processing.MPCalculator.java Source code

Java tutorial

Introduction

Here is the source code for processing.MPCalculator.java

Source

/*
 TagRecommender:
 A framework to implement and evaluate algorithms for the recommendation
 of tags.
 Copyright (C) 2013 Dominik Kowald
     
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as
 published by the Free Software Foundation, either version 3 of the
 License, or (at your option) any later version.
     
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Affero General Public License for more details.
     
 You should have received a copy of the GNU Affero General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
package processing;

import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Timer;
import java.util.TreeMap;
import java.util.concurrent.TimeUnit;

import com.google.common.base.Stopwatch;
import com.google.common.primitives.Ints;

import common.IntMapComparator;
import common.Bookmark;
import common.MemoryThread;
import common.PerformanceMeasurement;
import common.Utilities;
import file.PredictionFileWriter;
import file.BookmarkReader;

public class MPCalculator {

    private static String timeString;

    private static List<int[]> getPerfectTags(BookmarkReader reader, int sampleSize, int limit) {
        List<int[]> tags = new ArrayList<int[]>();
        int trainSize = reader.getBookmarks().size() - sampleSize;

        for (Bookmark data : reader.getBookmarks().subList(trainSize, trainSize + sampleSize)) {
            List<Integer> t = new ArrayList<Integer>(data.getTags());
            //while (t.size() < limit) {
            //   t.add(-1);
            //}
            tags.add(Ints.toArray(t));
        }
        return tags;
    }

    private static int[] getPopularTagList(BookmarkReader reader, int size) {
        Map<Integer, Integer> countMap = new LinkedHashMap<Integer, Integer>();
        for (int i = 0; i < reader.getTagCounts().size(); i++) {
            countMap.put(i, reader.getTagCounts().get(i));
        }
        Map<Integer, Integer> sortedCountMap = new TreeMap<Integer, Integer>(new IntMapComparator(countMap));
        sortedCountMap.putAll(countMap);
        int[] tagIDs = new int[size];
        int i = 0;
        for (Integer key : sortedCountMap.keySet()) {
            if (i < size) {
                tagIDs[i++] = key;
            } else {
                break;
            }
        }
        return tagIDs;
    }

    private static List<int[]> getPopularTags(BookmarkReader reader, int sampleSize, int limit) {
        List<int[]> tags = new ArrayList<int[]>();
        Stopwatch timer = new Stopwatch();
        timer.start();

        int[] tagIDs = getPopularTagList(reader, limit);

        timer.stop();
        long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS);
        timer.reset();
        timer.start();
        for (int j = 0; j < sampleSize; j++) {
            tags.add(tagIDs);
        }
        timer.stop();
        long testTime = timer.elapsed(TimeUnit.MILLISECONDS);

        timeString = PerformanceMeasurement.addTimeMeasurement(timeString, true, trainingTime, testTime,
                sampleSize);
        return tags;
    }

    // public statics --------------------------------------------------------------------------------------------
    public static BookmarkReader predictPopularTags(String filename, int trainSize, int sampleSize, boolean mp) {
        Timer timerThread = new Timer();
        MemoryThread memoryThread = new MemoryThread();
        timerThread.schedule(memoryThread, 0, MemoryThread.TIME_SPAN);

        BookmarkReader reader = new BookmarkReader(trainSize, false);
        reader.readFile(filename);

        List<int[]> values = null;
        if (mp) {
            values = getPopularTags(reader, sampleSize, 10);
        } else {
            values = getPerfectTags(reader, sampleSize, 10);
        }

        reader.setTestLines(reader.getBookmarks().subList(trainSize, reader.getBookmarks().size()));
        PredictionFileWriter writer = new PredictionFileWriter(reader, values);
        writer.writeFile(filename + "_mp");

        timeString = PerformanceMeasurement.addMemoryMeasurement(timeString, false, memoryThread.getMaxMemory());
        timerThread.cancel();
        Utilities.writeStringToFile("./data/metrics/" + filename + "_mp" + "_TIME.txt", timeString);
        return reader;
    }
}