weka.classifiers.trees.m5.PreConstructedLinearModel.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.trees.m5.PreConstructedLinearModel.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    RuleNode.java
 *    Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees.m5;

import java.io.Serializable;

import weka.classifiers.AbstractClassifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 * This class encapsulates a linear regression function. It is a classifier
 * but does not learn the function itself, instead it is constructed with
 * coefficients and intercept obtained elsewhere. The buildClassifier method
 * must still be called however as this stores a copy of the training data's
 * header for use in printing the model to the console.
 *
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class PreConstructedLinearModel extends AbstractClassifier implements Serializable {

    /** for serialization */
    static final long serialVersionUID = 2030974097051713247L;

    /** The coefficients */
    private double[] m_coefficients;

    /** The intercept */
    private double m_intercept;

    /** Holds the instances header for printing the model */
    private Instances m_instancesHeader;

    /** number of coefficients in the model */
    private int m_numParameters;

    /**
     * Constructor
     *
     * @param coeffs an array of coefficients
     * @param intercept the intercept
     */
    public PreConstructedLinearModel(double[] coeffs, double intercept) {
        m_coefficients = coeffs;
        m_intercept = intercept;
        int count = 0;
        for (int i = 0; i < coeffs.length; i++) {
            if (coeffs[i] != 0) {
                count++;
            }
        }
        m_numParameters = count;
    }

    /**
     * Builds the classifier. In this case all that is done is that a
     * copy of the training instances header is saved.
     *
     * @param instances an <code>Instances</code> value
     * @exception Exception if an error occurs
     */
    public void buildClassifier(Instances instances) throws Exception {
        m_instancesHeader = new Instances(instances, 0);
    }

    /**
     * Predicts the class of the supplied instance using the linear model.
     *
     * @param inst the instance to make a prediction for
     * @return the prediction
     * @exception Exception if an error occurs
     */
    public double classifyInstance(Instance inst) throws Exception {
        double result = 0;

        //    System.out.println(inst);
        for (int i = 0; i < m_coefficients.length; i++) {
            if (i != inst.classIndex() && !inst.isMissing(i)) {
                //   System.out.println(inst.value(i)+" "+m_coefficients[i]);
                result += m_coefficients[i] * inst.value(i);
            }
        }

        result += m_intercept;
        return result;
    }

    /**
     * Return the number of parameters (coefficients) in the linear model
     *
     * @return the number of parameters
     */
    public int numParameters() {
        return m_numParameters;
    }

    /**
     * Return the array of coefficients
     *
     * @return the coefficients
     */
    public double[] coefficients() {
        return m_coefficients;
    }

    /**
     * Return the intercept
     *
     * @return the intercept
     */
    public double intercept() {
        return m_intercept;
    }

    /**
     * Returns a textual description of this linear model
     *
     * @return String containing a description of this linear model
     */
    public String toString() {
        StringBuffer b = new StringBuffer();
        b.append("\n" + m_instancesHeader.classAttribute().name() + " = ");
        boolean first = true;
        for (int i = 0; i < m_coefficients.length; i++) {
            if (m_coefficients[i] != 0.0) {
                double c = m_coefficients[i];
                if (first) {
                    b.append("\n\t" + Utils.doubleToString(c, 12, getNumDecimalPlaces()).trim() + " * "
                            + m_instancesHeader.attribute(i).name() + " ");
                    first = false;
                } else {
                    b.append("\n\t"
                            + ((m_coefficients[i] < 0)
                                    ? "- " + Utils.doubleToString(Math.abs(c), 12, getNumDecimalPlaces()).trim()
                                    : "+ " + Utils.doubleToString(Math.abs(c), 12, getNumDecimalPlaces()).trim())
                            + " * " + m_instancesHeader.attribute(i).name() + " ");
                }
            }
        }

        b.append("\n\t" + ((m_intercept < 0) ? "- " : "+ ")
                + Utils.doubleToString(Math.abs(m_intercept), 12, getNumDecimalPlaces()).trim());
        return b.toString();
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }
}