Java tutorial
/* *********************************************************************** * * project: org.matsim.* * AcceptPropConst.java * * * *********************************************************************** * * * * copyright : (C) 2011 by the members listed in the COPYING, * * LICENSE and WARRANTY file. * * email : info at matsim dot org * * * * *********************************************************************** * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * See also COPYING, LICENSE and WARRANTY file * * * * *********************************************************************** */ package playground.johannes.socialnetworks.survey.ivt2009.analysis; import gnu.trove.TDoubleDoubleHashMap; import gnu.trove.TDoubleDoubleIterator; import gnu.trove.TDoubleIntHashMap; import gnu.trove.TDoubleObjectHashMap; import gnu.trove.TDoubleObjectIterator; import gnu.trove.TObjectDoubleHashMap; import java.util.Set; import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; import org.apache.log4j.Logger; import playground.johannes.sna.graph.Vertex; import playground.johannes.sna.graph.analysis.AbstractVertexProperty; import playground.johannes.sna.graph.spatial.SpatialVertex; import playground.johannes.sna.math.Discretizer; import playground.johannes.sna.math.FixedSampleSizeDiscretizer; import playground.johannes.sna.math.Histogram; import playground.johannes.socialnetworks.gis.CartesianDistanceCalculator; import playground.johannes.socialnetworks.gis.DistanceCalculator; import playground.johannes.socialnetworks.graph.analysis.AttributePartition; import playground.johannes.socialnetworks.graph.spatial.analysis.Distance; import com.vividsolutions.jts.geom.Point; /** * @author illenberger * */ public class AcceptPropConst extends AbstractVertexProperty { private static final Logger logger = Logger.getLogger(AcceptPropConst.class); private Set<Point> destinations; private final double gamma = -1.6; private TObjectDoubleHashMap<Vertex> partitionAttributes; public void setDestinations(Set<Point> destinations) { this.destinations = destinations; } public void setPartitionAttributes(TObjectDoubleHashMap<Vertex> partitionAttributes) { this.partitionAttributes = partitionAttributes; } @Override public TObjectDoubleHashMap<Vertex> values(Set<? extends Vertex> vertices) { TObjectDoubleHashMap<Vertex> c_i = new TObjectDoubleHashMap<Vertex>(); logger.info("Creating partitions..."); AttributePartition partitioner = new AttributePartition( FixedSampleSizeDiscretizer.create(partitionAttributes.getValues(), 20, 100)); // AttributePartition partitioner = new AttributePartition(new LinearDiscretizer(values.getValues(), 20)); TDoubleObjectHashMap<Set<Vertex>> partitions = partitioner.partition(partitionAttributes); logger.info(String.format("Created %1$s partitions.", partitions.size())); // Discretizer discretizer = new LinearDiscretizer(1000.0); DistanceCalculator distanceCalculator = new CartesianDistanceCalculator(); logger.info("Calculating prop const..."); TDoubleObjectIterator<?> it = partitions.iterator(); for (int i = 0; i < partitions.size(); i++) { it.advance(); Set<? extends SpatialVertex> partition = (Set<? extends SpatialVertex>) it.value(); DescriptiveStatistics stats = Distance.getInstance().statistics(partition); Discretizer discretizer = FixedSampleSizeDiscretizer.create(stats.getValues(), 20, 100); TDoubleDoubleHashMap m_d = Histogram.createHistogram(stats, discretizer, true); /* * count number of destinations at d */ TDoubleIntHashMap M_d = new TDoubleIntHashMap(); for (SpatialVertex vertex : partition) { Point p1 = vertex.getPoint(); if (p1 != null) { for (Point p2 : destinations) { if (p2 != null) { double d = distanceCalculator.distance(p1, p2); d = discretizer.discretize(d); M_d.adjustOrPutValue(d, 1, 1); } } } } /* * */ double c_sum = 0; int cnt = 0; TDoubleDoubleIterator mdIt = m_d.iterator(); for (int k = 0; k < m_d.size(); k++) { mdIt.advance(); double d = it.key(); // d = discretizer.discretize(d); d = Math.max(d, 1.0); int M = M_d.get(discretizer.discretize(d)); if (M > 0) { c_sum += mdIt.value() / (Math.pow(d, gamma) * M); System.err.println(String.valueOf(mdIt.value() / (Math.pow(d, gamma) * M))); cnt++; } } double c_mean = c_sum / (double) cnt; System.out.println(it.key() + "\t" + c_mean); /* * */ for (SpatialVertex vertex : partition) { c_i.put(vertex, c_mean); } } return c_i; } }