Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package redpoll.text; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.io.ArrayWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; /** * Collects a words list buffer and caculates the df for terms. * @author Jeremy Chow(coderplay@gmail.com) */ public class TermReducer extends MapReduceBase implements Reducer<Text, TermWritable, Text, TermWritable> { private static final Log log = LogFactory.getLog(TermReducer.class.getName()); private int dfLimit; public void reduce(Text key, Iterator<TermWritable> values, OutputCollector<Text, TermWritable> output, Reporter reporter) throws IOException { ArrayList<TfWritable> tfs = new ArrayList<TfWritable>(); while (values.hasNext()) { TfWritable value = (TfWritable) values.next().get(); tfs.add((TfWritable) value); } int df = tfs.size(); TfWritable writables[] = new TfWritable[df]; ArrayWritable aw = new TfArrayWritable(tfs.toArray(writables)); if (df > dfLimit) { // if not stands for documents' total number, then ouput term's tf vector if (!key.toString().equals("redpoll.docs.num")) output.collect(key, new TermWritable(aw)); // wrap again output.collect(key, new TermWritable(new IntWritable(df))); } } @Override public void configure(JobConf job) { dfLimit = job.getInt("redpoll.text.df.limit", 3); } }