Java tutorial
/** * Copyright 2014 52North Initiative for Geospatial Open Source Software GmbH * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.uncertml.distribution.discrete; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.commons.lang.ArrayUtils; import org.uncertml.util.Validate; /** * Class representing a hypergeometric distribution with parameters number of trials, * number of successes and population size. * * {@URL https://wiki.aston.ac.uk/foswiki/bin/view/UncertWeb/Hypergeometric} * * @author Matthew Williams * @version 2.0 */ public class HypergeometricDistribution implements IDiscreteDistribution { private List<Integer> numberOfTrials; private List<Integer> numberOfSuccesses; private List<Integer> populationSize; /** * Constructor that takes a single number of trials, number of successes and * population size parameter. * * @param numberOfTrials the number of trials parameter. * @param numberOfSuccesses the number of successes parameter. * @param populationSize the population size parameter. */ public HypergeometricDistribution(int numberOfTrials, int numberOfSuccesses, int populationSize) { this(new int[] { numberOfTrials }, new int[] { numberOfSuccesses }, new int[] { populationSize }); } /** * Constructor that takes an array of integers for the number of trials, * number of successes and population size parameters. Each number of trials, * number of successes and population size represents a unique hypergeometric * distribution. This is in line with the UncertML syntax whereby a collection * of types can be represented by a single entity. The arrays must be of equal length. * * @param numberOfTrials an array of integers representing the number of trials parameter of n * hypergeometric distributions. * @param numberOfSuccesses an array of integers representing the number of successes parameter of n * hypergeometric distributions. * @param populationSize an array of integers representing the population size * parameter of n hypergeometric distributions. */ public HypergeometricDistribution(int[] numberOfTrials, int[] numberOfSuccesses, int[] populationSize) { this(Arrays.asList(ArrayUtils.toObject(numberOfTrials)), Arrays.asList(ArrayUtils.toObject(numberOfSuccesses)), Arrays.asList(ArrayUtils.toObject(populationSize))); } /** * Constructor that takes a list of integers for the number of trials, * number of successes and population size parameters. Each number of trials, * number of successes and population size represents a unique hypergeometric * distribution. This is in line with the UncertML syntax whereby a collection * of types can be represented by a single entity. The lists must be of equal length * and must not contain any null elements. * * @param numberOfTrials a list of integers representing the number of trials parameter of n * hypergeometric distributions. * @param numberOfSuccesses a list of integers representing the number of successes parameter of n * hypergeometric distributions. * @param populationSize a list of integers representing the population size * parameter of n hypergeometric distributions. */ public HypergeometricDistribution(List<Integer> numberOfTrials, List<Integer> numberOfSuccesses, List<Integer> populationSize) { Validate.notNull(numberOfTrials); Validate.notNull(numberOfSuccesses); Validate.notNull(populationSize); Validate.noNullElements(numberOfTrials); Validate.noNullElements(numberOfSuccesses); Validate.noNullElements(populationSize); Validate.allElementsGreaterThan(numberOfTrials, 0); Validate.allElementsGreaterThan(numberOfSuccesses, -1); Validate.allElementsGreaterThan(populationSize, 0); Validate.allListsEqualLength(new List<?>[] { numberOfTrials, numberOfSuccesses, populationSize }); for (int i = 0; i < numberOfSuccesses.size(); i++) { if (numberOfSuccesses.get(i) > numberOfTrials.get(i)) { // invalid throw new IllegalStateException("Number of successes cannot be greater than number of trials"); } } this.numberOfTrials = new ArrayList<Integer>(numberOfTrials); this.numberOfSuccesses = new ArrayList<Integer>(numberOfSuccesses); this.populationSize = new ArrayList<Integer>(populationSize); } /** * * @return the number of successes parameter for each hypergeometric distribution * represented by this object. */ public List<Integer> getNumberOfSuccesses() { return numberOfSuccesses; } /** * * @return the number of trials parameter for each hypergeometric distribution * represented by this object. */ public List<Integer> getNumberOfTrials() { return numberOfTrials; } /** * * @return the population size parameter for each hypergeometric distribution * represented by this object. */ public List<Integer> getPopulationSize() { return populationSize; } }