Android Open Source - java_mega_api Base64






From Project

Back to project page java_mega_api.

License

The source code is released under:

GNU General Public License

If you think the Android project java_mega_api listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.

Java Source Code

/*
 * Copyright (C) 2010 The Android Open Source Project
 *//from ww  w . ja  va  2s.  c om
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.danbrough.mega;

import java.io.UnsupportedEncodingException;

/**
 * Taken from the android source code
 * 
 * @author dan
 * 
 */
public class Base64 {
  /**
   * Default values for encoder/decoder flags.
   */
  public static final int DEFAULT = 0;

  /**
   * Encoder flag bit to omit the padding '=' characters at the end of the
   * output (if any).
   */
  public static final int NO_PADDING = 1;

  /**
   * Encoder flag bit to omit all line terminators (i.e., the output will be on
   * one long line).
   */
  public static final int NO_WRAP = 2;

  /**
   * Encoder flag bit to indicate lines should be terminated with a CRLF pair
   * instead of just an LF. Has no effect if {@code NO_WRAP} is specified as
   * well.
   */
  public static final int CRLF = 4;

  /**
   * Encoder/decoder flag bit to indicate using the "URL and filename safe"
   * variant of Base64 (see RFC 3548 section 4) where {@code -} and {@code _}
   * are used in place of {@code +} and {@code /}.
   */
  public static final int URL_SAFE = 8;

  /**
   * Flag to pass to {@link Base64OutputStream} to indicate that it should not
   * close the output stream it is wrapping when it itself is closed.
   */
  public static final int NO_CLOSE = 16;

  // --------------------------------------------------------
  // shared code
  // --------------------------------------------------------

  /* package */static abstract class Coder {
    public byte[] output;
    public int op;

    /**
     * Encode/decode another block of input data. this.output is provided by the
     * caller, and must be big enough to hold all the coded data. On exit,
     * this.opwill be set to the length of the coded data.
     * 
     * @param finish
     *          true if this is the final call to process for this object. Will
     *          finalize the coder state and include any final bytes in the
     *          output.
     * 
     * @return true if the input so far is good; false if some error has been
     *         detected in the input stream..
     */
    public abstract boolean process(byte[] input, int offset, int len,
        boolean finish);

    /**
     * @return the maximum number of bytes a call to process() could produce for
     *         the given number of input bytes. This may be an overestimate.
     */
    public abstract int maxOutputSize(int len);
  }

  // --------------------------------------------------------
  // decoding
  // --------------------------------------------------------

  /**
   * Decode the Base64-encoded data in input and return the data in a new byte
   * array.
   * 
   * <p>
   * The padding '=' characters at the end are considered optional, but if any
   * are present, there must be the correct number of them.
   * 
   * @param str
   *          the input String to decode, which is converted to bytes using the
   *          default charset
   * @param flags
   *          controls certain features of the decoded output. Pass
   *          {@code DEFAULT} to decode standard Base64.
   * 
   * @throws IllegalArgumentException
   *           if the input contains incorrect padding
   */
  public static byte[] decode(String str, int flags) {
    return decode(str.getBytes(), flags);
  }

  /**
   * Decode the Base64-encoded data in input and return the data in a new byte
   * array.
   * 
   * <p>
   * The padding '=' characters at the end are considered optional, but if any
   * are present, there must be the correct number of them.
   * 
   * @param input
   *          the input array to decode
   * @param flags
   *          controls certain features of the decoded output. Pass
   *          {@code DEFAULT} to decode standard Base64.
   * 
   * @throws IllegalArgumentException
   *           if the input contains incorrect padding
   */
  public static byte[] decode(byte[] input, int flags) {
    return decode(input, 0, input.length, flags);
  }

  /**
   * Decode the Base64-encoded data in input and return the data in a new byte
   * array.
   * 
   * <p>
   * The padding '=' characters at the end are considered optional, but if any
   * are present, there must be the correct number of them.
   * 
   * @param input
   *          the data to decode
   * @param offset
   *          the position within the input array at which to start
   * @param len
   *          the number of bytes of input to decode
   * @param flags
   *          controls certain features of the decoded output. Pass
   *          {@code DEFAULT} to decode standard Base64.
   * 
   * @throws IllegalArgumentException
   *           if the input contains incorrect padding
   */
  public static byte[] decode(byte[] input, int offset, int len, int flags) {
    // Allocate space for the most data the input could represent.
    // (It could contain less if it contains whitespace, etc.)
    Decoder decoder = new Decoder(flags, new byte[len * 3 / 4]);

    if (!decoder.process(input, offset, len, true)) {
      throw new IllegalArgumentException("bad base-64");
    }

    // Maybe we got lucky and allocated exactly enough output space.
    if (decoder.op == decoder.output.length) {
      return decoder.output;
    }

    // Need to shorten the array, so allocate a new one of the
    // right size and copy.
    byte[] temp = new byte[decoder.op];
    System.arraycopy(decoder.output, 0, temp, 0, decoder.op);
    return temp;
  }

  /* package */static class Decoder extends Coder {
    /**
     * Lookup table for turning bytes into their position in the Base64
     * alphabet.
     */
    private static final int DECODE[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1,
        -1, -1, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1,
        -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
        18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, 29,
        30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
        48, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, };

    /**
     * Decode lookup table for the "web safe" variant (RFC 3548 sec. 4) where -
     * and _ replace + and /.
     */
    private static final int DECODE_WEBSAFE[] = { -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, 62, -1, -1, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1,
        -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
        16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63, -1, 26, 27,
        28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
        46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, };

    /** Non-data values in the DECODE arrays. */
    private static final int SKIP = -1;
    private static final int EQUALS = -2;

    /**
     * States 0-3 are reading through the next input tuple. State 4 is having
     * read one '=' and expecting exactly one more. State 5 is expecting no more
     * data or padding characters in the input. State 6 is the error state; an
     * error has been detected in the input and no future input can "fix" it.
     */
    private int state; // state number (0 to 6)
    private int value;

    final private int[] alphabet;

    public Decoder(int flags, byte[] output) {
      this.output = output;

      alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;
      state = 0;
      value = 0;
    }

    /**
     * @return an overestimate for the number of bytes {@code len} bytes could
     *         decode to.
     */
    @Override
    public int maxOutputSize(int len) {
      return len * 3 / 4 + 10;
    }

    /**
     * Decode another block of input data.
     * 
     * @return true if the state machine is still healthy. false if bad base-64
     *         data has been detected in the input stream.
     */
    @Override
    public boolean process(byte[] input, int offset, int len, boolean finish) {
      if (this.state == 6)
        return false;

      int p = offset;
      len += offset;

      // Using local variables makes the decoder about 12%
      // faster than if we manipulate the member variables in
      // the loop. (Even alphabet makes a measurable
      // difference, which is somewhat surprising to me since
      // the member variable is final.)
      int state = this.state;
      int value = this.value;
      int op = 0;
      final byte[] output = this.output;
      final int[] alphabet = this.alphabet;

      while (p < len) {
        // Try the fast path: we're starting a new tuple and the
        // next four bytes of the input stream are all data
        // bytes. This corresponds to going through states
        // 0-1-2-3-0. We expect to use this method for most of
        // the data.
        //
        // If any of the next four bytes of input are non-data
        // (whitespace, etc.), value will end up negative. (All
        // the non-data values in decode are small negative
        // numbers, so shifting any of them up and or'ing them
        // together will result in a value with its top bit set.)
        //
        // You can remove this whole block and the output should
        // be the same, just slower.
        if (state == 0) {
          while (p + 4 <= len
              && (value = ((alphabet[input[p] & 0xff] << 18)
                  | (alphabet[input[p + 1] & 0xff] << 12)
                  | (alphabet[input[p + 2] & 0xff] << 6) | (alphabet[input[p + 3] & 0xff]))) >= 0) {
            output[op + 2] = (byte) value;
            output[op + 1] = (byte) (value >> 8);
            output[op] = (byte) (value >> 16);
            op += 3;
            p += 4;
          }
          if (p >= len)
            break;
        }

        // The fast path isn't available -- either we've read a
        // partial tuple, or the next four input bytes aren't all
        // data, or whatever. Fall back to the slower state
        // machine implementation.

        int d = alphabet[input[p++] & 0xff];

        switch (state) {
        case 0:
          if (d >= 0) {
            value = d;
            ++state;
          } else if (d != SKIP) {
            this.state = 6;
            return false;
          }
          break;

        case 1:
          if (d >= 0) {
            value = (value << 6) | d;
            ++state;
          } else if (d != SKIP) {
            this.state = 6;
            return false;
          }
          break;

        case 2:
          if (d >= 0) {
            value = (value << 6) | d;
            ++state;
          } else if (d == EQUALS) {
            // Emit the last (partial) output tuple;
            // expect exactly one more padding character.
            output[op++] = (byte) (value >> 4);
            state = 4;
          } else if (d != SKIP) {
            this.state = 6;
            return false;
          }
          break;

        case 3:
          if (d >= 0) {
            // Emit the output triple and return to state 0.
            value = (value << 6) | d;
            output[op + 2] = (byte) value;
            output[op + 1] = (byte) (value >> 8);
            output[op] = (byte) (value >> 16);
            op += 3;
            state = 0;
          } else if (d == EQUALS) {
            // Emit the last (partial) output tuple;
            // expect no further data or padding characters.
            output[op + 1] = (byte) (value >> 2);
            output[op] = (byte) (value >> 10);
            op += 2;
            state = 5;
          } else if (d != SKIP) {
            this.state = 6;
            return false;
          }
          break;

        case 4:
          if (d == EQUALS) {
            ++state;
          } else if (d != SKIP) {
            this.state = 6;
            return false;
          }
          break;

        case 5:
          if (d != SKIP) {
            this.state = 6;
            return false;
          }
          break;
        }
      }

      if (!finish) {
        // We're out of input, but a future call could provide
        // more.
        this.state = state;
        this.value = value;
        this.op = op;
        return true;
      }

      // Done reading input. Now figure out where we are left in
      // the state machine and finish up.

      switch (state) {
      case 0:
        // Output length is a multiple of three. Fine.
        break;
      case 1:
        // Read one extra input byte, which isn't enough to
        // make another output byte. Illegal.
        this.state = 6;
        return false;
      case 2:
        // Read two extra input bytes, enough to emit 1 more
        // output byte. Fine.
        output[op++] = (byte) (value >> 4);
        break;
      case 3:
        // Read three extra input bytes, enough to emit 2 more
        // output bytes. Fine.
        output[op++] = (byte) (value >> 10);
        output[op++] = (byte) (value >> 2);
        break;
      case 4:
        // Read one padding '=' when we expected 2. Illegal.
        this.state = 6;
        return false;
      case 5:
        // Read all the padding '='s we expected and no more.
        // Fine.
        break;
      }

      this.state = state;
      this.op = op;
      return true;
    }
  }

  // --------------------------------------------------------
  // encoding
  // --------------------------------------------------------

  /**
   * Base64-encode the given data and return a newly allocated String with the
   * result.
   * 
   * @param input
   *          the data to encode
   * @param flags
   *          controls certain features of the encoded output. Passing
   *          {@code DEFAULT} results in output that adheres to RFC 2045.
   */
  public static String encodeToString(byte[] input, int flags) {
    try {
      return new String(encode(input, flags), "US-ASCII");
    } catch (UnsupportedEncodingException e) {
      // US-ASCII is guaranteed to be available.
      throw new AssertionError(e);
    }
  }

  /**
   * Base64-encode the given data and return a newly allocated String with the
   * result.
   * 
   * @param input
   *          the data to encode
   * @param offset
   *          the position within the input array at which to start
   * @param len
   *          the number of bytes of input to encode
   * @param flags
   *          controls certain features of the encoded output. Passing
   *          {@code DEFAULT} results in output that adheres to RFC 2045.
   */
  public static String encodeToString(byte[] input, int offset, int len,
      int flags) {
    try {
      return new String(encode(input, offset, len, flags), "US-ASCII");
    } catch (UnsupportedEncodingException e) {
      // US-ASCII is guaranteed to be available.
      throw new AssertionError(e);
    }
  }

  /**
   * Base64-encode the given data and return a newly allocated byte[] with the
   * result.
   * 
   * @param input
   *          the data to encode
   * @param flags
   *          controls certain features of the encoded output. Passing
   *          {@code DEFAULT} results in output that adheres to RFC 2045.
   */
  public static byte[] encode(byte[] input, int flags) {
    return encode(input, 0, input.length, flags);
  }

  /**
   * Base64-encode the given data and return a newly allocated byte[] with the
   * result.
   * 
   * @param input
   *          the data to encode
   * @param offset
   *          the position within the input array at which to start
   * @param len
   *          the number of bytes of input to encode
   * @param flags
   *          controls certain features of the encoded output. Passing
   *          {@code DEFAULT} results in output that adheres to RFC 2045.
   */
  public static byte[] encode(byte[] input, int offset, int len, int flags) {
    Encoder encoder = new Encoder(flags, null);

    // Compute the exact length of the array we will produce.
    int output_len = len / 3 * 4;

    // Account for the tail of the data and the padding bytes, if any.
    if (encoder.do_padding) {
      if (len % 3 > 0) {
        output_len += 4;
      }
    } else {
      switch (len % 3) {
      case 0:
        break;
      case 1:
        output_len += 2;
        break;
      case 2:
        output_len += 3;
        break;
      }
    }

    // Account for the newlines, if any.
    if (encoder.do_newline && len > 0) {
      output_len += (((len - 1) / (3 * Encoder.LINE_GROUPS)) + 1)
          * (encoder.do_cr ? 2 : 1);
    }

    encoder.output = new byte[output_len];
    encoder.process(input, offset, len, true);

    assert encoder.op == output_len;

    return encoder.output;
  }

  /* package */static class Encoder extends Coder {
    /**
     * Emit a new line every this many output tuples. Corresponds to a
     * 76-character line length (the maximum allowable according to <a
     * href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).
     */
    public static final int LINE_GROUPS = 19;

    /**
     * Lookup table for turning Base64 alphabet positions (6 bits) into output
     * bytes.
     */
    private static final byte ENCODE[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G',
        'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
        'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
        'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
        'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+',
        '/', };

    /**
     * Lookup table for turning Base64 alphabet positions (6 bits) into output
     * bytes.
     */
    private static final byte ENCODE_WEBSAFE[] = { 'A', 'B', 'C', 'D', 'E',
        'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
        'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
        'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',
        'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8',
        '9', '-', '_', };

    final private byte[] tail;
    /* package */int tailLen;
    private int count;

    final public boolean do_padding;
    final public boolean do_newline;
    final public boolean do_cr;
    final private byte[] alphabet;

    public Encoder(int flags, byte[] output) {
      this.output = output;

      do_padding = (flags & NO_PADDING) == 0;
      do_newline = (flags & NO_WRAP) == 0;
      do_cr = (flags & CRLF) != 0;
      alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;

      tail = new byte[2];
      tailLen = 0;

      count = do_newline ? LINE_GROUPS : -1;
    }

    /**
     * @return an overestimate for the number of bytes {@code len} bytes could
     *         encode to.
     */
    @Override
    public int maxOutputSize(int len) {
      return len * 8 / 5 + 10;
    }

    @Override
    public boolean process(byte[] input, int offset, int len, boolean finish) {
      // Using local variables makes the encoder about 9% faster.
      final byte[] alphabet = this.alphabet;
      final byte[] output = this.output;
      int op = 0;
      int count = this.count;

      int p = offset;
      len += offset;
      int v = -1;

      // First we need to concatenate the tail of the previous call
      // with any input bytes available now and see if we can empty
      // the tail.

      switch (tailLen) {
      case 0:
        // There was no tail.
        break;

      case 1:
        if (p + 2 <= len) {
          // A 1-byte tail with at least 2 bytes of
          // input available now.
          v = ((tail[0] & 0xff) << 16) | ((input[p++] & 0xff) << 8)
              | (input[p++] & 0xff);
          tailLen = 0;
        }
        ;
        break;

      case 2:
        if (p + 1 <= len) {
          // A 2-byte tail with at least 1 byte of input.
          v = ((tail[0] & 0xff) << 16) | ((tail[1] & 0xff) << 8)
              | (input[p++] & 0xff);
          tailLen = 0;
        }
        break;
      }

      if (v != -1) {
        output[op++] = alphabet[(v >> 18) & 0x3f];
        output[op++] = alphabet[(v >> 12) & 0x3f];
        output[op++] = alphabet[(v >> 6) & 0x3f];
        output[op++] = alphabet[v & 0x3f];
        if (--count == 0) {
          if (do_cr)
            output[op++] = '\r';
          output[op++] = '\n';
          count = LINE_GROUPS;
        }
      }

      // At this point either there is no tail, or there are fewer
      // than 3 bytes of input available.

      // The main loop, turning 3 input bytes into 4 output bytes on
      // each iteration.
      while (p + 3 <= len) {
        v = ((input[p] & 0xff) << 16) | ((input[p + 1] & 0xff) << 8)
            | (input[p + 2] & 0xff);
        output[op] = alphabet[(v >> 18) & 0x3f];
        output[op + 1] = alphabet[(v >> 12) & 0x3f];
        output[op + 2] = alphabet[(v >> 6) & 0x3f];
        output[op + 3] = alphabet[v & 0x3f];
        p += 3;
        op += 4;
        if (--count == 0) {
          if (do_cr)
            output[op++] = '\r';
          output[op++] = '\n';
          count = LINE_GROUPS;
        }
      }

      if (finish) {
        // Finish up the tail of the input. Note that we need to
        // consume any bytes in tail before any bytes
        // remaining in input; there should be at most two bytes
        // total.

        if (p - tailLen == len - 1) {
          int t = 0;
          v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;
          tailLen -= t;
          output[op++] = alphabet[(v >> 6) & 0x3f];
          output[op++] = alphabet[v & 0x3f];
          if (do_padding) {
            output[op++] = '=';
            output[op++] = '=';
          }
          if (do_newline) {
            if (do_cr)
              output[op++] = '\r';
            output[op++] = '\n';
          }
        } else if (p - tailLen == len - 2) {
          int t = 0;
          v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10)
              | (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);
          tailLen -= t;
          output[op++] = alphabet[(v >> 12) & 0x3f];
          output[op++] = alphabet[(v >> 6) & 0x3f];
          output[op++] = alphabet[v & 0x3f];
          if (do_padding) {
            output[op++] = '=';
          }
          if (do_newline) {
            if (do_cr)
              output[op++] = '\r';
            output[op++] = '\n';
          }
        } else if (do_newline && op > 0 && count != LINE_GROUPS) {
          if (do_cr)
            output[op++] = '\r';
          output[op++] = '\n';
        }

        assert tailLen == 0;
        assert p == len;
      } else {
        // Save the leftovers in tail to be consumed on the next
        // call to encodeInternal.

        if (p == len - 1) {
          tail[tailLen++] = input[p];
        } else if (p == len - 2) {
          tail[tailLen++] = input[p];
          tail[tailLen++] = input[p + 1];
        }
      }

      this.op = op;
      this.count = count;

      return true;
    }
  }

  private Base64() {
  } // don't instantiate
}




Java Source Code List

org.danbrough.mega.APIError.java
org.danbrough.mega.AccountDetails.java
org.danbrough.mega.AndroidClient.java
org.danbrough.mega.Base64.java
org.danbrough.mega.Callback.java
org.danbrough.mega.CommandFetchNodes.java
org.danbrough.mega.CommandGetFile.java
org.danbrough.mega.CommandGetUserQuota.java
org.danbrough.mega.CommandLogin.java
org.danbrough.mega.CommandPutFile.java
org.danbrough.mega.Command.java
org.danbrough.mega.ExecutorThreadPool.java
org.danbrough.mega.GSONUtil.java
org.danbrough.mega.MegaActivity.java
org.danbrough.mega.MegaApplication.java
org.danbrough.mega.MegaClient.java
org.danbrough.mega.MegaCrypto.java
org.danbrough.mega.MegaFragmentActivity.java
org.danbrough.mega.MegaListener.java
org.danbrough.mega.Node.java
org.danbrough.mega.ThreadPool.java
org.danbrough.mega.User.java
org.danbrough.mega.ui.FilesAdapter.java
org.danbrough.mega.ui.FilesFragment.java
org.danbrough.megatest.MainActivity.java