weka.core.matrix.Maths.java Source code

Java tutorial

Introduction

Here is the source code for weka.core.matrix.Maths.java

Source

/*
 * This software is a cooperative product of The MathWorks and the National
 * Institute of Standards and Technology (NIST) which has been released to the
 * public domain. Neither The MathWorks nor NIST assumes any responsibility
 * whatsoever for its use by other parties, and makes no guarantees, expressed
 * or implied, about its quality, reliability, or any other characteristic.
 */

/*
 * Maths.java
 * Copyright (C) 1999 The Mathworks and NIST
 *
 */

package weka.core.matrix;

import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Statistics;

import java.util.Random;

/**
 * Utility class.
 * <p/>
 * Adapted from the <a href="http://math.nist.gov/javanumerics/jama/" target="_blank">JAMA</a> package.
 *
 * @author The Mathworks and NIST 
 * @author Fracpete (fracpete at waikato dot ac dot nz)
 * @version $Revision$
 */
public class Maths implements RevisionHandler {

    /** The constant 1 / sqrt(2 pi) */
    public static final double PSI = 0.3989422804014327028632;

    /** The constant - log( sqrt(2 pi) ) */
    public static final double logPSI = -0.9189385332046726695410;

    /** Distribution type: undefined */
    public static final int undefinedDistribution = 0;

    /** Distribution type: noraml */
    public static final int normalDistribution = 1;

    /** Distribution type: chi-squared */
    public static final int chisqDistribution = 2;

    /** 
     * sqrt(a^2 + b^2) without under/overflow. 
     */
    public static double hypot(double a, double b) {
        double r;
        if (Math.abs(a) > Math.abs(b)) {
            r = b / a;
            r = Math.abs(a) * Math.sqrt(1 + r * r);
        } else if (b != 0) {
            r = a / b;
            r = Math.abs(b) * Math.sqrt(1 + r * r);
        } else {
            r = 0.0;
        }
        return r;
    }

    /**
     *  Returns the square of a value
     *  @param x 
     *  @return the square
     */
    public static double square(double x) {
        return x * x;
    }

    /* methods for normal distribution */

    /**
     *  Returns the cumulative probability of the standard normal.
     *  @param x the quantile
     */
    public static double pnorm(double x) {
        return Statistics.normalProbability(x);
    }

    /** 
     *  Returns the cumulative probability of a normal distribution.
     *  @param x the quantile
     *  @param mean the mean of the normal distribution
     *  @param sd the standard deviation of the normal distribution.
     */
    public static double pnorm(double x, double mean, double sd) {
        if (sd <= 0.0)
            throw new IllegalArgumentException("standard deviation <= 0.0");
        return pnorm((x - mean) / sd);
    }

    /** 
     *  Returns the cumulative probability of a set of normal distributions
     *  with different means.
     *  @param x the vector of quantiles
     *  @param mean the means of the normal distributions
     *  @param sd the standard deviation of the normal distribution.
     *  @return the cumulative probability */
    public static DoubleVector pnorm(double x, DoubleVector mean, double sd) {
        DoubleVector p = new DoubleVector(mean.size());

        for (int i = 0; i < mean.size(); i++) {
            p.set(i, pnorm(x, mean.get(i), sd));
        }
        return p;
    }

    /** Returns the density of the standard normal.
     *  @param x the quantile
     *  @return the density
     */
    public static double dnorm(double x) {
        return Math.exp(-x * x / 2.) * PSI;
    }

    /** Returns the density value of a standard normal.
     *  @param x the quantile
     *  @param mean the mean of the normal distribution
     *  @param sd the standard deviation of the normal distribution.
     *  @return the density */
    public static double dnorm(double x, double mean, double sd) {
        if (sd <= 0.0)
            throw new IllegalArgumentException("standard deviation <= 0.0");
        return dnorm((x - mean) / sd);
    }

    /** Returns the density values of a set of normal distributions with
     *  different means.
     *  @param x the quantile
     *  @param mean the means of the normal distributions
     *  @param sd the standard deviation of the normal distribution.
     * @return the density */
    public static DoubleVector dnorm(double x, DoubleVector mean, double sd) {
        DoubleVector den = new DoubleVector(mean.size());

        for (int i = 0; i < mean.size(); i++) {
            den.set(i, dnorm(x, mean.get(i), sd));
        }
        return den;
    }

    /** Returns the log-density of the standard normal.
     *  @param x the quantile
     *  @return the density
     */
    public static double dnormLog(double x) {
        return logPSI - x * x / 2.;
    }

    /** Returns the log-density value of a standard normal.
     *  @param x the quantile
     *  @param mean the mean of the normal distribution
     *  @param sd the standard deviation of the normal distribution.
     *  @return the density */
    public static double dnormLog(double x, double mean, double sd) {
        if (sd <= 0.0)
            throw new IllegalArgumentException("standard deviation <= 0.0");
        return -Math.log(sd) + dnormLog((x - mean) / sd);
    }

    /** Returns the log-density values of a set of normal distributions with
     *  different means.
     *  @param x the quantile
     *  @param mean the means of the normal distributions
     *  @param sd the standard deviation of the normal distribution.
     * @return the density */
    public static DoubleVector dnormLog(double x, DoubleVector mean, double sd) {
        DoubleVector denLog = new DoubleVector(mean.size());

        for (int i = 0; i < mean.size(); i++) {
            denLog.set(i, dnormLog(x, mean.get(i), sd));
        }
        return denLog;
    }

    /** 
     *  Generates a sample of a normal distribution.
     *  @param n the size of the sample
     *  @param mean the mean of the normal distribution
     *  @param sd the standard deviation of the normal distribution.
     *  @param random the random stream
     *  @return the sample
     */
    public static DoubleVector rnorm(int n, double mean, double sd, Random random) {
        if (sd < 0.0)
            throw new IllegalArgumentException("standard deviation < 0.0");

        if (sd == 0.0)
            return new DoubleVector(n, mean);
        DoubleVector v = new DoubleVector(n);
        for (int i = 0; i < n; i++)
            v.set(i, (random.nextGaussian() + mean) / sd);
        return v;
    }

    /* methods for Chi-square distribution */

    /** Returns the cumulative probability of the Chi-squared distribution
     *  @param x the quantile
     */
    public static double pchisq(double x) {
        double xh = Math.sqrt(x);
        return pnorm(xh) - pnorm(-xh);
    }

    /** Returns the cumulative probability of the noncentral Chi-squared
     *  distribution.
     *  @param x the quantile
     *  @param ncp the noncentral parameter */
    public static double pchisq(double x, double ncp) {
        double mean = Math.sqrt(ncp);
        double xh = Math.sqrt(x);
        return pnorm(xh - mean) - pnorm(-xh - mean);
    }

    /** Returns the cumulative probability of a set of noncentral Chi-squared
     *  distributions.
     *  @param x the quantile
     *  @param ncp the noncentral parameters */
    public static DoubleVector pchisq(double x, DoubleVector ncp) {
        int n = ncp.size();
        DoubleVector p = new DoubleVector(n);
        double mean;
        double xh = Math.sqrt(x);

        for (int i = 0; i < n; i++) {
            mean = Math.sqrt(ncp.get(i));
            p.set(i, pnorm(xh - mean) - pnorm(-xh - mean));
        }
        return p;
    }

    /** Returns the density of the Chi-squared distribution.
     *  @param x the quantile
     *  @return the density
     */
    public static double dchisq(double x) {
        if (x == 0.0)
            return Double.POSITIVE_INFINITY;
        double xh = Math.sqrt(x);
        return dnorm(xh) / xh;
    }

    /** Returns the density of the noncentral Chi-squared distribution.
     *  @param x the quantile
     *  @param ncp the noncentral parameter
     */
    public static double dchisq(double x, double ncp) {
        if (ncp == 0.0)
            return dchisq(x);
        double xh = Math.sqrt(x);
        double mean = Math.sqrt(ncp);
        return (dnorm(xh - mean) + dnorm(-xh - mean)) / (2 * xh);
    }

    /** Returns the density of the noncentral Chi-squared distribution.
     *  @param x the quantile
     *  @param ncp the noncentral parameters 
     */
    public static DoubleVector dchisq(double x, DoubleVector ncp) {
        int n = ncp.size();
        DoubleVector d = new DoubleVector(n);
        double xh = Math.sqrt(x);
        double mean;
        for (int i = 0; i < n; i++) {
            mean = Math.sqrt(ncp.get(i));
            if (ncp.get(i) == 0.0)
                d.set(i, dchisq(x));
            else
                d.set(i, (dnorm(xh - mean) + dnorm(-xh - mean)) / (2 * xh));
        }
        return d;
    }

    /** Returns the log-density of the noncentral Chi-square distribution.
     *  @param x the quantile
     *  @return the density
     */
    public static double dchisqLog(double x) {
        if (x == 0.0)
            return Double.POSITIVE_INFINITY;
        double xh = Math.sqrt(x);
        return dnormLog(xh) - Math.log(xh);
    }

    /** Returns the log-density value of a noncentral Chi-square distribution.
     *  @param x the quantile
     *  @param ncp the noncentral parameter
     *  @return the density */
    public static double dchisqLog(double x, double ncp) {
        if (ncp == 0.0)
            return dchisqLog(x);
        double xh = Math.sqrt(x);
        double mean = Math.sqrt(ncp);
        return Math.log(dnorm(xh - mean) + dnorm(-xh - mean)) - Math.log(2 * xh);
    }

    /** Returns the log-density of a set of noncentral Chi-squared
     *  distributions.
     *  @param x the quantile
     *  @param ncp the noncentral parameters */
    public static DoubleVector dchisqLog(double x, DoubleVector ncp) {
        DoubleVector dLog = new DoubleVector(ncp.size());
        double xh = Math.sqrt(x);
        double mean;

        for (int i = 0; i < ncp.size(); i++) {
            mean = Math.sqrt(ncp.get(i));
            if (ncp.get(i) == 0.0)
                dLog.set(i, dchisqLog(x));
            else
                dLog.set(i, Math.log(dnorm(xh - mean) + dnorm(-xh - mean)) - Math.log(2 * xh));
        }
        return dLog;
    }

    /** 
     *  Generates a sample of a Chi-square distribution.
     *  @param n the size of the sample
     *  @param ncp the noncentral parameter
     *  @param random the random stream
     *  @return the sample
     */
    public static DoubleVector rchisq(int n, double ncp, Random random) {
        DoubleVector v = new DoubleVector(n);
        double mean = Math.sqrt(ncp);
        double x;
        for (int i = 0; i < n; i++) {
            x = random.nextGaussian() + mean;
            v.set(i, x * x);
        }
        return v;
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }
}