912744374704723069697"
                    + "720931014169283681902551510865746377211125238978442505695369677078544996996794"
                    + "686445490598793163688923009879312773617821542499922957635148220826989519366803"
                    + "318252886939849646510582093923982948879332036250944311730123819706841614039701"
                    + "983767932068328237646480429531180232878250981945581530175671736133206981125099"
                    + "618188159304169035159888851934580727386673858942287922849989208680582574927961"
                    + "048419844436346324496848756023362482704197862320900216099023530436994184914631"
                    + "409343173814364054625315209618369088870701676839642437814059271456354906130310"
                    + "720851038375051011574770417189861068739696552126715468895703503540212340784981"
                    + "933432106817012100562788023519303322474501585390473041995777709350366041699732"
                    + "972508868769664035557071622684471625607988265178713419512466520103059212366771"
                    + "943252786753985589448969709640975459185695638023637016211204774272283648961342"
                    + "251644507818244235294863637214174023889344124796357437026375529444833799801612"
                    + "549227850925778256209262264832627793338656648162772516401910590049164499828931");
    /**
     * Eulers constant Pi.
     * \protect\vrule width0pt\protect\href{http://www.cs.arizona.edu/icon/oddsends/pi.htm}{http://www.cs.arizona.edu/icon/oddsends/pi.htm}
     */
    static BigDecimal PI = new BigDecimal(
            "3.14159265358979323846264338327950288419716939937510582097494459230781640628620"
                    + "899862803482534211706798214808651328230664709384460955058223172535940812848111"
                    + "745028410270193852110555964462294895493038196442881097566593344612847564823378"
                    + "678316527120190914564856692346034861045432664821339360726024914127372458700660"
                    + "631558817488152092096282925409171536436789259036001133053054882046652138414695"
                    + "194151160943305727036575959195309218611738193261179310511854807446237996274956"
                    + "735188575272489122793818301194912983367336244065664308602139494639522473719070"
                    + "217986094370277053921717629317675238467481846766940513200056812714526356082778"
                    + "577134275778960917363717872146844090122495343014654958537105079227968925892354"
                    + "201995611212902196086403441815981362977477130996051870721134999999837297804995"
                    + "105973173281609631859502445945534690830264252230825334468503526193118817101000"
                    + "313783875288658753320838142061717766914730359825349042875546873115956286388235"
                    + "378759375195778185778053217122680661300192787661119590921642019893809525720106"
                    + "548586327886593615338182796823030195203530185296899577362259941389124972177528"
                    + "347913151557485724245415069595082953311686172785588907509838175463746493931925"
                    + "506040092770167113900984882401285836160356370766010471018194295559619894676783"
                    + "744944825537977472684710404753464620804668425906949129331367702898915210475216"
                    + "205696602405803815019351125338243003558764024749647326391419927260426992279678"
                    + "235478163600934172164121992458631503028618297455570674983850549458858692699569"
                    + "092721079750930295532116534498720275596023648066549911988183479775356636980742"
                    + "654252786255181841757467289097777279380008164706001614524919217321721477235014");
    /**
     * Euler-Mascheroni constant lower-case gamma.
     * 13
     * \protect\vrule width0pt\protect\href{http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap35.html}{http:/
     */
    static BigDecimal GAMMA = new BigDecimal("0.577215664901532860606512090082402431"
            + "0421593359399235988057672348848677267776646709369470632917467495146314472498070"
            + "8248096050401448654283622417399764492353625350033374293733773767394279259525824"
            + "7094916008735203948165670853233151776611528621199501507984793745085705740029921"
            + "3547861466940296043254215190587755352673313992540129674205137541395491116851028"
            + "0798423487758720503843109399736137255306088933126760017247953783675927135157722"
            + "6102734929139407984301034177717780881549570661075010161916633401522789358679654"
            + "9725203621287922655595366962817638879272680132431010476505963703947394957638906"
            + "5729679296010090151251959509222435014093498712282479497471956469763185066761290"
            + "6381105182419744486783638086174945516989279230187739107294578155431600500218284"
            + "4096053772434203285478367015177394398700302370339518328690001558193988042707411"
            + "5422278197165230110735658339673487176504919418123000406546931429992977795693031"
            + "0050308630341856980323108369164002589297089098548682577736428825395492587362959"
            + "6133298574739302373438847070370284412920166417850248733379080562754998434590761"
            + "6431671031467107223700218107450444186647591348036690255324586254422253451813879"
            + "1243457350136129778227828814894590986384600629316947188714958752549236649352047"
            + "3243641097268276160877595088095126208404544477992299157248292516251278427659657"
            + "0832146102982146179519579590959227042089896279712553632179488737642106606070659"
            + "8256199010288075612519913751167821764361905705844078357350158005607745793421314"
            + "49885007864151716151945");
    /**
     * Natural logarithm of 2.
     * \protect\vrule width0pt\protect\href{http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap58.html}{http:/
     */
    static BigDecimal LOG2 = new BigDecimal("0.693147180559945309417232121458176568075"
            + "50013436025525412068000949339362196969471560586332699641868754200148102057068573"
            + "368552023575813055703267075163507596193072757082837143519030703862389167347112335"
            + "011536449795523912047517268157493206515552473413952588295045300709532636664265410"
            + "423915781495204374043038550080194417064167151864471283996817178454695702627163106"
            + "454615025720740248163777338963855069526066834113727387372292895649354702576265209"
            + "885969320196505855476470330679365443254763274495125040606943814710468994650622016"
            + "772042452452961268794654619316517468139267250410380254625965686914419287160829380"
            + "317271436778265487756648508567407764845146443994046142260319309673540257444607030"
            + "809608504748663852313818167675143866747664789088143714198549423151997354880375165"
            + "861275352916610007105355824987941472950929311389715599820565439287170007218085761"
            + "025236889213244971389320378439353088774825970171559107088236836275898425891853530"
            + "243634214367061189236789192372314672321720534016492568727477823445353476481149418"
            + "642386776774406069562657379600867076257199184734022651462837904883062033061144630"
            + "073719489002743643965002580936519443041191150608094879306786515887090060520346842"
            + "973619384128965255653968602219412292420757432175748909770675268711581705113700915"
            + "894266547859596489065305846025866838294002283300538207400567705304678700184162404"
            + "418833232798386349001563121889560650553151272199398332030751408426091479001265168"
            + "243443893572472788205486271552741877243002489794540196187233980860831664811490930"
            + "667519339312890431641370681397776498176974868903887789991296503619270710889264105"
            + "230924783917373501229842420499568935992206602204654941510613");
    /**
     * A suggestion for the maximum numter of terms in the Taylor expansion of the exponential.
     */
    static private int TAYLOR_NTERM = 8;

    /**
     * Eulers constant.
     *
     * @param mc The required precision of the result.
     * @return 3.14159...
     */
    static public BigDecimal pi(final MathContext mc) {
        /* look it up if possible */
        if (mc.getPrecision() < PI.precision()) {
            return PI.round(mc);
        } else {
            /* Broadhurst \protect\vrule width0pt\protect\href{http://arxiv.org/abs/math/9803067}{arXiv:math/9803067}
             */
            int[] a = { 1, 0, 0, -1, -1, -1, 0, 0 };
            BigDecimal S = broadhurstBBP(1, 1, a, mc);
            return multiplyRound(S, 8);
        }
    } /* BigDecimalMath.pi */

    /**
     * Euler-Mascheroni constant.
     *
     * @param mc The required precision of the result.
     * @return 0.577...
     */
    static public BigDecimal gamma(MathContext mc) {
        /* look it up if possible */
        if (mc.getPrecision() < GAMMA.precision()) {
            return GAMMA.round(mc);
        } else {
            double eps = prec2err(0.577, mc.getPrecision());
            /* Euler-Stieltjes as shown in Dilcher, Aequat Math 48 (1) (1994) 55-85
            14
             */
            MathContext mcloc = new MathContext(2 + mc.getPrecision());
            BigDecimal resul = BigDecimal.ONE;
            resul = resul.add(log(2, mcloc));
            resul = resul.subtract(log(3, mcloc));
            /* how many terms: zeta-1 falls as 1/2^(2n+1), so the
             * terms drop faster than 1/2^(4n+2). Set 1/2^(4kmax+2) < eps.
             * Leading term zeta(3)/(4^1*3) is 0.017. Leading zeta(3) is 1.2. Log(2) is 0.7
             */
            int kmax = (int) ((Math.log(eps / 0.7) - 2.) / 4.);
            mcloc = new MathContext(1 + err2prec(1.2, eps / kmax));
            for (int n = 1;; n++) {
                /* zeta is close to 1. Division of zeta-1 through
                 * 4^n*(2n+1) means divion through roughly 2^(2n+1)
                 */
                BigDecimal c = zeta(2 * n + 1, mcloc).subtract(BigDecimal.ONE);
                BigInteger fourn = new BigInteger("" + (2 * n + 1));
                fourn = fourn.shiftLeft(2 * n);
                c = divideRound(c, fourn);
                resul = resul.subtract(c);
                if (c.doubleValue() < 0.1 * eps) {
                    break;
                }
            }
            return resul.round(mc);
        }
    } /* BigDecimalMath.gamma */

    /**
     * The square root.
     *
     * @param x the non-negative argument.
     * @return the square root of the BigDecimal rounded to the precision implied by x.
     */
    static public BigDecimal sqrt(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            throw new ArithmeticException("negative argument " + x.toString() + " of square root");
        }
        return root(2, x);
    } /* BigDecimalMath.sqrt */

    /**
     * The cube root.
     *
     * @param x The argument.
     * @return The cubic root of the BigDecimal rounded to the precision implied by x.
     * The sign of the result is the sign of the argument.
     */
    static public BigDecimal cbrt(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return root(3, x.negate()).negate();
        } else {
            return root(3, x);
        }
    } /* BigDecimalMath.cbrt */

    /**
     * The integer root.
     *
     * @param n the positive argument.
     * @param x the non-negative argument.
     * @return The n-th root of the BigDecimal rounded to the precision implied by x, x^(1/n).
     */
    static public BigDecimal root(final int n, final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            throw new ArithmeticException("negative argument " + x.toString() + " of root");
        }
        if (n <= 0) {
            throw new ArithmeticException("negative power " + n + " of root");
        }
        if (n == 1) {
            return x;
        }
        /* start the computation from a double precision estimate */
        BigDecimal s = new BigDecimal(Math.pow(x.doubleValue(), 1.0 / n));
        /* this creates nth with nominal precision of 1 digit
         */
        final BigDecimal nth = new BigDecimal(n);
        /* Specify an internal accuracy within the loop which is
         * slightly larger than what is demanded by eps below.
         */
        final BigDecimal xhighpr = scalePrec(x, 2);
        MathContext mc = new MathContext(2 + x.precision());
        /* Relative accuracy of the result is eps.
         */
        final double eps = x.ulp().doubleValue() / (2 * n * x.doubleValue());
        for (;;) {
            /* s = s -(s/n-x/n/s^(n-1)) = s-(s-x/s^(n-1))/n; test correction s/n-x/s for being
             * smaller than the precision requested. The relative correction is (1-x/s^n)/n,
             */
            BigDecimal c = xhighpr.divide(s.pow(n - 1), mc);
            c = s.subtract(c);
            MathContext locmc = new MathContext(c.precision());
            c = c.divide(nth, locmc);
            s = s.subtract(c);
            if (Math.abs(c.doubleValue() / s.doubleValue()) < eps) {
                break;
            }
        }
        return s.round(new MathContext(err2prec(eps)));
    } /* BigDecimalMath.root */

    /**
     * The hypotenuse.
     *
     * @param x the first argument.
     * @param y the second argument.
     * @return the square root of the sum of the squares of the two arguments, sqrt(x^2+y^2).
     */
    static public BigDecimal hypot(final BigDecimal x, final BigDecimal y) {
        /* compute x^2+y^2
         */
        BigDecimal z = x.pow(2).add(y.pow(2));
        /* truncate to the precision set by x and y. Absolute error = 2*x*xerr+2*y*yerr,
         * where the two errors are 1/2 of the ulps. Two intermediate protectio digits.
         */
        BigDecimal zerr = x.abs().multiply(x.ulp()).add(y.abs().multiply(y.ulp()));
        MathContext mc = new MathContext(2 + err2prec(z, zerr));
        /* Pull square root */
        z = sqrt(z.round(mc));
        /* Final rounding. Absolute error in the square root is (y*yerr+x*xerr)/z, where zerr holds 2*(x*xerr+y*yerr).
         */
        mc = new MathContext(err2prec(z.doubleValue(), 0.5 * zerr.doubleValue() / z.doubleValue()));
        return z.round(mc);
    } /* BigDecimalMath.hypot */

    /**
     * The hypotenuse.
     *
     * @param n the first argument.
     * @param x the second argument.
     * @return the square root of the sum of the squares of the two arguments, sqrt(n^2+x^2).
     */
    static public BigDecimal hypot(final int n, final BigDecimal x) {
        /* compute n^2+x^2 in infinite precision
         */
        BigDecimal z = (new BigDecimal(n)).pow(2).add(x.pow(2));
        /* Truncate to the precision set by x. Absolute error = in z (square of the result) is |2*x*xerr|,
         * where the error is 1/2 of the ulp. Two intermediate protection digits.
         * zerr is a signed value, but used only in conjunction with err2prec(), so this feature does not harm.
         */
        double zerr = x.doubleValue() * x.ulp().doubleValue();
        MathContext mc = new MathContext(2 + err2prec(z.doubleValue(), zerr));
        /* Pull square root */
        z = sqrt(z.round(mc));
        /* Final rounding. Absolute error in the square root is x*xerr/z, where zerr holds 2*x*xerr.
         */
        mc = new MathContext(err2prec(z.doubleValue(), 0.5 * zerr / z.doubleValue()));
        return z.round(mc);
    } /* BigDecimalMath.hypot */

    /**
     * The exponential function.
     *
     * @param x the argument.
     * @return exp(x).
     * The precision of the result is implicitly defined by the precision in the argument.
     * 16
     * In particular this means that "Invalid Operation" errors are thrown if catastrophic
     * cancellation of digits causes the result to have no valid digits left.
     */
    static public BigDecimal exp(BigDecimal x) {
        /* To calculate the value if x is negative, use exp(-x) = 1/exp(x)
         */
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            final BigDecimal invx = exp(x.negate());
            /* Relative error in inverse of invx is the same as the relative errror in invx.
             * This is used to define the precision of the result.
             */
            MathContext mc = new MathContext(invx.precision());
            return BigDecimal.ONE.divide(invx, mc);
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            /* recover the valid number of digits from x.ulp(), if x hits the
             * zero. The x.precision() is 1 then, and does not provide this information.
             */
            return scalePrec(BigDecimal.ONE, -(int) (Math.log10(x.ulp().doubleValue())));
        } else {
            /* Push the number in the Taylor expansion down to a small
             * value where TAYLOR_NTERM terms will do. If x<1, the n-th term is of the order
             * x^n/n!, and equal to both the absolute and relative error of the result
             * since the result is close to 1. The x.ulp() sets the relative and absolute error
             * of the result, as estimated from the first Taylor term.
             * We want x^TAYLOR_NTERM/TAYLOR_NTERM! < x.ulp, which is guaranteed if
             * x^TAYLOR_NTERM < TAYLOR_NTERM*(TAYLOR_NTERM-1)*...*x.ulp.
             */
            final double xDbl = x.doubleValue();
            final double xUlpDbl = x.ulp().doubleValue();
            if (Math.pow(xDbl, TAYLOR_NTERM) < TAYLOR_NTERM * (TAYLOR_NTERM - 1.0) * (TAYLOR_NTERM - 2.0)
                    * xUlpDbl) {
                /* Add TAYLOR_NTERM terms of the Taylor expansion (Eulers sum formula)
                 */
                BigDecimal resul = BigDecimal.ONE;
                /* x^i */
                BigDecimal xpowi = BigDecimal.ONE;
                /* i factorial */
                BigInteger ifac = BigInteger.ONE;
                /* TAYLOR_NTERM terms to be added means we move x.ulp() to the right
                 * for each power of 10 in TAYLOR_NTERM, so the addition wont add noise beyond
                 * whats already in x.
                 */
                MathContext mcTay = new MathContext(err2prec(1., xUlpDbl / TAYLOR_NTERM));
                for (int i = 1; i <= TAYLOR_NTERM; i++) {
                    ifac = ifac.multiply(new BigInteger("" + i));
                    xpowi = xpowi.multiply(x);
                    final BigDecimal c = xpowi.divide(new BigDecimal(ifac), mcTay);
                    resul = resul.add(c);
                    if (Math.abs(xpowi.doubleValue()) < i && Math.abs(c.doubleValue()) < 0.5 * xUlpDbl) {
                        break;
                    }
                }
                /* exp(x+deltax) = exp(x)(1+deltax) if deltax is <<1. So the relative error
                 * in the result equals the absolute error in the argument.
                 */
                MathContext mc = new MathContext(err2prec(xUlpDbl / 2.));
                return resul.round(mc);
            } else {
                /* Compute exp(x) = (exp(0.1*x))^10. Division by 10 does not lead
                 * to loss of accuracy.
                 */
                int exSc = (int) (1.0 - Math.log10(TAYLOR_NTERM * (TAYLOR_NTERM - 1.0) * (TAYLOR_NTERM - 2.0)
                        * xUlpDbl / Math.pow(xDbl, TAYLOR_NTERM)) / (TAYLOR_NTERM - 1.0));
                BigDecimal xby10 = x.scaleByPowerOfTen(-exSc);
                BigDecimal expxby10 = exp(xby10);
                /* Final powering by 10 means that the relative error of the result
                 * is 10 times the relative error of the base (First order binomial expansion).
                 * This looses one digit.
                 */
                MathContext mc = new MathContext(expxby10.precision() - exSc);
                /* Rescaling the powers of 10 is done in chunks of a maximum of 8 to avoid an invalid operation
                17
                 * response by the BigDecimal.pow library or integer overflow.
                 */
                while (exSc > 0) {
                    int exsub = Math.min(8, exSc);
                    exSc -= exsub;
                    MathContext mctmp = new MathContext(expxby10.precision() - exsub + 2);
                    int pex = 1;
                    while (exsub-- > 0) {
                        pex *= 10;
                    }
                    expxby10 = expxby10.pow(pex, mctmp);
                }
                return expxby10.round(mc);
            }
        }
    } /* BigDecimalMath.exp */

    /**
     * The base of the natural logarithm.
     *
     * @param mc the required precision of the result
     * @return exp(1) = 2.71828....
     */
    static public BigDecimal exp(final MathContext mc) {
        /* look it up if possible */
        if (mc.getPrecision() < E.precision()) {
            return E.round(mc);
        } else {
            /* Instantiate a 1.0 with the requested pseudo-accuracy
             * and delegate the computation to the public method above.
             */
            BigDecimal uni = scalePrec(BigDecimal.ONE, mc.getPrecision());
            return exp(uni);
        }
    } /* BigDecimalMath.exp */

    /**
     * The natural logarithm.
     *
     * @param x the argument.
     * @return ln(x).
     * The precision of the result is implicitly defined by the precision in the argument.
     */
    static public BigDecimal log(BigDecimal x) {
        /* the value is undefined if x is negative.
         */
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            throw new ArithmeticException("Cannot take log of negative " + x.toString());
        } else if (x.compareTo(BigDecimal.ONE) == 0) {
            /* log 1. = 0. */
            return scalePrec(BigDecimal.ZERO, x.precision() - 1);
        } else if (Math.abs(x.doubleValue() - 1.0) <= 0.3) {
            /* The standard Taylor series around x=1, z=0, z=x-1. Abramowitz-Stegun 4.124.
             * The absolute error is err(z)/(1+z) = err(x)/x.
             */
            BigDecimal z = scalePrec(x.subtract(BigDecimal.ONE), 2);
            BigDecimal zpown = z;
            double eps = 0.5 * x.ulp().doubleValue() / Math.abs(x.doubleValue());
            BigDecimal resul = z;
            for (int k = 2;; k++) {
                zpown = multiplyRound(zpown, z);
                BigDecimal c = divideRound(zpown, k);
                if (k % 2 == 0) {
                    resul = resul.subtract(c);
                } else {
                    resul = resul.add(c);
                }
                if (Math.abs(c.doubleValue()) < eps) {
                    break;
                }
            }
            MathContext mc = new MathContext(err2prec(resul.doubleValue(), eps));
            return resul.round(mc);
        } else {
            final double xDbl = x.doubleValue();
            final double xUlpDbl = x.ulp().doubleValue();
            /* Map log(x) = log root[r](x)^r = r*log( root[r](x)) with the aim
             * to move roor[r](x) near to 1.2 (that is, below the 0.3 appearing above), where log(1.2) is roughly 0.2.
             */
            int r = (int) (Math.log(xDbl) / 0.2);
            /* Since the actual requirement is a function of the value 0.3 appearing above,
             * we avoid the hypothetical case of endless recurrence by ensuring that r >= 2.
             */
            r = Math.max(2, r);
            /* Compute r-th root with 2 additional digits of precision
             */
            BigDecimal xhighpr = scalePrec(x, 2);
            BigDecimal resul = root(r, xhighpr);
            resul = log(resul).multiply(new BigDecimal(r));
            /* error propagation: log(x+errx) = log(x)+errx/x, so the absolute error
             * in the result equals the relative error in the input, xUlpDbl/xDbl .
             */
            MathContext mc = new MathContext(err2prec(resul.doubleValue(), xUlpDbl / xDbl));
            return resul.round(mc);
        }
    } /* BigDecimalMath.log */

    /**
     * The natural logarithm.
     *
     * @param n  The main argument, a strictly positive integer.
     * @param mc The requirements on the precision.
     * @return ln(n).
     */
    static public BigDecimal log(int n, final MathContext mc) {
        /* the value is undefined if x is negative.
         */
        if (n <= 0) {
            throw new ArithmeticException("Cannot take log of negative " + n);
        } else if (n == 1) {
            return BigDecimal.ZERO;
        } else if (n == 2) {
            if (mc.getPrecision() < LOG2.precision()) {
                return LOG2.round(mc);
            } else {
                /* Broadhurst \protect\vrule width0pt\protect\href{http://arxiv.org/abs/math/9803067}{arXiv:math/9803067}
                 * Error propagation: the error in log(2) is twice the error in S(2,-5,...).
                 */
                int[] a = { 2, -5, -2, -7, -2, -5, 2, -3 };
                BigDecimal S = broadhurstBBP(2, 1, a, new MathContext(1 + mc.getPrecision()));
                S = S.multiply(new BigDecimal(8));
                S = sqrt(divideRound(S, 3));
                return S.round(mc);
            }
        } else if (n == 3) {
            /* summation of a series roughly proportional to (7/500)^k. Estimate count
             * of terms to estimate the precision (drop the favorable additional
             * 1/k here): 0.013^k <= 10^(-precision), so k*log10(0.013) <= -precision
             * so k>= precision/1.87.
             */
            int kmax = (int) (mc.getPrecision() / 1.87);
            MathContext mcloc = new MathContext(mc.getPrecision() + 1 + (int) (Math.log10(kmax * 0.693 / 1.098)));
            BigDecimal log3 = multiplyRound(log(2, mcloc), 19);
            /* log3 is roughly 1, so absolute and relative error are the same. The
             * result will be divided by 12, so a conservative error is the one
             * already found in mc
             */
            double eps = prec2err(1.098, mc.getPrecision()) / kmax;
            Rational r = new Rational(7153, 524288);
            Rational pk = new Rational(7153, 524288);
            for (int k = 1;; k++) {
                Rational tmp = pk.divide(k);
                if (tmp.doubleValue() < eps) {
                    break;
                }
                /* how many digits of tmp do we need in the sum?
                 */
                mcloc = new MathContext(err2prec(tmp.doubleValue(), eps));
                BigDecimal c = pk.divide(k).BigDecimalValue(mcloc);
                if (k % 2 != 0) {
                    log3 = log3.add(c);
                } else {
                    log3 = log3.subtract(c);
                }
                pk = pk.multiply(r);
            }
            log3 = divideRound(log3, 12);
            return log3.round(mc);
        } else if (n == 5) {
            /* summation of a series roughly proportional to (7/160)^k. Estimate count
             * of terms to estimate the precision (drop the favorable additional
             * 1/k here): 0.046^k <= 10^(-precision), so k*log10(0.046) <= -precision
             * so k>= precision/1.33.
             */
            int kmax = (int) (mc.getPrecision() / 1.33);
            MathContext mcloc = new MathContext(mc.getPrecision() + 1 + (int) (Math.log10(kmax * 0.693 / 1.609)));
            BigDecimal log5 = multiplyRound(log(2, mcloc), 14);
            /* log5 is roughly 1.6, so absolute and relative error are the same. The
             * result will be divided by 6, so a conservative error is the one
             * already found in mc
             */
            double eps = prec2err(1.6, mc.getPrecision()) / kmax;
            Rational r = new Rational(759, 16384);
            Rational pk = new Rational(759, 16384);
            for (int k = 1;; k++) {
                Rational tmp = pk.divide(k);
                if (tmp.doubleValue() < eps) {
                    break;
                }
                /* how many digits of tmp do we need in the sum?
                 */
                mcloc = new MathContext(err2prec(tmp.doubleValue(), eps));
                BigDecimal c = pk.divide(k).BigDecimalValue(mcloc);
                log5 = log5.subtract(c);
                pk = pk.multiply(r);
            }
            log5 = divideRound(log5, 6);
            return log5.round(mc);
        } else if (n == 7) {
            /* summation of a series roughly proportional to (1/8)^k. Estimate count
             * of terms to estimate the precision (drop the favorable additional
             * 1/k here): 0.125^k <= 10^(-precision), so k*log10(0.125) <= -precision
             * so k>= precision/0.903.
             */
            int kmax = (int) (mc.getPrecision() / 0.903);
            MathContext mcloc = new MathContext(
                    mc.getPrecision() + 1 + (int) (Math.log10(kmax * 3 * 0.693 / 1.098)));
            BigDecimal log7 = multiplyRound(log(2, mcloc), 3);
            /* log7 is roughly 1.9, so absolute and relative error are the same.
             */
            double eps = prec2err(1.9, mc.getPrecision()) / kmax;
            Rational r = new Rational(1, 8);
            Rational pk = new Rational(1, 8);
            for (int k = 1;; k++) {
                Rational tmp = pk.divide(k);
                if (tmp.doubleValue() < eps) {
                    break;
                }
                /* how many digits of tmp do we need in the sum?
                 */
                mcloc = new MathContext(err2prec(tmp.doubleValue(), eps));
                BigDecimal c = pk.divide(k).BigDecimalValue(mcloc);
                log7 = log7.subtract(c);
                pk = pk.multiply(r);
            }
            return log7.round(mc);
        } else {
            /* At this point one could either forward to the log(BigDecimal) signature (implemented)
             * or decompose n into Ifactors and use an implemenation of all the prime bases.
             * Estimate of the result; convert the mc argument to an absolute error eps
             * log(n+errn) = log(n)+errn/n = log(n)+eps
             */
            double res = Math.log((double) n);
            double eps = prec2err(res, mc.getPrecision());
            /* errn = eps*n, convert absolute error in result to requirement on absolute error in input
             */
            eps *= n;

            /* Convert this absolute requirement of error in n to a relative error in n
             */
            final MathContext mcloc = new MathContext(1 + err2prec((double) n, eps));
            /* Padd n with a number of zeros to trigger the required accuracy in
             * the standard signature method
             */
            BigDecimal nb = scalePrec(new BigDecimal(n), mcloc);
            return log(nb);
        }
    } /* log */

    /**
     * The natural logarithm.
     *
     * @param r  The main argument, a strictly positive value.
     * @param mc The requirements on the precision.
     * @return ln(r).
     */
    static public BigDecimal log(final Rational r, final MathContext mc) {
        /* the value is undefined if x is negative.
         */
        if (r.compareTo(Rational.ZERO) <= 0) {
            throw new ArithmeticException("Cannot take log of negative " + r.toString());
        } else if (r.compareTo(Rational.ONE) == 0) {
            return BigDecimal.ZERO;
        } else {
            /* log(r+epsr) = log(r)+epsr/r. Convert the precision to an absolute error in the result.
             * eps contains the required absolute error of the result, epsr/r.
             */
            double eps = prec2err(Math.log(r.doubleValue()), mc.getPrecision());
            /* Convert this further into a requirement of the relative precision in r, given that
             * epsr/r is also the relative precision of r. Add one safety digit.
             */
            MathContext mcloc = new MathContext(1 + err2prec(eps));
            final BigDecimal resul = log(r.BigDecimalValue(mcloc));
            return resul.round(mc);
        }
    } /* log */

    /**
     * Power function.
     *
     * @param x Base of the power.
     * @param y Exponent of the power.
     * @return x^y.
     * The estimation of the relative error in the result is |log(x)*err(y)|+|y*err(x)/x|
     */
    static public BigDecimal pow(final BigDecimal x, final BigDecimal y) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            throw new ArithmeticException("Cannot power negative " + x.toString());
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else {
            /* return x^y = exp(y*log(x)) ;
             */
            BigDecimal logx = log(x);
            BigDecimal ylogx = y.multiply(logx);
            BigDecimal resul = exp(ylogx);
            /* The estimation of the relative error in the result is |log(x)*err(y)|+|y*err(x)/x|
             */
            double errR = Math.abs(logx.doubleValue() * y.ulp().doubleValue() / 2.)
                    + Math.abs(y.doubleValue() * x.ulp().doubleValue() / 2. / x.doubleValue());
            MathContext mcR = new MathContext(err2prec(1.0, errR));
            return resul.round(mcR);
        }
    } /* BigDecimalMath.pow */

    /**
     * Raise to an integer power and round.
     *
     * @param x The base.
     * @param n The exponent.
     * @return x^n.
     */
    static public BigDecimal powRound(final BigDecimal x, final int n) {
        /* The relative error in the result is n times the relative error in the input.
         * The estimation is slightly optimistic due to the integer rounding of the logarithm.
         */
        MathContext mc = new MathContext(x.precision() - (int) Math.log10((double) (Math.abs(n))));
        return x.pow(n, mc);
    } /* BigDecimalMath.powRound */

    /**
     * Trigonometric sine.
     *
     * @param x The argument in radians.
     * @return sin(x) in the range -1 to 1.
     */
    static public BigDecimal sin(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return sin(x.negate()).negate();
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else {
            /* reduce modulo 2pi
             */
            BigDecimal res = mod2pi(x);
            double errpi = 0.5 * Math.abs(x.ulp().doubleValue());
            int val = 2 + err2prec(FastMath.PI, errpi);
            MathContext mc = new MathContext(val);
            BigDecimal p = pi(mc);
            mc = new MathContext(x.precision());
            if (res.compareTo(p) > 0) {
                /* pi<x<=2pi: sin(x)= - sin(x-pi)
                 */
                return sin(subtractRound(res, p)).negate();
            } else if (res.multiply(new BigDecimal("2")).compareTo(p) > 0) {
                /* pi/2<x<=pi: sin(x)= sin(pi-x)
                 */
                return sin(subtractRound(p, res));
            } else {
                /* for the range 0<=x<Pi/2 one could use sin(2x)=2sin(x)cos(x)
                 * to split this further. Here, use the sine up to pi/4 and the cosine higher up.
                 */
                if (res.multiply(new BigDecimal("4")).compareTo(p) > 0) {
                    /* x>pi/4: sin(x) = cos(pi/2-x)
                     */
                    return cos(subtractRound(p.divide(new BigDecimal("2")), res));
                } else {
                    /* Simple Taylor expansion, sum_{i=1..infinity} (-1)^(..)res^(2i+1)/(2i+1)! */
                    BigDecimal resul = res;
                    /* x^i */
                    BigDecimal xpowi = res;
                    /* 2i+1 factorial */
                    BigInteger ifac = BigInteger.ONE;
                    /* The error in the result is set by the error in x itself.
                     */
                    double xUlpDbl = res.ulp().doubleValue();
                    /* The error in the result is set by the error in x itself.
                     * We need at most k terms to squeeze x^(2k+1)/(2k+1)! below this value.
                     * x^(2k+1) < x.ulp; (2k+1)*log10(x) < -x.precision; 2k*log10(x)< -x.precision;
                     * 2k*(-log10(x)) > x.precision; 2k*log10(1/x) > x.precision
                     */
                    int k = (int) (res.precision() / Math.log10(1.0 / res.doubleValue())) / 2;
                    MathContext mcTay = new MathContext(err2prec(res.doubleValue(), xUlpDbl / k));
                    for (int i = 1;; i++) {
                        /* TBD: at which precision will 2*i or 2*i+1 overflow?
                         */
                        ifac = ifac.multiply(new BigInteger("" + (2 * i)));
                        ifac = ifac.multiply(new BigInteger("" + (2 * i + 1)));
                        xpowi = xpowi.multiply(res).multiply(res).negate();
                        BigDecimal corr = xpowi.divide(new BigDecimal(ifac), mcTay);
                        resul = resul.add(corr);
                        if (corr.abs().doubleValue() < 0.5 * xUlpDbl) {
                            break;
                        }
                    }
                    /* The error in the result is set by the error in x itself.
                     */
                    mc = new MathContext(res.precision());
                    return resul.round(mc);
                }
            }
        } /* sin */
    }

    /**
     * Trigonometric cosine.
     *
     * @param x The argument in radians.
     * @return cos(x) in the range -1 to 1.
     */
    static public BigDecimal cos(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return cos(x.negate());
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ONE;
        } else {
            /* reduce modulo 2pi
             */
            BigDecimal res = mod2pi(x);
            double errpi = 0.5 * Math.abs(x.ulp().doubleValue());
            int val = +err2prec(FastMath.PI, errpi);
            MathContext mc = new MathContext(val);
            BigDecimal p = pi(mc);
            mc = new MathContext(x.precision());
            if (res.compareTo(p) > 0) {
                /* pi<x<=2pi: cos(x)= - cos(x-pi)
                 */
                return cos(subtractRound(res, p)).negate();
            } else if (res.multiply(new BigDecimal("2")).compareTo(p) > 0) {
                /* pi/2<x<=pi: cos(x)= -cos(pi-x)
                 */
                return cos(subtractRound(p, res)).negate();
            } else {
                /* for the range 0<=x<Pi/2 one could use cos(2x)= 1-2*sin^2(x)
                 * to split this further, or use the cos up to pi/4 and the sine higher up.
                throw new ProviderException("Unimplemented cosine ") ;
                 */
                if (res.multiply(new BigDecimal("4")).compareTo(p) > 0) {
                    /* x>pi/4: cos(x) = sin(pi/2-x)
                     */
                    return sin(subtractRound(p.divide(new BigDecimal("2")), res));
                } else {
                    /* Simple Taylor expansion, sum_{i=0..infinity} (-1)^(..)res^(2i)/(2i)! */
                    BigDecimal resul = BigDecimal.ONE;
                    /* x^i */
                    BigDecimal xpowi = BigDecimal.ONE;
                    /* 2i factorial */
                    BigInteger ifac = BigInteger.ONE;
                    /* The absolute error in the result is the error in x^2/2 which is x times the error in x.
                     */
                    double xUlpDbl = 0.5 * res.ulp().doubleValue() * res.doubleValue();
                    /* The error in the result is set by the error in x^2/2 itself, xUlpDbl.
                     * We need at most k terms to push x^(2k+1)/(2k+1)! below this value.
                     * x^(2k) < xUlpDbl; (2k)*log(x) < log(xUlpDbl);
                     */
                    int k = (int) (Math.log(xUlpDbl) / Math.log(res.doubleValue())) / 2;
                    MathContext mcTay = new MathContext(err2prec(1., xUlpDbl / k));
                    for (int i = 1;; i++) {
                        /* TBD: at which precision will 2*i-1 or 2*i overflow?
                         */
                        ifac = ifac.multiply(new BigInteger("" + (2 * i - 1)));
                        ifac = ifac.multiply(new BigInteger("" + (2 * i)));
                        xpowi = xpowi.multiply(res).multiply(res).negate();
                        BigDecimal corr = xpowi.divide(new BigDecimal(ifac), mcTay);
                        resul = resul.add(corr);
                        if (corr.abs().doubleValue() < 0.5 * xUlpDbl) {
                            break;
                        }
                    }
                    /* The error in the result is governed by the error in x itself.
                     */
                    mc = new MathContext(err2prec(resul.doubleValue(), xUlpDbl));
                    return resul.round(mc);
                }
            }
        }
    } /* BigDecimalMath.cos */

    /**
     * The trigonometric tangent.
     *
     * @param x the argument in radians.
     * @return the tan(x)
     */
    static public BigDecimal tan(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else if (x.compareTo(BigDecimal.ZERO) < 0) {
            return tan(x.negate()).negate();
        } else {
            /* reduce modulo pi
             */
            BigDecimal res = modpi(x);
            /* absolute error in the result is err(x)/cos^2(x) to lowest order
             */
            final double xDbl = res.doubleValue();
            final double xUlpDbl = x.ulp().doubleValue() / 2.;
            final double eps = xUlpDbl / 2. / Math.pow(Math.cos(xDbl), 2.);
            if (xDbl > 0.8) {
                /* tan(x) = 1/cot(x) */
                BigDecimal co = cot(x);
                MathContext mc = new MathContext(err2prec(1. / co.doubleValue(), eps));
                return BigDecimal.ONE.divide(co, mc);
            } else {
                final BigDecimal xhighpr = scalePrec(res, 2);
                final BigDecimal xhighprSq = multiplyRound(xhighpr, xhighpr);
                BigDecimal resul = xhighpr.plus();
                /* x^(2i+1) */
                BigDecimal xpowi = xhighpr;
                Bernoulli b = new Bernoulli();
                /* 2^(2i) */
                BigInteger fourn = new BigInteger("4");
                /* (2i)! */
                BigInteger fac = new BigInteger("2");
                for (int i = 2;; i++) {
                    Rational f = b.at(2 * i).abs();
                    fourn = fourn.shiftLeft(2);
                    fac = fac.multiply(new BigInteger("" + (2 * i))).multiply(new BigInteger("" + (2 * i - 1)));
                    f = f.multiply(fourn).multiply(fourn.subtract(BigInteger.ONE)).divide(fac);
                    xpowi = multiplyRound(xpowi, xhighprSq);
                    BigDecimal c = multiplyRound(xpowi, f);
                    resul = resul.add(c);
                    if (Math.abs(c.doubleValue()) < 0.1 * eps) {
                        break;
                    }
                }
                MathContext mc = new MathContext(err2prec(resul.doubleValue(), eps));
                return resul.round(mc);
            }
        }
    } /* BigDecimalMath.tan */

    /**
     * The trigonometric co-tangent.
     *
     * @param x the argument in radians.
     * @return the cot(x)
     */
    static public BigDecimal cot(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) == 0) {
            throw new ArithmeticException("Cannot take cot of zero " + x.toString());
        } else if (x.compareTo(BigDecimal.ZERO) < 0) {
            return cot(x.negate()).negate();
        } else {
            /* reduce modulo pi
             */
            BigDecimal res = modpi(x);
            /* absolute error in the result is err(x)/sin^2(x) to lowest order
             */
            final double xDbl = res.doubleValue();
            final double xUlpDbl = x.ulp().doubleValue() / 2.;
            final double eps = xUlpDbl / 2. / Math.pow(Math.sin(xDbl), 2.);
            final BigDecimal xhighpr = scalePrec(res, 2);
            final BigDecimal xhighprSq = multiplyRound(xhighpr, xhighpr);
            MathContext mc = new MathContext(err2prec(xhighpr.doubleValue(), eps));
            BigDecimal resul = BigDecimal.ONE.divide(xhighpr, mc);
            /* x^(2i-1) */
            BigDecimal xpowi = xhighpr;
            Bernoulli b = new Bernoulli();
            /* 2^(2i) */
            BigInteger fourn = new BigInteger("4");
            /* (2i)! */
            BigInteger fac = BigInteger.ONE;
            for (int i = 1;; i++) {
                Rational f = b.at(2 * i);
                fac = fac.multiply(new BigInteger("" + (2 * i))).multiply(new BigInteger("" + (2 * i - 1)));
                f = f.multiply(fourn).divide(fac);
                BigDecimal c = multiplyRound(xpowi, f);
                if (i % 2 == 0) {
                    resul = resul.add(c);
                } else {
                    resul = resul.subtract(c);
                }
                if (Math.abs(c.doubleValue()) < 0.1 * eps) {
                    break;
                }
                fourn = fourn.shiftLeft(2);
                xpowi = multiplyRound(xpowi, xhighprSq);
            }
            mc = new MathContext(err2prec(resul.doubleValue(), eps));
            return resul.round(mc);
        }
    } /* BigDecimalMath.cot */

    /**
     * The inverse trigonometric sine.
     *
     * @param x the argument.
     * @return the arcsin(x) in radians.
     */
    static public BigDecimal asin(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ONE) > 0 || x.compareTo(BigDecimal.ONE.negate()) < 0) {
            throw new ArithmeticException("Out of range argument " + x.toString() + " of asin");

        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else if (x.compareTo(BigDecimal.ONE) == 0) {
            /* arcsin(1) = pi/2
             */
            double errpi = Math.sqrt(x.ulp().doubleValue());
            MathContext mc = new MathContext(err2prec(3.14159, errpi));

            return pi(mc).divide(new BigDecimal(2));

        } else if (x.compareTo(BigDecimal.ZERO) < 0) {
            return asin(x.negate()).negate();

        } else if (x.doubleValue() > 0.7) {
            final BigDecimal xCompl = BigDecimal.ONE.subtract(x);
            final double xDbl = x.doubleValue();
            final double xUlpDbl = x.ulp().doubleValue() / 2.;
            final double eps = xUlpDbl / 2. / Math.sqrt(1. - Math.pow(xDbl, 2.));

            final BigDecimal xhighpr = scalePrec(xCompl, 3);
            final BigDecimal xhighprV = divideRound(xhighpr, 4);
            BigDecimal resul = BigDecimal.ONE;
            /* x^(2i+1) */
            BigDecimal xpowi = BigDecimal.ONE;
            /* i factorial */
            BigInteger ifacN = BigInteger.ONE;
            BigInteger ifacD = BigInteger.ONE;

            for (int i = 1;; i++) {
                ifacN = ifacN.multiply(new BigInteger("" + (2 * i - 1)));
                ifacD = ifacD.multiply(new BigInteger("" + i));

                if (i == 1) {
                    xpowi = xhighprV;
                } else {
                    xpowi = multiplyRound(xpowi, xhighprV);
                }
                BigDecimal c = divideRound(multiplyRound(xpowi, ifacN),
                        ifacD.multiply(new BigInteger("" + (2 * i + 1))));
                resul = resul.add(c);
                /* series started 1+x/12+... which yields an estimate of the sums error
                 */

                if (Math.abs(c.doubleValue()) < xUlpDbl / 120.) {
                    break;
                }

            }
            /* sqrt(2*z)*(1+...)
             */
            xpowi = sqrt(xhighpr.multiply(new BigDecimal(2)));
            resul = multiplyRound(xpowi, resul);
            MathContext mc = new MathContext(resul.precision());
            BigDecimal pihalf = pi(mc).divide(new BigDecimal(2));
            mc = new MathContext(err2prec(resul.doubleValue(), eps));

            return pihalf.subtract(resul, mc);

        } else {
            /* absolute error in the result is err(x)/sqrt(1-x^2) to lowest order
             */
            final double xDbl = x.doubleValue();
            final double xUlpDbl = x.ulp().doubleValue() / 2.;
            final double eps = xUlpDbl / 2. / Math.sqrt(1. - Math.pow(xDbl, 2.));
            final BigDecimal xhighpr = scalePrec(x, 2);
            final BigDecimal xhighprSq = multiplyRound(xhighpr, xhighpr);
            BigDecimal resul = xhighpr.plus();
            /* x^(2i+1) */
            BigDecimal xpowi = xhighpr;
            /* i factorial */
            BigInteger ifacN = BigInteger.ONE;
            BigInteger ifacD = BigInteger.ONE;

            for (int i = 1;; i++) {
                ifacN = ifacN.multiply(new BigInteger("" + (2 * i - 1)));
                ifacD = ifacD.multiply(new BigInteger("" + (2 * i)));
                xpowi = multiplyRound(xpowi, xhighprSq);
                BigDecimal c = divideRound(multiplyRound(xpowi, ifacN),
                        ifacD.multiply(new BigInteger("" + (2 * i + 1))));
                resul = resul.add(c);

                if (Math.abs(c.doubleValue()) < 0.1 * eps) {
                    break;
                }

            }
            MathContext mc = new MathContext(err2prec(resul.doubleValue(), eps));

            return resul.round(mc);

        }
    } /* BigDecimalMath.asin */

    /**
     * The inverse trigonometric tangent.
     *
     * @param x the argument.
     * @return the principal value of arctan(x) in radians in the range -pi/2 to +pi/2.
     */
    static public BigDecimal atan(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return atan(x.negate()).negate();

        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else if (x.doubleValue() > 0.7 && x.doubleValue() < 3.0) {
            /* Abramowitz-Stegun 4.4.34 convergence acceleration
             * 2*arctan(x) = arctan(2x/(1-x^2)) = arctan(y). x=(sqrt(1+y^2)-1)/y
             * This maps 0<=y<=3 to 0<=x<=0.73 roughly. Temporarily with 2 protectionist digits.
             */
            BigDecimal y = scalePrec(x, 2);
            BigDecimal newx = divideRound(hypot(1, y).subtract(BigDecimal.ONE), y);
            /* intermediate result with too optimistic error estimate*/
            BigDecimal resul = multiplyRound(atan(newx), 2);
            /* absolute error in the result is errx/(1+x^2), where errx = half of the ulp. */

            double eps = x.ulp().doubleValue() / (2.0 * Math.hypot(1.0, x.doubleValue()));
            MathContext mc = new MathContext(err2prec(resul.doubleValue(), eps));

            return resul.round(mc);

        } else if (x.doubleValue() < 0.71) {
            /* Taylor expansion around x=0; Abramowitz-Stegun 4.4.42 */
            final BigDecimal xhighpr = scalePrec(x, 2);
            final BigDecimal xhighprSq = multiplyRound(xhighpr, xhighpr).negate();
            BigDecimal resul = xhighpr.plus();
            /* signed x^(2i+1) */
            BigDecimal xpowi = xhighpr;
            /* absolute error in the result is errx/(1+x^2), where errx = half of the ulp.
             */

            double eps = x.ulp().doubleValue() / (2.0 * Math.hypot(1.0, x.doubleValue()));

            for (int i = 1;; i++) {
                xpowi = multiplyRound(xpowi, xhighprSq);
                BigDecimal c = divideRound(xpowi, 2 * i + 1);
                resul = resul.add(c);

                if (Math.abs(c.doubleValue()) < 0.1 * eps) {
                    break;
                }

            }
            MathContext mc = new MathContext(err2prec(resul.doubleValue(), eps));

            return resul.round(mc);

        } else {
            /* Taylor expansion around x=infinity; Abramowitz-Stegun 4.4.42 */
            /* absolute error in the result is errx/(1+x^2), where errx = half of the ulp.
             */
            double eps = x.ulp().doubleValue() / (2.0 * Math.hypot(1.0, x.doubleValue()));
            /* start with the term pi/2; gather its precision relative to the expected result
             */
            MathContext mc = new MathContext(2 + err2prec(3.1416, eps));
            BigDecimal onepi = pi(mc);
            BigDecimal resul = onepi.divide(new BigDecimal(2));
            final BigDecimal xhighpr = divideRound(-1, scalePrec(x, 2));
            final BigDecimal xhighprSq = multiplyRound(xhighpr, xhighpr).negate();
            /* signed x^(2i+1) */
            BigDecimal xpowi = xhighpr;

            for (int i = 0;; i++) {
                BigDecimal c = divideRound(xpowi, 2 * i + 1);
                resul = resul.add(c);

                if (Math.abs(c.doubleValue()) < 0.1 * eps) {
                    break;
                }
                xpowi = multiplyRound(xpowi, xhighprSq);

            }
            mc = new MathContext(err2prec(resul.doubleValue(), eps));

            return resul.round(mc);

        }
    } /* BigDecimalMath.atan */

    /**
     * The hyperbolic cosine.
     *
     * @param x The argument.
     * @return The cosh(x) = (exp(x)+exp(-x))/2 .
     */
    static public BigDecimal cosh(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return cos(x.negate());
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ONE;
        } else {
            if (x.doubleValue() > 1.5) {
                /* cosh^2(x) = 1+ sinh^2(x).
                 */
                return hypot(1, sinh(x));

            } else {
                BigDecimal xhighpr = scalePrec(x, 2);
                /* Simple Taylor expansion, sum_{0=1..infinity} x^(2i)/(2i)! */
                BigDecimal resul = BigDecimal.ONE;
                /* x^i */
                BigDecimal xpowi = BigDecimal.ONE;
                /* 2i factorial */
                BigInteger ifac = BigInteger.ONE;
                /* The absolute error in the result is the error in x^2/2 which is x times the error in x.
                 */

                double xUlpDbl = 0.5 * x.ulp().doubleValue() * x.doubleValue();
                /* The error in the result is set by the error in x^2/2 itself, xUlpDbl.
                 * We need at most k terms to push x^(2k)/(2k)! below this value.
                 * x^(2k) < xUlpDbl; (2k)*log(x) < log(xUlpDbl);
                 */

                int k = (int) (Math.log(xUlpDbl) / Math.log(x.doubleValue())) / 2;
                /* The individual terms are all smaller than 1, so an estimate of 1.0 for
                 * the absolute value will give a safe relative error estimate for the indivdual terms
                 */
                MathContext mcTay = new MathContext(err2prec(1., xUlpDbl / k));

                for (int i = 1;; i++) {
                    /* TBD: at which precision will 2*i-1 or 2*i overflow?
                     */
                    ifac = ifac.multiply(new BigInteger("" + (2 * i - 1)));
                    ifac = ifac.multiply(new BigInteger("" + (2 * i)));
                    xpowi = xpowi.multiply(xhighpr).multiply(xhighpr);
                    BigDecimal corr = xpowi.divide(new BigDecimal(ifac), mcTay);
                    resul = resul.add(corr);

                    if (corr.abs().doubleValue() < 0.5 * xUlpDbl) {
                        break;
                    }

                } /* The error in the result is governed by the error in x itself.
                  */
                MathContext mc = new MathContext(err2prec(resul.doubleValue(), xUlpDbl));

                return resul.round(mc);

            }
        }
    } /* BigDecimalMath.cosh */

    /**
     * The hyperbolic sine.
     *
     * @param x the argument.
     * @return the sinh(x) = (exp(x)-exp(-x))/2 .
     */
    static public BigDecimal sinh(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return sinh(x.negate()).negate();
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else {
            if (x.doubleValue() > 2.4) {
                /* Move closer to zero with sinh(2x)= 2*sinh(x)*cosh(x).
                 */
                BigDecimal two = new BigDecimal(2);
                BigDecimal xhalf = x.divide(two);

                BigDecimal resul = sinh(xhalf).multiply(cosh(xhalf)).multiply(two);
                /* The error in the result is set by the error in x itself.
                 * The first derivative of sinh(x) is cosh(x), so the absolute error
                 * in the result is cosh(x)*errx, and the relative error is coth(x)*errx = errx/tanh(x)
                 */

                double eps = Math.tanh(x.doubleValue());
                MathContext mc = new MathContext(err2prec(0.5 * x.ulp().doubleValue() / eps));

                return resul.round(mc);

            } else {
                BigDecimal xhighpr = scalePrec(x, 2);
                /* Simple Taylor expansion, sum_{i=0..infinity} x^(2i+1)/(2i+1)! */
                BigDecimal resul = xhighpr;
                /* x^i */
                BigDecimal xpowi = xhighpr;
                /* 2i+1 factorial */
                BigInteger ifac = BigInteger.ONE;
                /* The error in the result is set by the error in x itself.
                 */

                double xUlpDbl = x.ulp().doubleValue();
                /* The error in the result is set by the error in x itself.
                 * We need at most k terms to squeeze x^(2k+1)/(2k+1)! below this value.
                 * x^(2k+1) < x.ulp; (2k+1)*log10(x) < -x.precision; 2k*log10(x)< -x.precision;
                 * 2k*(-log10(x)) > x.precision; 2k*log10(1/x) > x.precision
                 */

                int k = (int) (x.precision() / Math.log10(1.0 / xhighpr.doubleValue())) / 2;
                MathContext mcTay = new MathContext(err2prec(x.doubleValue(), xUlpDbl / k));

                for (int i = 1;; i++) {
                    /* TBD: at which precision will 2*i or 2*i+1 overflow?
                     */
                    ifac = ifac.multiply(new BigInteger("" + (2 * i)));
                    ifac = ifac.multiply(new BigInteger("" + (2 * i + 1)));
                    xpowi = xpowi.multiply(xhighpr).multiply(xhighpr);
                    BigDecimal corr = xpowi.divide(new BigDecimal(ifac), mcTay);
                    resul = resul.add(corr);

                    if (corr.abs().doubleValue() < 0.5 * xUlpDbl) {
                        break;
                    }

                } /* The error in the result is set by the error in x itself.
                  */
                MathContext mc = new MathContext(x.precision());

                return resul.round(mc);

            }
        }
    } /* BigDecimalMath.sinh */

    /**
     * The hyperbolic tangent.
     *
     * @param x The argument.
     * @return The tanh(x) = sinh(x)/cosh(x).
     */
    static public BigDecimal tanh(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return tanh(x.negate()).negate();
        } else if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else {
            BigDecimal xhighpr = scalePrec(x, 2);
            /* tanh(x) = (1-e^(-2x))/(1+e^(-2x)) .
             */
            BigDecimal exp2x = exp(xhighpr.multiply(new BigDecimal(-2)));
            /* The error in tanh x is err(x)/cosh^2(x).
             */

            double eps = 0.5 * x.ulp().doubleValue() / Math.pow(Math.cosh(x.doubleValue()), 2.0);
            MathContext mc = new MathContext(err2prec(Math.tanh(x.doubleValue()), eps));

            return BigDecimal.ONE.subtract(exp2x).divide(BigDecimal.ONE.add(exp2x), mc);

        }
    } /* BigDecimalMath.tanh */

    /**
     * The inverse hyperbolic sine.
     *
     * @param x The argument.
     * @return The arcsinh(x) .
     */
    static public BigDecimal asinh(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else {
            BigDecimal xhighpr = scalePrec(x, 2);
            /* arcsinh(x) = log(x+hypot(1,x))
             */
            BigDecimal logx = log(hypot(1, xhighpr).add(xhighpr));
            /* The absolute error in arcsinh x is err(x)/sqrt(1+x^2)
             */

            double xDbl = x.doubleValue();

            double eps = 0.5 * x.ulp().doubleValue() / Math.hypot(1., xDbl);
            MathContext mc = new MathContext(err2prec(logx.doubleValue(), eps));

            return logx.round(mc);

        }
    } /* BigDecimalMath.asinh */

    /**
     * The inverse hyperbolic cosine.
     *
     * @param x The argument.
     * @return The arccosh(x) .
     */
    static public BigDecimal acosh(final BigDecimal x) {
        if (x.compareTo(BigDecimal.ONE) < 0) {
            throw new ArithmeticException("Out of range argument cosh " + x.toString());
        } else if (x.compareTo(BigDecimal.ONE) == 0) {
            return BigDecimal.ZERO;
        } else {
            BigDecimal xhighpr = scalePrec(x, 2);
            /* arccosh(x) = log(x+sqrt(x^2-1))
             */
            BigDecimal logx = log(sqrt(xhighpr.pow(2).subtract(BigDecimal.ONE)).add(xhighpr));
            /* The absolute error in arcsinh x is err(x)/sqrt(x^2-1)
             */

            double xDbl = x.doubleValue();

            double eps = 0.5 * x.ulp().doubleValue() / Math.sqrt(xDbl * xDbl - 1.);
            MathContext mc = new MathContext(err2prec(logx.doubleValue(), eps));

            return logx.round(mc);

        }
    } /* BigDecimalMath.acosh */

    /**
     * The Gamma function.
     *
     * @param x The argument.
     * @return Gamma(x).
     */
    static public BigDecimal Gamma(final BigDecimal x) {
        /* reduce to interval near 1.0 with the functional relation, Abramowitz-Stegun 6.1.33
         */
        if (x.compareTo(BigDecimal.ZERO) < 0) {
            return divideRound(Gamma(x.add(BigDecimal.ONE)), x);
        } else if (x.doubleValue() > 1.5) {
            /* Gamma(x) = Gamma(xmin+n) = Gamma(xmin)*Pochhammer(xmin,n).
             */
            int n = (int) (x.doubleValue() - 0.5);
            BigDecimal xmin1 = x.subtract(new BigDecimal(n));

            return multiplyRound(Gamma(xmin1), pochhammer(xmin1, n));

        } else {
            /* apply Abramowitz-Stegun 6.1.33
             */
            BigDecimal z = x.subtract(BigDecimal.ONE);
            /* add intermediately 2 digits to the partial sum accumulation
             */
            z = scalePrec(z, 2);
            MathContext mcloc = new MathContext(z.precision());
            /* measure of the absolute error is the relative error in the first, logarithmic term
             */

            double eps = x.ulp().doubleValue() / x.doubleValue();
            BigDecimal resul = log(scalePrec(x, 2)).negate();

            if (x.compareTo(BigDecimal.ONE) != 0) {
                BigDecimal gammCompl = BigDecimal.ONE.subtract(gamma(mcloc));
                resul = resul.add(multiplyRound(z, gammCompl));

                for (int n = 2;; n++) {
                    /* multiplying z^n/n by zeta(n-1) means that the two relative errors add.
                     * so the requirement in the relative error of zeta(n)-1 is that this is somewhat
                     * smaller than the relative error in z^n/n (the absolute error of thelatter is the
                     * absolute error in z)
                     */
                    BigDecimal c = divideRound(z.pow(n, mcloc), n);
                    MathContext m = new MathContext(err2prec(n * z.ulp().doubleValue() / 2. / z.doubleValue()));
                    c = c.round(m);
                    /* At larger n, zeta(n)-1 is roughly 1/2^n. The product is c/2^n.
                     * The relative error in c is c.ulp/2/c . The error in the product should be small versus eps/10.
                     * Error from 1/2^n is c*err(sigma-1).
                     * We need a relative error of zeta-1 of the order of c.ulp/50/c. This is an absolute
                     * error in zeta-1 of c.ulp/50/c/2^n, and also the absolute error in zeta, because zeta is
                     * of the order of 1.
                     */

                    if (eps / 100. / c.doubleValue() < 0.01) {
                        m = new MathContext(err2prec(eps / 100. / c.doubleValue()));
                    } else {
                        m = new MathContext(2);
                    }
                    /* zeta(n) -1 */
                    BigDecimal zetm1 = zeta(n, m).subtract(BigDecimal.ONE);
                    c = multiplyRound(c, zetm1);

                    if (n % 2 == 0) {
                        resul = resul.add(c);
                    } else {
                        resul = resul.subtract(c);
                    }
                    /* alternating sum, so truncating as eps is reached suffices
                     */

                    if (Math.abs(c.doubleValue()) < eps) {
                        break;
                    }

                }
            }
            /* The relative error in the result is the absolute error in the
             * input variable times the digamma (psi) value at that point.
             */
            double psi = 0.5772156649;

            double zdbl = z.doubleValue();

            for (int n = 1; n < 5; n++) {
                psi += zdbl / n / (n + zdbl);
            }
            eps = psi * x.ulp().doubleValue() / 2.;
            mcloc = new MathContext(err2prec(eps));

            return exp(resul).round(mcloc);

        }
    } /* BigDecimalMath.gamma */

    /**
     * Pochhammers function.
     *
     * @param x The main argument.
     * @param n The non-negative index.
     * @return (x)_n = x(x+1)(x+2)*...*(x+n-1).
     */
    static public BigDecimal pochhammer(final BigDecimal x, final int n) {
        /* reduce to interval near 1.0 with the functional relation, Abramowitz-Stegun 6.1.33
         */
        if (n < 0) {
            throw new ProviderException("Unimplemented pochhammer with negative index " + n);
        } else if (n == 0) {
            return BigDecimal.ONE;
        } else {
            /* internally two safety digits
             */
            BigDecimal xhighpr = scalePrec(x, 2);
            BigDecimal resul = xhighpr;

            double xUlpDbl = x.ulp().doubleValue();

            double xDbl = x.doubleValue();
            /* relative error of the result is the sum of the relative errors of the factors
             */

            double eps = 0.5 * xUlpDbl / Math.abs(xDbl);

            for (int i = 1; i < n; i++) {
                eps += 0.5 * xUlpDbl / Math.abs(xDbl + i);

                resul = resul.multiply(xhighpr.add(new BigDecimal(i)));
                final MathContext mcloc = new MathContext(4 + err2prec(eps));
                resul = resul.round(mcloc);

            }
            return resul.round(new MathContext(err2prec(eps)));

        }
    } /* BigDecimalMath.pochhammer */

    /**
     * Reduce value to the interval [0,2*Pi].
     *
     * @param x the original value
     * @return the value modulo 2*pi in the interval from 0 to 2*pi.
     */
    static public BigDecimal mod2pi(BigDecimal x) {
        /* write x= 2*pi*k+r with the precision in r defined by the precision of x and not
         * compromised by the precision of 2*pi, so the ulp of 2*pi*k should match the ulp of x.
         * First getFloat a guess of k to figure out how many digits of 2*pi are needed.
         */
        int k = (int) (0.5 * x.doubleValue() / Math.PI);
        /* want to have err(2*pi*k)< err(x)=0.5*x.ulp, so err(pi) = err(x)/(4k) with two safety digits
         */

        double err2pi;

        if (k != 0) {
            err2pi = 0.25 * Math.abs(x.ulp().doubleValue() / k);
        } else {
            err2pi = 0.5 * Math.abs(x.ulp().doubleValue());
        }
        MathContext mc = new MathContext(2 + err2prec(6.283, err2pi));
        BigDecimal twopi = pi(mc).multiply(new BigDecimal(2));
        /* Delegate the actual operation to the BigDecimal class, which may return
         * a negative value of x was negative .
         */
        BigDecimal res = x.remainder(twopi);

        if (res.compareTo(BigDecimal.ZERO) < 0) {
            res = res.add(twopi);
        }
        /* The actual precision is set by the input value, its absolute value of x.ulp()/2.
         */
        mc = new MathContext(err2prec(res.doubleValue(), x.ulp().doubleValue() / 2.));

        return res.round(mc);

    } /* mod2pi */

    /**
     * Reduce value to the interval [-Pi/2,Pi/2].
     *
     * @param x The original value
     * @return The value modulo pi, shifted to the interval from -Pi/2 to Pi/2.
     */
    static public BigDecimal modpi(BigDecimal x) {
        /* write x= pi*k+r with the precision in r defined by the precision of x and not
         * compromised by the precision of pi, so the ulp of pi*k should match the ulp of x.
         * First getFloat a guess of k to figure out how many digits of pi are needed.
         */
        int k = (int) (x.doubleValue() / Math.PI);
        /* want to have err(pi*k)< err(x)=x.ulp/2, so err(pi) = err(x)/(2k) with two safety digits
         */

        double errpi;

        if (k != 0) {
            errpi = 0.5 * Math.abs(x.ulp().doubleValue() / k);
        } else {
            errpi = 0.5 * Math.abs(x.ulp().doubleValue());
        }
        MathContext mc = new MathContext(2 + err2prec(3.1416, errpi));
        BigDecimal onepi = pi(mc);
        BigDecimal pihalf = onepi.divide(new BigDecimal(2));
        /* Delegate the actual operation to the BigDecimal class, which may return
         * a negative value of x was negative .
         */
        BigDecimal res = x.remainder(onepi);

        if (res.compareTo(pihalf) > 0) {
            res = res.subtract(onepi);
        } else if (res.compareTo(pihalf.negate()) < 0) {
            res = res.add(onepi);
        }
        /* The actual precision is set by the input value, its absolute value of x.ulp()/2.
         */
        mc = new MathContext(err2prec(res.doubleValue(), x.ulp().doubleValue() / 2.));

        return res.round(mc);

    } /* modpi */

    /**
     * Riemann zeta function.
     *
     * @param n  The positive integer argument.
     *           32
     * @param mc Specification of the accuracy of the result.
     * @return zeta(n).
     */
    static public BigDecimal zeta(final int n, final MathContext mc) {
        if (n <= 0) {
            throw new ProviderException("Unimplemented zeta at negative argument " + n);
        }

        if (n == 1) {
            throw new ArithmeticException("Pole at zeta(1) ");
        }

        if (n % 2 == 0) {
            /* Even indices. Abramowitz-Stegun 23.2.16. Start with 2^(n-1)*B(n)/n!
             */
            Rational b = (new Bernoulli()).at(n).abs();
            b = b.divide((new Factorial()).at(n));
            b = b.multiply(BigInteger.ONE.shiftLeft(n - 1));
            /* to be multiplied by pi^n. Absolute error in the result of pi^n is n times
             * error in pi times pi^(n-1). Relative error is n*error(pi)/pi, requested by mc.
             * Need one more digit in pi if n=10, two digits if n=100 etc, and add one extra digit.
             */
            MathContext mcpi = new MathContext(mc.getPrecision() + (int) (Math.log10(10.0 * n)));
            final BigDecimal piton = pi(mcpi).pow(n, mc);

            return multiplyRound(piton, b);

        } else if (n == 3) {
            /* Broadhurst BBP \protect\vrule width0pt\protect\href{http://arxiv.org/abs/math/9803067}{arXiv:math/9803067}
             * Error propagation: S31 is roughly 0.087, S33 roughly 0.131
             */
            int[] a31 = { 1, -7, -1, 10, -1, -7, 1, 0 };

            int[] a33 = { 1, 1, -1, -2, -1, 1, 1, 0 };
            BigDecimal S31 = broadhurstBBP(3, 1, a31, mc);
            BigDecimal S33 = broadhurstBBP(3, 3, a33, mc);
            S31 = S31.multiply(new BigDecimal(48));
            S33 = S33.multiply(new BigDecimal(32));

            return S31.add(S33).divide(new BigDecimal(7), mc);

        } else if (n == 5) {
            /* Broadhurst BBP \protect\vrule width0pt\protect\href{http://arxiv.org/abs/math/9803067}{arXiv:math/9803067}
             * Error propagation: S51 is roughly -11.15, S53 roughly 22.165, S55 is roughly 0.031
             * 9*2048*S51/6265 = -3.28. 7*2038*S53/61651= 5.07. 738*2048*S55/61651= 0.747.
             * The result is of the order 1.03, so we add 2 digits to S51 and S52 and one digit to S55.
             */
            int[] a51 = { 31, -1614, -31, -6212, -31, -1614, 31, 74552 };

            int[] a53 = { 173, 284, -173, -457, -173, 284, 173, -111 };

            int[] a55 = { 1, 0, -1, -1, -1, 0, 1, 1 };
            BigDecimal S51 = broadhurstBBP(5, 1, a51, new MathContext(2 + mc.getPrecision()));
            BigDecimal S53 = broadhurstBBP(5, 3, a53, new MathContext(2 + mc.getPrecision()));
            BigDecimal S55 = broadhurstBBP(5, 5, a55, new MathContext(1 + mc.getPrecision()));
            S51 = S51.multiply(new BigDecimal(18432));
            S53 = S53.multiply(new BigDecimal(14336));
            S55 = S55.multiply(new BigDecimal(1511424));

            return S51.add(S53).subtract(S55).divide(new BigDecimal(62651), mc);

        } else {
            /* Cohen et al Exp Math 1 (1) (1992) 25
             */
            Rational betsum = new Rational();
            Bernoulli bern = new Bernoulli();
            Factorial fact = new Factorial();

            for (int npr = 0; npr <= (n + 1) / 2; npr++) {
                Rational b = bern.at(2 * npr).multiply(bern.at(n + 1 - 2 * npr));
                b = b.divide(fact.at(2 * npr)).divide(fact.at(n + 1 - 2 * npr));
                b = b.multiply(1 - 2 * npr);

                if (npr % 2 == 0) {
                    betsum = betsum.add(b);
                } else {
                    betsum = betsum.subtract(b);
                }

            }
            betsum = betsum.divide(n - 1);
            /* The first term, including the facor (2pi)^n, is essentially most
             * of the result, near one. The second term below is roughly in the range 0.003 to 0.009.
             * So the precision here is matching the precisionn requested by mc, and the precision
             * requested for 2*pi is in absolute terms adjusted.
             */
            MathContext mcloc = new MathContext(2 + mc.getPrecision() + (int) (Math.log10((double) (n))));
            BigDecimal ftrm = pi(mcloc).multiply(new BigDecimal(2));
            ftrm = ftrm.pow(n);

            ftrm = multiplyRound(ftrm, betsum.BigDecimalValue(mcloc));
            BigDecimal exps = new BigDecimal(0);
            /* the basic accuracy of the accumulated terms before multiplication with 2
             */

            double eps = Math.pow(10., -mc.getPrecision());

            if (n % 4 == 3) {
                /* since the argument n is at least 7 here, the drop
                 * of the terms is at rather constant pace at least 10^-3, for example
                 * 0.0018, 0.2e-7, 0.29e-11, 0.74e-15 etc for npr=1,2,3.... We want 2 times these terms
                 * fall below eps/10.
                 */
                int kmax = mc.getPrecision() / 3;
                eps /= kmax;
                /* need an error of eps for 2/(exp(2pi)-1) = 0.0037
                 * The absolute error is 4*exp(2pi)*err(pi)/(exp(2pi)-1)^2=0.0075*err(pi)
                 */
                BigDecimal exp2p = pi(new MathContext(3 + err2prec(3.14, eps / 0.0075)));
                exp2p = exp(exp2p.multiply(new BigDecimal(2)));
                BigDecimal c = exp2p.subtract(BigDecimal.ONE);
                exps = divideRound(1, c);

                for (int npr = 2; npr <= kmax; npr++) {
                    /* the error estimate above for npr=1 is the worst case of
                     * the absolute error created by an error in 2pi. So we can
                     * safely re-use the exp2p value computed above without
                     * reassessment of its error.
                     */
                    c = powRound(exp2p, npr).subtract(BigDecimal.ONE);
                    c = multiplyRound(c, (new BigInteger("" + npr)).pow(n));
                    c = divideRound(1, c);
                    exps = exps.add(c);

                }
            } else {
                /* since the argument n is at least 9 here, the drop
                 * of the terms is at rather constant pace at least 10^-3, for example
                 * 0.0096, 0.5e-7, 0.3e-11, 0.6e-15 etc. We want these terms
                 * fall below eps/10.
                 */
                int kmax = (1 + mc.getPrecision()) / 3;
                eps /= kmax;
                /* need an error of eps for 2/(exp(2pi)-1)*(1+4*Pi/8/(1-exp(-2pi)) = 0.0096
                 * at k=7 or = 0.00766 at k=13 for example.
                 * The absolute error is 0.017*err(pi) at k=9, 0.013*err(pi) at k=13, 0.012 at k=17
                 */
                BigDecimal twop = pi(new MathContext(3 + err2prec(3.14, eps / 0.017)));
                twop = twop.multiply(new BigDecimal(2));
                BigDecimal exp2p = exp(twop);
                BigDecimal c = exp2p.subtract(BigDecimal.ONE);
                exps = divideRound(1, c);
                c = BigDecimal.ONE.subtract(divideRound(1, exp2p));
                c = divideRound(twop, c).multiply(new BigDecimal(2));
                c = divideRound(c, n - 1).add(BigDecimal.ONE);
                exps = multiplyRound(exps, c);

                for (int npr = 2; npr <= kmax; npr++) {
                    c = powRound(exp2p, npr).subtract(BigDecimal.ONE);
                    c = multiplyRound(c, (new BigInteger("" + npr)).pow(n));
                    BigDecimal d = divideRound(1, exp2p.pow(npr));
                    d = BigDecimal.ONE.subtract(d);
                    d = divideRound(twop, d).multiply(new BigDecimal(2 * npr));
                    d = divideRound(d, n - 1).add(BigDecimal.ONE);
                    d = divideRound(d, c);
                    exps = exps.add(d);

                }
            }
            exps = exps.multiply(new BigDecimal(2));

            return ftrm.subtract(exps, mc);

        }
    } /* zeta */

    /**
     * Riemann zeta function.
     *
     * @param n The positive integer argument.
     * @return zeta(n)-1.
     */
    static public double zeta1(final int n) {
        /* precomputed static table in double precision
         */
        final double[] zmin1 = { 0., 0., 6.449340668482264364724151666e-01, 2.020569031595942853997381615e-01,
                8.232323371113819151600369654e-02, 3.692775514336992633136548646e-02,
                1.734306198444913971451792979e-02, 8.349277381922826839797549850e-03,
                4.077356197944339378685238509e-03, 2.008392826082214417852769232e-03,
                9.945751278180853371459589003e-04, 4.941886041194645587022825265e-04,
                2.460865533080482986379980477e-04, 1.227133475784891467518365264e-04,
                6.124813505870482925854510514e-05, 3.058823630702049355172851064e-05,
                1.528225940865187173257148764e-05, 7.637197637899762273600293563e-06,
                3.817293264999839856461644622e-06, 1.908212716553938925656957795e-06,
                9.539620338727961131520386834e-07, 4.769329867878064631167196044e-07,
                2.384505027277329900036481868e-07, 1.192199259653110730677887189e-07,
                5.960818905125947961244020794e-08, 2.980350351465228018606370507e-08,
                1.490155482836504123465850663e-08, 7.450711789835429491981004171e-09,
                3.725334024788457054819204018e-09, 1.862659723513049006403909945e-09,
                9.313274324196681828717647350e-10, 4.656629065033784072989233251e-10,
                2.328311833676505492001455976e-10, 1.164155017270051977592973835e-10,
                5.820772087902700889243685989e-11, 2.910385044497099686929425228e-11,
                1.455192189104198423592963225e-11, 7.275959835057481014520869012e-12,
                3.637979547378651190237236356e-12, 1.818989650307065947584832101e-12,
                9.094947840263889282533118387e-13, 4.547473783042154026799112029e-13,
                2.273736845824652515226821578e-13, 1.136868407680227849349104838e-13,
                5.684341987627585609277182968e-14, 2.842170976889301855455073705e-14,
                1.421085482803160676983430714e-14, 7.105427395210852712877354480e-15,
                3.552713691337113673298469534e-15, 1.776356843579120327473349014e-15,
                8.881784210930815903096091386e-16, 4.440892103143813364197770940e-16,
                2.220446050798041983999320094e-16, 1.110223025141066133720544570e-16,
                5.551115124845481243723736590e-17, 2.775557562136124172581632454e-17,
                1.387778780972523276283909491e-17, 6.938893904544153697446085326e-18,
                3.469446952165922624744271496e-18, 1.734723476047576572048972970e-18,
                8.673617380119933728342055067e-19, 4.336808690020650487497023566e-19,
                2.168404344997219785013910168e-19, 1.084202172494241406301271117e-19,
                5.421010862456645410918700404e-20, 2.710505431223468831954621312e-20,
                1.355252715610116458148523400e-20, 6.776263578045189097995298742e-21,
                3.388131789020796818085703100e-21, 1.694065894509799165406492747e-21,
                8.470329472546998348246992609e-22, 4.235164736272833347862270483e-22,
                2.117582368136194731844209440e-22, 1.058791184068023385226500154e-22,
                5.293955920339870323813912303e-23, 2.646977960169852961134116684e-23,
                1.323488980084899080309451025e-23, 6.617444900424404067355245332e-24,
                3.308722450212171588946956384e-24, 1.654361225106075646229923677e-24,
                8.271806125530344403671105617e-25, 4.135903062765160926009382456e-25,
                2.067951531382576704395967919e-25, 1.033975765691287099328409559e-25,
                5.169878828456431320410133217e-26, 2.584939414228214268127761771e-26,
                1.292469707114106670038112612e-26, 6.462348535570531803438002161e-27,
                3.231174267785265386134814118e-27, 1.615587133892632521206011406e-27,
                8.077935669463162033158738186e-28, 4.038967834731580825622262813e-28,
                2.019483917365790349158762647e-28, 1.009741958682895153361925070e-28,
                5.048709793414475696084771173e-29, 2.524354896707237824467434194e-29,
                1.262177448353618904375399966e-29, 6.310887241768094495682609390e-30,
                3.155443620884047239109841220e-30, 1.577721810442023616644432780e-30,
                7.888609052210118073520537800e-31 };

        if (n <= 0) {
            throw new ProviderException("Unimplemented zeta at negative argument " + n);
        }

        if (n == 1) {
            throw new ArithmeticException("Pole at zeta(1) ");
        }

        if (n < zmin1.length) /* look it up if available */ {
            return zmin1[n];
        } else {
            /* Result is roughly 2^(-n), desired accuracy 18 digits. If zeta(n) is computed, the equivalent accuracy
             * in relative units is higher, because zeta is around 1.
             */
            double eps = 1.e-18 * Math.pow(2., (double) (-n));
            MathContext mc = new MathContext(err2prec(eps));

            return zeta(n, mc).subtract(BigDecimal.ONE).doubleValue();

        }
    } /* zeta */

    /**
     * Broadhurst ladder sequence.
     *
     * @param a  The vector of 8 integer arguments
     * @param mc Specification of the accuracy of the result
     * @return S_(n, p)(a)
     * @see \protect\vrule width0pt\protect\href{http://arxiv.org/abs/math/9803067}{arXiv:math/9803067}
     */
    static protected BigDecimal broadhurstBBP(final int n, final int p, final int a[], MathContext mc) {
        /* Explore the actual magnitude of the result first with a quick estimate.
        */
        double x = 0.0;

        for (int k = 1; k < 10; k++) {
            x += a[(k - 1) % 8] / Math.pow(2., p * (k + 1) / 2) / Math.pow((double) k, n);
        }
        /* Convert the relative precision and estimate of the result into an absolute precision.
         */

        double eps = prec2err(x, mc.getPrecision());
        /* Divide this through the number of terms in the sum to account for error accumulation
         * The divisor 2^(p(k+1)/2) means that on the average each 8th term in k has shrunk by
         * relative to the 8th predecessor by 1/2^(4p). 1/2^(4pc) = 10^(-precision) with c the 8term
         * cycles yields c=log_2( 10^precision)/4p = 3.3*precision/4p with k=8c
         */

        int kmax = (int) (6.6 * mc.getPrecision() / p);
        /* Now eps is the absolute error in each term */
        eps /= kmax;
        BigDecimal res = BigDecimal.ZERO;

        for (int c = 0;; c++) {
            Rational r = new Rational();

            for (int k = 0; k < 8; k++) {
                Rational tmp = new Rational(new BigInteger("" + a[k]),
                        (new BigInteger("" + (1 + 8 * c + k))).pow(n));
                /* floor( (pk+p)/2)
                 */

                int pk1h = p * (2 + 8 * c + k) / 2;
                tmp = tmp.divide(BigInteger.ONE.shiftLeft(pk1h));
                r = r.add(tmp);

            }
            if (Math.abs(r.doubleValue()) < eps) {
                break;
            }
            MathContext mcloc = new MathContext(1 + err2prec(r.doubleValue(), eps));
            res = res.add(r.BigDecimalValue(mcloc));

        }
        return res.round(mc);

    } /* broadhurstBBP */

    /**
     * Add and round according to the larger of the two ulps.
     *
     * @param x The left summand
     * @param y The right summand
     * @return The sum x+y.
     */
    static public BigDecimal addRound(final BigDecimal x, final BigDecimal y) {
        BigDecimal resul = x.add(y);
        /* The estimation of the absolute error in the result is |err(y)|+|err(x)|
         */

        double errR = Math.abs(y.ulp().doubleValue() / 2.) + Math.abs(x.ulp().doubleValue() / 2.);
        MathContext mc = new MathContext(err2prec(resul.doubleValue(), errR));

        return resul.round(mc);

    } /* addRound */

    /**
     * Subtract and round according to the larger of the two ulps.
     *
     * @param x The left term.
     * @param y The right term.
     * @return The difference x-y.
     */
    static public BigDecimal subtractRound(final BigDecimal x, final BigDecimal y) {
        BigDecimal resul = x.subtract(y);
        /* The estimation of the absolute error in the result is |err(y)|+|err(x)|
         */

        double errR = Math.abs(y.ulp().doubleValue() / 2.) + Math.abs(x.ulp().doubleValue() / 2.);
        MathContext mc = new MathContext(err2prec(resul.doubleValue(), errR));

        return resul.round(mc);

    } /* subtractRound */

    /**
     * Multiply and round.
     *
     * @param x The left factor.
     * @param y The right factor.
     * @return The product x*y.
     */
    static public BigDecimal multiplyRound(final BigDecimal x, final BigDecimal y) {
        BigDecimal resul = x.multiply(y);

        /* The estimation of the relative error in the result is the sum of the relative
         * errors |err(y)/y|+|err(x)/x|
         */
        MathContext mc = new MathContext(Math.min(x.precision(), y.precision()));

        return resul.round(mc);

    } /* multiplyRound */

    /**
     * Multiply and round.
     *
     * @param x The left factor.
     * @param f The right factor.
     * @return The product x*f.
     */
    static public BigDecimal multiplyRound(final BigDecimal x, final Rational f) {
        if (f.compareTo(BigInteger.ZERO) == 0) {
            return BigDecimal.ZERO;
        } else {
            /* Convert the rational value with two digits of extra precision
             */
            MathContext mc = new MathContext(2 + x.precision());
            BigDecimal fbd = f.BigDecimalValue(mc);
            /* and the precision of the product is then dominated by the precision in x
             */

            return multiplyRound(x, fbd);

        }
    }

    /**
     * Multiply and round.
     *
     * @param x The left factor.
     * @param n The right factor.
     * @return The product x*n.
     */
    static public BigDecimal multiplyRound(final BigDecimal x, final int n) {
        BigDecimal resul = x.multiply(new BigDecimal(n));
        /* The estimation of the absolute error in the result is |n*err(x)|
         */
        MathContext mc = new MathContext(n != 0 ? x.precision() : 0);

        return resul.round(mc);

    }

    /**
     * Multiply and round.
     *
     * @param x The left factor.
     * @param n The right factor.
     * @return the product x*n
     */
    static public BigDecimal multiplyRound(final BigDecimal x, final BigInteger n) {
        BigDecimal resul = x.multiply(new BigDecimal(n));
        /* The estimation of the absolute error in the result is |n*err(x)|
         */
        MathContext mc = new MathContext(n.compareTo(BigInteger.ZERO) != 0 ? x.precision() : 0);

        return resul.round(mc);

    }

    /**
     * Divide and round.
     *
     * @param x The numerator
     * @param y The denominator
     * @return the divided x/y
     */
    static public BigDecimal divideRound(final BigDecimal x, final BigDecimal y) {
        /* The estimation of the relative error in the result is |err(y)/y|+|err(x)/x|
         */
        MathContext mc = new MathContext(Math.min(x.precision(), y.precision()));

        return x.divide(y, mc);

    }

    /**
     * Divide and round.
     *
     * @param x The numerator
     * @param n The denominator
     * @return the divided x/n
     */
    static public BigDecimal divideRound(final BigDecimal x, final int n) {
        /* The estimation of the relative error in the result is |err(x)/x|
         */
        MathContext mc = new MathContext(x.precision());

        return x.divide(new BigDecimal(n), mc);

    }

    /**
     * Divide and round.
     *
     * @param x The numerator
     * @param n The denominator
     * @return the divided x/n
     */
    static public BigDecimal divideRound(final BigDecimal x, final BigInteger n) {
        /* The estimation of the relative error in the result is |err(x)/x|
         */
        MathContext mc = new MathContext(x.precision());

        return x.divide(new BigDecimal(n), mc);

    }

    /**
     * Divide and round.
     *
     * @param n The numerator
     * @param x The denominator
     * @return the divided n/x
     */
    static public BigDecimal divideRound(final BigInteger n, final BigDecimal x) {
        /* The estimation of the relative error in the result is |err(x)/x|
         */
        MathContext mc = new MathContext(x.precision());

        return new BigDecimal(n).divide(x, mc);

    }

    /**
     * Divide and round.
     *
     * @param n The numerator.
     * @param x The denominator.
     * @return the divided n/x.
     */
    static public BigDecimal divideRound(final int n, final BigDecimal x) {
        /* The estimation of the relative error in the result is |err(x)/x|
         */
        MathContext mc = new MathContext(x.precision());

        return new BigDecimal(n).divide(x, mc);

    }

    /**
     * Append decimal zeros to the value. This returns a value which appears to have
     * a higher precision than the input.
     *
     * @param x The input value
     * @param d The (positive) value of zeros to be added as least significant digits.
     * @return The same value as the input but with increased (pseudo) precision.
     */
    static public BigDecimal scalePrec(final BigDecimal x, int d) {
        return x.setScale(d + x.scale());

    }

    /**
     * Boost the precision by appending decimal zeros to the value. This returns a value which appears to have
     * a higher precision than the input.
     *
     * @param x  The input value
     * @param mc The requirement on the minimum precision on return.
     * @return The same value as the input but with increased (pseudo) precision.
     */
    static public BigDecimal scalePrec(final BigDecimal x, final MathContext mc) {
        final int diffPr = mc.getPrecision() - x.precision();

        if (diffPr > 0) {
            return scalePrec(x, diffPr);
        } else {
            return x;
        }

    } /* BigDecimalMath.scalePrec */

    /**
     * Convert an absolute error to a precision.
     *
     * @param x    The value of the variable
     * @param xerr The absolute error in the variable
     * @return The number of valid digits in x.
     * The value is rounded down, and on the pessimistic side for that reason.
     */
    static public int err2prec(BigDecimal x, BigDecimal xerr) {
        return err2prec(xerr.divide(x, MathContext.DECIMAL64).doubleValue());

    }

    /**
     * Convert an absolute error to a precision.
     *
     * @param x    The value of the variable
     *             The value returned depends only on the absolute value, not on the sign.
     * @param xerr The absolute error in the variable
     *             The value returned depends only on the absolute value, not on the sign.
     * @return The number of valid digits in x.
     * Derived from the representation x+- xerr, as if the error was represented
     * 38
     * in a "half width" (half of the error bar) form.
     * The value is rounded down, and on the pessimistic side for that reason.
     */
    static public int err2prec(double x, double xerr) {
        /* Example: an error of xerr=+-0.5 at x=100 represents 100+-0.5 with
         * a precision = 3 (digits).
         */
        return 1 + (int) (Math.log10(Math.abs(0.5 * x / xerr)));

    }

    /**
     * Convert a relative error to a precision.
     *
     * @param xerr The relative error in the variable.
     *             The value returned depends only on the absolute value, not on the sign.
     * @return The number of valid digits in x.
     * The value is rounded down, and on the pessimistic side for that reason.
     */
    static public int err2prec(double xerr) {
        /* Example: an error of xerr=+-0.5 a precision of 1 (digit), an error of
         * +-0.05 a precision of 2 (digits)
         */
        return 1 + (int) (Math.log10(Math.abs(0.5 / xerr)));

    }

    /**
     * Convert a precision (relative error) to an absolute error.
     * The is the inverse functionality of err2prec().
     *
     * @param x    The value of the variable
     *             The value returned depends only on the absolute value, not on the sign.
     * @param prec The number of valid digits of the variable.
     * @return the absolute error in x.
     * Derived from the an accuracy of one half of the ulp.
     */
    static public double prec2err(final double x, final int prec) {
        return 5. * Math.abs(x) * Math.pow(10., -prec);

    }
} /* BigDecimalMath */