Finds the plane equation of a plane given its normal and a point on the plane. - Java java.lang

Java examples for java.lang:Math Vector

Description

Finds the plane equation of a plane given its normal and a point on the plane.

Demo Code

/**/*  ww  w . j a  v a 2s. c o  m*/
 * Copyright 2010 JogAmp Community. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice, this list of
 *       conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above copyright notice, this list
 *       of conditions and the following disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the
 * authors and should not be interpreted as representing official policies, either expressed
 * or implied, of JogAmp Community.
 */
import java.util.ArrayList;

public class Main{
    /**
     * Finds the plane equation of a plane given its normal and a point on the plane.
     *
     * @param resultV4 vec4 plane equation
     * @param normalVec3
     * @param pVec3
     * @return result for chaining
     */
    public static float[] getPlaneVec3(final float[/*4*/] resultV4,
            final float[] normalVec3, final float[] pVec3) {
        /**
            Ax + By + Cz + D == 0 ;
            D = - ( Ax + By + Cz )
              = - ( A*a[0] + B*a[1] + C*a[2] )
              = - vec3Dot ( normal, a ) ;
         */
        System.arraycopy(normalVec3, 0, resultV4, 0, 3);
        resultV4[3] = -dotVec3(normalVec3, pVec3);
        return resultV4;
    }
    /**
     * This finds the plane equation of a triangle given three vertices.
     *
     * @param resultVec4 vec4 plane equation
     * @param v1 vec3
     * @param v2 vec3
     * @param v3 vec3
     * @param temp1V3
     * @param temp2V3
     * @return result for chaining
     */
    public static float[] getPlaneVec3(final float[/*4*/] resultVec4,
            final float[] v1, final float[] v2, final float[] v3,
            final float[] temp1V3, final float[] temp2V3) {
        /**
            Ax + By + Cz + D == 0 ;
            D = - ( Ax + By + Cz )
              = - ( A*a[0] + B*a[1] + C*a[2] )
              = - vec3Dot ( normal, a ) ;
         */
        getNormalVec3(resultVec4, v1, v2, v3, temp1V3, temp2V3);
        resultVec4[3] = -dotVec3(resultVec4, v1);
        return resultVec4;
    }
    /**
     * Return the dot product of two points
     * @param vec1 vector 1
     * @param vec2 vector 2
     * @return the dot product as float
     */
    public static float dotVec3(final float[] vec1, final float[] vec2) {
        return vec1[0] * vec2[0] + vec1[1] * vec2[1] + vec1[2] * vec2[2];
    }
    /**
     * Returns the 3d surface normal of a triangle given three vertices.
     *
     * @param result vec3 result for normal
     * @param v1 vec3
     * @param v2 vec3
     * @param v3 vec3
     * @param tmp1Vec3 temp vec3
     * @param tmp2Vec3 temp vec3
     * @return result for chaining
     */
    public static float[] getNormalVec3(final float[] result,
            final float[] v1, final float[] v2, final float[] v3,
            final float[] tmp1Vec3, final float[] tmp2Vec3) {
        subVec3(tmp1Vec3, v2, v1);
        subVec3(tmp2Vec3, v3, v1);
        return normalizeVec3(crossVec3(result, tmp1Vec3, tmp2Vec3));
    }
    /**
     * Subtracts two vectors, result = v1 - v2
     * @param result float[3] result vector, may be either v1 or v2 (in-place)
     * @param v1 vector 1
     * @param v2 vector 2
     * @return result vector for chaining
     */
    public static float[] subVec3(final float[] result, final float[] v1,
            final float[] v2) {
        result[0] = v1[0] - v2[0];
        result[1] = v1[1] - v2[1];
        result[2] = v1[2] - v2[2];
        return result;
    }
    /**
     * Normalize a vector
     * @param result output vector, may be vector (in-place)
     * @param vector input vector
     * @return normalized output vector
     * @return result vector for chaining
     */
    public static float[] normalizeVec3(final float[] result,
            final float[] vector) {
        final float lengthSq = normSquareVec3(vector);
        if (FloatUtil.isZero(lengthSq, FloatUtil.EPSILON)) {
            result[0] = 0f;
            result[1] = 0f;
            result[2] = 0f;
        } else {
            final float invSqr = 1f / FloatUtil.sqrt(lengthSq);
            result[0] = vector[0] * invSqr;
            result[1] = vector[1] * invSqr;
            result[2] = vector[2] * invSqr;
        }
        return result;
    }
    /**
     * Normalize a vector in place
     * @param vector input vector
     * @return normalized output vector
     */
    public static float[] normalizeVec3(final float[] vector) {
        final float lengthSq = normSquareVec3(vector);
        if (FloatUtil.isZero(lengthSq, FloatUtil.EPSILON)) {
            vector[0] = 0f;
            vector[1] = 0f;
            vector[2] = 0f;
        } else {
            final float invSqr = 1f / FloatUtil.sqrt(lengthSq);
            vector[0] *= invSqr;
            vector[1] *= invSqr;
            vector[2] *= invSqr;
        }
        return vector;
    }
    /**
     * Normalize a vector in place
     * @param vector input vector
     * @return normalized output vector
     */
    public static float[] normalizeVec3(final float[] vector,
            final int offset) {
        final float lengthSq = normSquareVec3(vector, offset);
        if (FloatUtil.isZero(lengthSq, FloatUtil.EPSILON)) {
            vector[0 + offset] = 0f;
            vector[1 + offset] = 0f;
            vector[2 + offset] = 0f;
        } else {
            final float invSqr = 1f / FloatUtil.sqrt(lengthSq);
            vector[0 + offset] *= invSqr;
            vector[1 + offset] *= invSqr;
            vector[2 + offset] *= invSqr;
        }
        return vector;
    }
    /**
     * cross product vec1 x vec2
     * @param v1 vector 1
     * @param v2 vector 2
     * @return the resulting vector
     */
    public static float[] crossVec3(final float[] result, final float[] v1,
            final float[] v2) {
        result[0] = v1[1] * v2[2] - v1[2] * v2[1];
        result[1] = v1[2] * v2[0] - v1[0] * v2[2];
        result[2] = v1[0] * v2[1] - v1[1] * v2[0];
        return result;
    }
    /**
     * cross product vec1 x vec2
     * @param v1 vector 1
     * @param v2 vector 2
     * @return the resulting vector
     */
    public static float[] crossVec3(final float[] r, final int r_offset,
            final float[] v1, final int v1_offset, final float[] v2,
            final int v2_offset) {
        r[0 + r_offset] = v1[1 + v1_offset] * v2[2 + v2_offset]
                - v1[2 + v1_offset] * v2[1 + v2_offset];
        r[1 + r_offset] = v1[2 + v1_offset] * v2[0 + v2_offset]
                - v1[0 + v1_offset] * v2[2 + v2_offset];
        r[2 + r_offset] = v1[0 + v1_offset] * v2[1 + v2_offset]
                - v1[1 + v1_offset] * v2[0 + v2_offset];
        return r;
    }
    /**
     * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
     */
    public static float normSquareVec3(final float[] vec) {
        return vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2];
    }
    /**
     * Return the squared length of a vector, a.k.a the squared <i>norm</i> or squared <i>magnitude</i>
     */
    public static float normSquareVec3(final float[] vec, final int offset) {
        float v = vec[0 + offset];
        float r = v * v;
        v = vec[1 + offset];
        r += v * v;
        v = vec[2 + offset];
        return r + v * v;
    }
    /**
     * Return true if all two vector components are zero, i.e. it's their absolute value < <code>epsilon</code>.
     * <p>
     * Implementation uses {@link FloatUtil#isZero(float, float)}, see API doc for details.
     * </p>
     */
    public static boolean isZero(final float x, final float y,
            final float epsilon) {
        return FloatUtil.isZero(x, epsilon) && FloatUtil.isZero(y, epsilon);
    }
    /**
     * Return true if all three vector components are zero, i.e. it's their absolute value < <code>epsilon</code>.
     * <p>
     * Implementation uses {@link FloatUtil#isZero(float, float)}, see API doc for details.
     * </p>
     */
    public static boolean isZero(final float x, final float y,
            final float z, final float epsilon) {
        return FloatUtil.isZero(x, epsilon) && FloatUtil.isZero(y, epsilon)
                && FloatUtil.isZero(z, epsilon);
    }
}

Related Tutorials