Java tutorial
/* * Copyright (c) 2015 Villu Ruusmann * * This file is part of JPMML-SkLearn * * JPMML-SkLearn is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * JPMML-SkLearn is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with JPMML-SkLearn. If not, see <http://www.gnu.org/licenses/>. */ package sklearn; import java.util.ArrayList; import java.util.List; import com.google.common.base.CharMatcher; import com.google.common.base.Function; import com.google.common.collect.Lists; import org.dmg.pmml.DataType; import org.dmg.pmml.OpType; import org.jpmml.converter.Schema; import org.jpmml.converter.ValueUtil; import org.jpmml.sklearn.ClassDictUtil; import org.jpmml.sklearn.FeatureMapper; abstract public class Classifier extends Estimator { public Classifier(String module, String name) { super(module, name); } @Override public Schema createSchema(FeatureMapper featureMapper) { List<?> classes = getClasses(); if (classes == null || classes.isEmpty()) { throw new IllegalArgumentException(); } DataType dataType = TypeUtil.getDataType(classes, DataType.STRING); List<String> targetCategories = formatTargetCategories(classes); if (featureMapper.isEmpty()) { featureMapper.initActiveFields(createActiveFields(getNumberOfFeatures()), getOpType(), getDataType()); featureMapper.initTargetField(createTargetField(), OpType.CATEGORICAL, dataType, targetCategories); } else { featureMapper.updateActiveFields(getNumberOfFeatures(), true, getOpType(), getDataType()); featureMapper.updateTargetField(OpType.CATEGORICAL, dataType, targetCategories); } Schema schema = featureMapper.createSupervisedSchema(); if (requiresContinuousInput()) { schema = featureMapper.cast(OpType.CONTINUOUS, getDataType(), schema); } return schema; } public boolean hasProbabilityDistribution() { return true; } public List<?> getClasses() { return ClassDictUtil.getArray(this, "classes_"); } static private List<String> formatTargetCategories(List<?> objects) { Function<Object, String> function = new Function<Object, String>() { @Override public String apply(Object object) { String targetCategory = ValueUtil.formatValue(object); if (targetCategory == null || CharMatcher.WHITESPACE.matchesAnyOf(targetCategory)) { throw new IllegalArgumentException(targetCategory); } return targetCategory; } }; return new ArrayList<>(Lists.transform(objects, function)); } }