Java tutorial
/******************************************************************************* * Copyright (C) 2012 Dominik Jain. * * This file is part of ProbCog. * * ProbCog is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ProbCog is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ProbCog. If not, see <http://www.gnu.org/licenses/>. ******************************************************************************/ package probcog.clustering; import weka.core.Attribute; import weka.core.FastVector; import weka.core.Instance; import weka.core.Instances; /** * Basic clustering for one-dimensional (double) data points. * @author Dominik Jain * * @param <TClusterer> the underlying weka clustering class */ public class BasicClusterer<TClusterer extends weka.clusterers.Clusterer> { protected Attribute attrValue; protected TClusterer clusterer; protected Instances instances; public BasicClusterer(TClusterer clusterer) { attrValue = new Attribute("value"); FastVector attribs = new FastVector(1); attribs.addElement(attrValue); instances = new Instances("foo", attribs, 100); this.clusterer = clusterer; } public void addInstance(double value) { Instance inst = new Instance(1); inst.setValue(attrValue, value); instances.add(inst); } public void buildClusterer() throws Exception { clusterer.buildClusterer(instances); } public int classify(double value) throws Exception { Instance inst = new Instance(1); inst.setValue(attrValue, value); return clusterer.clusterInstance(inst); } public TClusterer getWekaClusterer() { return clusterer; } }