Android Open Source - android-opencv-template Core






From Project

Back to project page android-opencv-template.

License

The source code is released under:

MIT License

If you think the Android project android-opencv-template listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.

Java Source Code

//
// This file is auto-generated. Please don't modify it!
///*from  w ww. java  2s  . c  om*/
package org.opencv.core;

import java.lang.String;
import java.util.ArrayList;
import java.util.List;
import org.opencv.utils.Converters;

public class Core {

    // these constants are wrapped inside functions to prevent inlining
    private static String getVersion() { return "2.4.10.0"; }
    private static String getNativeLibraryName() { return "opencv_java2410"; }
    private static int getVersionEpoch() { return 2; }
    private static int getVersionMajor() { return 4; }
    private static int getVersionMinor() { return 10; }
    private static int getVersionRevision() { return 0; }

    public static final String VERSION = getVersion();
    public static final String NATIVE_LIBRARY_NAME = getNativeLibraryName();
    public static final int VERSION_EPOCH = getVersionEpoch();
    public static final int VERSION_MAJOR = getVersionMajor();
    public static final int VERSION_MINOR = getVersionMinor();
    public static final int VERSION_REVISION = getVersionRevision();

    private static final int
            CV_8U = 0,
            CV_8S = 1,
            CV_16U = 2,
            CV_16S = 3,
            CV_32S = 4,
            CV_32F = 5,
            CV_64F = 6,
            CV_USRTYPE1 = 7;


    public static final int
            SVD_MODIFY_A = 1,
            SVD_NO_UV = 2,
            SVD_FULL_UV = 4,
            FILLED = -1,
            LINE_AA = 16,
            LINE_8 = 8,
            LINE_4 = 4,
            REDUCE_SUM = 0,
            REDUCE_AVG = 1,
            REDUCE_MAX = 2,
            REDUCE_MIN = 3,
            DECOMP_LU = 0,
            DECOMP_SVD = 1,
            DECOMP_EIG = 2,
            DECOMP_CHOLESKY = 3,
            DECOMP_QR = 4,
            DECOMP_NORMAL = 16,
            NORM_INF = 1,
            NORM_L1 = 2,
            NORM_L2 = 4,
            NORM_L2SQR = 5,
            NORM_HAMMING = 6,
            NORM_HAMMING2 = 7,
            NORM_TYPE_MASK = 7,
            NORM_RELATIVE = 8,
            NORM_MINMAX = 32,
            CMP_EQ = 0,
            CMP_GT = 1,
            CMP_GE = 2,
            CMP_LT = 3,
            CMP_LE = 4,
            CMP_NE = 5,
            GEMM_1_T = 1,
            GEMM_2_T = 2,
            GEMM_3_T = 4,
            DFT_INVERSE = 1,
            DFT_SCALE = 2,
            DFT_ROWS = 4,
            DFT_COMPLEX_OUTPUT = 16,
            DFT_REAL_OUTPUT = 32,
            DCT_INVERSE = DFT_INVERSE,
            DCT_ROWS = DFT_ROWS,
            DEPTH_MASK_8U = 1 << CV_8U,
            DEPTH_MASK_8S = 1 << CV_8S,
            DEPTH_MASK_16U = 1 << CV_16U,
            DEPTH_MASK_16S = 1 << CV_16S,
            DEPTH_MASK_32S = 1 << CV_32S,
            DEPTH_MASK_32F = 1 << CV_32F,
            DEPTH_MASK_64F = 1 << CV_64F,
            DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
            DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
            DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F,
            MAGIC_MASK = 0xFFFF0000,
            TYPE_MASK = 0x00000FFF,
            DEPTH_MASK = 7,
            SORT_EVERY_ROW = 0,
            SORT_EVERY_COLUMN = 1,
            SORT_ASCENDING = 0,
            SORT_DESCENDING = 16,
            COVAR_SCRAMBLED = 0,
            COVAR_NORMAL = 1,
            COVAR_USE_AVG = 2,
            COVAR_SCALE = 4,
            COVAR_ROWS = 8,
            COVAR_COLS = 16,
            KMEANS_RANDOM_CENTERS = 0,
            KMEANS_PP_CENTERS = 2,
            KMEANS_USE_INITIAL_LABELS = 1,
            FONT_HERSHEY_SIMPLEX = 0,
            FONT_HERSHEY_PLAIN = 1,
            FONT_HERSHEY_DUPLEX = 2,
            FONT_HERSHEY_COMPLEX = 3,
            FONT_HERSHEY_TRIPLEX = 4,
            FONT_HERSHEY_COMPLEX_SMALL = 5,
            FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
            FONT_HERSHEY_SCRIPT_COMPLEX = 7,
            FONT_ITALIC = 16;


    //
    // C++:  void LUT(Mat src, Mat lut, Mat& dst, int interpolation = 0)
    //

/**
 * <p>Performs a look-up table transform of an array.</p>
 *
 * <p>The function <code>LUT</code> fills the output array with values from the
 * look-up table. Indices of the entries are taken from the input array. That
 * is, the function processes each element of <code>src</code> as follows:</p>
 *
 * <p><em>dst(I) <- lut(src(I) + d)</em></p>
 *
 * <p>where</p>
 *
 * <p><em>d = 0 if src has depth CV_8U; 128 if src has depth CV_8S</em></p>
 *
 * @param src input array of 8-bit elements.
 * @param lut look-up table of 256 elements; in case of multi-channel input
 * array, the table should either have a single channel (in this case the same
 * table is used for all channels) or the same number of channels as in the
 * input array.
 * @param dst output array of the same size and number of channels as
 * <code>src</code>, and the same depth as <code>lut</code>.
 * @param interpolation a interpolation
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#lut">org.opencv.core.Core.LUT</a>
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#convertScaleAbs
 */
    public static void LUT(Mat src, Mat lut, Mat dst, int interpolation)
    {

        LUT_0(src.nativeObj, lut.nativeObj, dst.nativeObj, interpolation);

        return;
    }

/**
 * <p>Performs a look-up table transform of an array.</p>
 *
 * <p>The function <code>LUT</code> fills the output array with values from the
 * look-up table. Indices of the entries are taken from the input array. That
 * is, the function processes each element of <code>src</code> as follows:</p>
 *
 * <p><em>dst(I) <- lut(src(I) + d)</em></p>
 *
 * <p>where</p>
 *
 * <p><em>d = 0 if src has depth CV_8U; 128 if src has depth CV_8S</em></p>
 *
 * @param src input array of 8-bit elements.
 * @param lut look-up table of 256 elements; in case of multi-channel input
 * array, the table should either have a single channel (in this case the same
 * table is used for all channels) or the same number of channels as in the
 * input array.
 * @param dst output array of the same size and number of channels as
 * <code>src</code>, and the same depth as <code>lut</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#lut">org.opencv.core.Core.LUT</a>
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#convertScaleAbs
 */
    public static void LUT(Mat src, Mat lut, Mat dst)
    {

        LUT_1(src.nativeObj, lut.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  double Mahalanobis(Mat v1, Mat v2, Mat icovar)
    //

/**
 * <p>Calculates the Mahalanobis distance between two vectors.</p>
 *
 * <p>The function <code>Mahalanobis</code> calculates and returns the weighted
 * distance between two vectors:</p>
 *
 * <p><em>d(vec1, vec2)= sqrt(sum_(i,j)(icovar(i,j)*(vec1(I)-vec2(I))*(vec1(j)-vec2(j))))</em></p>
 *
 * <p>The covariance matrix may be calculated using the "calcCovarMatrix" function
 * and then inverted using the "invert" function (preferably using the
 * <code>DECOMP_SVD</code> method, as the most accurate).</p>
 *
 * @param v1 a v1
 * @param v2 a v2
 * @param icovar inverse covariance matrix.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#mahalanobis">org.opencv.core.Core.Mahalanobis</a>
 */
    public static double Mahalanobis(Mat v1, Mat v2, Mat icovar)
    {

        double retVal = Mahalanobis_0(v1.nativeObj, v2.nativeObj, icovar.nativeObj);

        return retVal;
    }


    //
    // C++:  void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat& result)
    //

    public static void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat result)
    {

        PCABackProject_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, result.nativeObj);

        return;
    }


    //
    // C++:  void PCACompute(Mat data, Mat& mean, Mat& eigenvectors, int maxComponents = 0)
    //

    public static void PCACompute(Mat data, Mat mean, Mat eigenvectors, int maxComponents)
    {

        PCACompute_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, maxComponents);

        return;
    }

    public static void PCACompute(Mat data, Mat mean, Mat eigenvectors)
    {

        PCACompute_1(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj);

        return;
    }


    //
    // C++:  void PCAComputeVar(Mat data, Mat& mean, Mat& eigenvectors, double retainedVariance)
    //

    public static void PCAComputeVar(Mat data, Mat mean, Mat eigenvectors, double retainedVariance)
    {

        PCAComputeVar_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, retainedVariance);

        return;
    }


    //
    // C++:  void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat& result)
    //

    public static void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat result)
    {

        PCAProject_0(data.nativeObj, mean.nativeObj, eigenvectors.nativeObj, result.nativeObj);

        return;
    }


    //
    // C++:  void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat& dst)
    //

    public static void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat dst)
    {

        SVBackSubst_0(w.nativeObj, u.nativeObj, vt.nativeObj, rhs.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void SVDecomp(Mat src, Mat& w, Mat& u, Mat& vt, int flags = 0)
    //

    public static void SVDecomp(Mat src, Mat w, Mat u, Mat vt, int flags)
    {

        SVDecomp_0(src.nativeObj, w.nativeObj, u.nativeObj, vt.nativeObj, flags);

        return;
    }

    public static void SVDecomp(Mat src, Mat w, Mat u, Mat vt)
    {

        SVDecomp_1(src.nativeObj, w.nativeObj, u.nativeObj, vt.nativeObj);

        return;
    }


    //
    // C++:  void absdiff(Mat src1, Mat src2, Mat& dst)
    //

/**
 * <p>Calculates the per-element absolute difference between two arrays or between
 * an array and a scalar.</p>
 *
 * <p>The function <code>absdiff</code> calculates:</p>
 * <ul>
 *   <li> Absolute difference between two arrays when they have the same size
 * and type:
 * </ul>
 *
 * <p><em>dst(I) = saturate(| src1(I) - src2(I)|)</em></p>
 *
 * <ul>
 *   <li> Absolute difference between an array and a scalar when the second
 * array is constructed from <code>Scalar</code> or has as many elements as the
 * number of channels in <code>src1</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(| src1(I) - src2|)</em></p>
 *
 * <ul>
 *   <li> Absolute difference between a scalar and an array when the first array
 * is constructed from <code>Scalar</code> or has as many elements as the number
 * of channels in <code>src2</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(| src1 - src2(I)|)</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the arrays have the depth
 * <code>CV_32S</code>. You may even get a negative value in the case of
 * overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as input arrays.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#absdiff">org.opencv.core.Core.absdiff</a>
 */
    public static void absdiff(Mat src1, Mat src2, Mat dst)
    {

        absdiff_0(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void absdiff(Mat src1, Scalar src2, Mat& dst)
    //

/**
 * <p>Calculates the per-element absolute difference between two arrays or between
 * an array and a scalar.</p>
 *
 * <p>The function <code>absdiff</code> calculates:</p>
 * <ul>
 *   <li> Absolute difference between two arrays when they have the same size
 * and type:
 * </ul>
 *
 * <p><em>dst(I) = saturate(| src1(I) - src2(I)|)</em></p>
 *
 * <ul>
 *   <li> Absolute difference between an array and a scalar when the second
 * array is constructed from <code>Scalar</code> or has as many elements as the
 * number of channels in <code>src1</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(| src1(I) - src2|)</em></p>
 *
 * <ul>
 *   <li> Absolute difference between a scalar and an array when the first array
 * is constructed from <code>Scalar</code> or has as many elements as the number
 * of channels in <code>src2</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(| src1 - src2(I)|)</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the arrays have the depth
 * <code>CV_32S</code>. You may even get a negative value in the case of
 * overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as input arrays.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#absdiff">org.opencv.core.Core.absdiff</a>
 */
    public static void absdiff(Mat src1, Scalar src2, Mat dst)
    {

        absdiff_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  void add(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    //

/**
 * <p>Calculates the per-element sum of two arrays or an array and a scalar.</p>
 *
 * <p>The function <code>add</code> calculates:</p>
 * <ul>
 *   <li> Sum of two arrays when both input arrays have the same size and the
 * same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of an array and a scalar when <code>src2</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of a scalar and an array when <code>src1</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 + src2(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 + src2;</p>
 *
 * <p>dst += src1; // equivalent to add(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
 * array and store the sum as a 32-bit floating-point array. Depth of the output
 * array is determined by the <code>dtype</code> parameter. In the second and
 * third cases above, as well as in the first case, when <code>src1.depth() ==
 * src2.depth()</code>, <code>dtype</code> can be set to the default
 * <code>-1</code>. In this case, the output array will have the same depth as
 * the input array, be it <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and number of channels as the
 * input array(s); the depth is defined by <code>dtype</code> or
 * <code>src1</code>/<code>src2</code>.
 * @param mask optional operation mask - 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 * @param dtype optional depth of the output array (see the discussion below).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#add">org.opencv.core.Core.add</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 */
    public static void add(Mat src1, Mat src2, Mat dst, Mat mask, int dtype)
    {

        add_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype);

        return;
    }

/**
 * <p>Calculates the per-element sum of two arrays or an array and a scalar.</p>
 *
 * <p>The function <code>add</code> calculates:</p>
 * <ul>
 *   <li> Sum of two arrays when both input arrays have the same size and the
 * same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of an array and a scalar when <code>src2</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of a scalar and an array when <code>src1</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 + src2(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 + src2;</p>
 *
 * <p>dst += src1; // equivalent to add(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
 * array and store the sum as a 32-bit floating-point array. Depth of the output
 * array is determined by the <code>dtype</code> parameter. In the second and
 * third cases above, as well as in the first case, when <code>src1.depth() ==
 * src2.depth()</code>, <code>dtype</code> can be set to the default
 * <code>-1</code>. In this case, the output array will have the same depth as
 * the input array, be it <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and number of channels as the
 * input array(s); the depth is defined by <code>dtype</code> or
 * <code>src1</code>/<code>src2</code>.
 * @param mask optional operation mask - 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#add">org.opencv.core.Core.add</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 */
    public static void add(Mat src1, Mat src2, Mat dst, Mat mask)
    {

        add_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element sum of two arrays or an array and a scalar.</p>
 *
 * <p>The function <code>add</code> calculates:</p>
 * <ul>
 *   <li> Sum of two arrays when both input arrays have the same size and the
 * same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of an array and a scalar when <code>src2</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of a scalar and an array when <code>src1</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 + src2(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 + src2;</p>
 *
 * <p>dst += src1; // equivalent to add(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
 * array and store the sum as a 32-bit floating-point array. Depth of the output
 * array is determined by the <code>dtype</code> parameter. In the second and
 * third cases above, as well as in the first case, when <code>src1.depth() ==
 * src2.depth()</code>, <code>dtype</code> can be set to the default
 * <code>-1</code>. In this case, the output array will have the same depth as
 * the input array, be it <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and number of channels as the
 * input array(s); the depth is defined by <code>dtype</code> or
 * <code>src1</code>/<code>src2</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#add">org.opencv.core.Core.add</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 */
    public static void add(Mat src1, Mat src2, Mat dst)
    {

        add_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void add(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    //

/**
 * <p>Calculates the per-element sum of two arrays or an array and a scalar.</p>
 *
 * <p>The function <code>add</code> calculates:</p>
 * <ul>
 *   <li> Sum of two arrays when both input arrays have the same size and the
 * same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of an array and a scalar when <code>src2</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of a scalar and an array when <code>src1</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 + src2(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 + src2;</p>
 *
 * <p>dst += src1; // equivalent to add(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
 * array and store the sum as a 32-bit floating-point array. Depth of the output
 * array is determined by the <code>dtype</code> parameter. In the second and
 * third cases above, as well as in the first case, when <code>src1.depth() ==
 * src2.depth()</code>, <code>dtype</code> can be set to the default
 * <code>-1</code>. In this case, the output array will have the same depth as
 * the input array, be it <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and number of channels as the
 * input array(s); the depth is defined by <code>dtype</code> or
 * <code>src1</code>/<code>src2</code>.
 * @param mask optional operation mask - 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 * @param dtype optional depth of the output array (see the discussion below).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#add">org.opencv.core.Core.add</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 */
    public static void add(Mat src1, Scalar src2, Mat dst, Mat mask, int dtype)
    {

        add_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj, dtype);

        return;
    }

/**
 * <p>Calculates the per-element sum of two arrays or an array and a scalar.</p>
 *
 * <p>The function <code>add</code> calculates:</p>
 * <ul>
 *   <li> Sum of two arrays when both input arrays have the same size and the
 * same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of an array and a scalar when <code>src2</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of a scalar and an array when <code>src1</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 + src2(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 + src2;</p>
 *
 * <p>dst += src1; // equivalent to add(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
 * array and store the sum as a 32-bit floating-point array. Depth of the output
 * array is determined by the <code>dtype</code> parameter. In the second and
 * third cases above, as well as in the first case, when <code>src1.depth() ==
 * src2.depth()</code>, <code>dtype</code> can be set to the default
 * <code>-1</code>. In this case, the output array will have the same depth as
 * the input array, be it <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and number of channels as the
 * input array(s); the depth is defined by <code>dtype</code> or
 * <code>src1</code>/<code>src2</code>.
 * @param mask optional operation mask - 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#add">org.opencv.core.Core.add</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 */
    public static void add(Mat src1, Scalar src2, Mat dst, Mat mask)
    {

        add_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element sum of two arrays or an array and a scalar.</p>
 *
 * <p>The function <code>add</code> calculates:</p>
 * <ul>
 *   <li> Sum of two arrays when both input arrays have the same size and the
 * same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of an array and a scalar when <code>src2</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) + src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Sum of a scalar and an array when <code>src1</code> is constructed
 * from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 + src2(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 + src2;</p>
 *
 * <p>dst += src1; // equivalent to add(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can add a 16-bit unsigned array to a 8-bit signed
 * array and store the sum as a 32-bit floating-point array. Depth of the output
 * array is determined by the <code>dtype</code> parameter. In the second and
 * third cases above, as well as in the first case, when <code>src1.depth() ==
 * src2.depth()</code>, <code>dtype</code> can be set to the default
 * <code>-1</code>. In this case, the output array will have the same depth as
 * the input array, be it <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and number of channels as the
 * input array(s); the depth is defined by <code>dtype</code> or
 * <code>src1</code>/<code>src2</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#add">org.opencv.core.Core.add</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 */
    public static void add(Mat src1, Scalar src2, Mat dst)
    {

        add_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat& dst, int dtype = -1)
    //

/**
 * <p>Calculates the weighted sum of two arrays.</p>
 *
 * <p>The function <code>addWeighted</code> calculates the weighted sum of two
 * arrays as follows:</p>
 *
 * <p><em>dst(I)= saturate(src1(I)* alpha + src2(I)* beta + gamma)</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The function can be replaced with a matrix expression: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1*alpha + src2*beta + gamma;</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.
 * </code></p>
 *
 * @param src1 first input array.
 * @param alpha weight of the first array elements.
 * @param src2 second input array of the same size and channel number as
 * <code>src1</code>.
 * @param beta weight of the second array elements.
 * @param gamma scalar added to each sum.
 * @param dst output array that has the same size and number of channels as the
 * input arrays.
 * @param dtype optional depth of the output array; when both input arrays have
 * the same depth, <code>dtype</code> can be set to <code>-1</code>, which will
 * be equivalent to <code>src1.depth()</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#addweighted">org.opencv.core.Core.addWeighted</a>
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.core.Mat#convertTo
 */
    public static void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst, int dtype)
    {

        addWeighted_0(src1.nativeObj, alpha, src2.nativeObj, beta, gamma, dst.nativeObj, dtype);

        return;
    }

/**
 * <p>Calculates the weighted sum of two arrays.</p>
 *
 * <p>The function <code>addWeighted</code> calculates the weighted sum of two
 * arrays as follows:</p>
 *
 * <p><em>dst(I)= saturate(src1(I)* alpha + src2(I)* beta + gamma)</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The function can be replaced with a matrix expression: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1*alpha + src2*beta + gamma;</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.
 * </code></p>
 *
 * @param src1 first input array.
 * @param alpha weight of the first array elements.
 * @param src2 second input array of the same size and channel number as
 * <code>src1</code>.
 * @param beta weight of the second array elements.
 * @param gamma scalar added to each sum.
 * @param dst output array that has the same size and number of channels as the
 * input arrays.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#addweighted">org.opencv.core.Core.addWeighted</a>
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.core.Mat#convertTo
 */
    public static void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst)
    {

        addWeighted_1(src1.nativeObj, alpha, src2.nativeObj, beta, gamma, dst.nativeObj);

        return;
    }


    //
    // C++:  void arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1)
    //

/**
 * <p>Draws a arrow segment pointing from the first point to the second one.</p>
 *
 * <p>The function <code>arrowedLine</code> draws an arrow between <code>pt1</code>
 * and <code>pt2</code> points in the image. See also "line".</p>
 *
 * @param img Image.
 * @param pt1 The point the arrow starts from.
 * @param pt2 The point the arrow points to.
 * @param color Line color.
 * @param thickness Line thickness.
 * @param line_type a line_type
 * @param shift Number of fractional bits in the point coordinates.
 * @param tipLength The length of the arrow tip in relation to the arrow length
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#arrowedline">org.opencv.core.Core.arrowedLine</a>
 */
    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift, double tipLength)
    {

        arrowedLine_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift, tipLength);

        return;
    }

/**
 * <p>Draws a arrow segment pointing from the first point to the second one.</p>
 *
 * <p>The function <code>arrowedLine</code> draws an arrow between <code>pt1</code>
 * and <code>pt2</code> points in the image. See also "line".</p>
 *
 * @param img Image.
 * @param pt1 The point the arrow starts from.
 * @param pt2 The point the arrow points to.
 * @param color Line color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#arrowedline">org.opencv.core.Core.arrowedLine</a>
 */
    public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color)
    {

        arrowedLine_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void batchDistance(Mat src1, Mat src2, Mat& dist, int dtype, Mat& nidx, int normType = NORM_L2, int K = 0, Mat mask = Mat(), int update = 0, bool crosscheck = false)
    //

    public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask, int update, boolean crosscheck)
    {

        batchDistance_0(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K, mask.nativeObj, update, crosscheck);

        return;
    }

    public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K)
    {

        batchDistance_1(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj, normType, K);

        return;
    }

    public static void batchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx)
    {

        batchDistance_2(src1.nativeObj, src2.nativeObj, dist.nativeObj, dtype, nidx.nativeObj);

        return;
    }


    //
    // C++:  void bitwise_and(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
    //

/**
 * <p>Calculates the per-element bit-wise conjunction of two arrays or an array and
 * a scalar.</p>
 *
 * <p>The function calculates the per-element bit-wise logical conjunction for:</p>
 * <ul>
 *   <li> Two arrays when <code>src1</code> and <code>src2</code> have the same
 * size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) / src2(I) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> An array and a scalar when <code>src2</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) / src2 if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> A scalar and an array when <code>src1</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1 / src2(I) if mask(I) != 0</em></p>
 *
 * <p>In case of floating-point arrays, their machine-specific bit representations
 * (usually IEEE754-compliant) are used for the operation. In case of
 * multi-channel arrays, each channel is processed independently. In the second
 * and third cases above, the scalar is first converted to the array type.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as the input arrays.
 * @param mask optional operation mask, 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-and">org.opencv.core.Core.bitwise_and</a>
 */
    public static void bitwise_and(Mat src1, Mat src2, Mat dst, Mat mask)
    {

        bitwise_and_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element bit-wise conjunction of two arrays or an array and
 * a scalar.</p>
 *
 * <p>The function calculates the per-element bit-wise logical conjunction for:</p>
 * <ul>
 *   <li> Two arrays when <code>src1</code> and <code>src2</code> have the same
 * size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) / src2(I) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> An array and a scalar when <code>src2</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) / src2 if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> A scalar and an array when <code>src1</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1 / src2(I) if mask(I) != 0</em></p>
 *
 * <p>In case of floating-point arrays, their machine-specific bit representations
 * (usually IEEE754-compliant) are used for the operation. In case of
 * multi-channel arrays, each channel is processed independently. In the second
 * and third cases above, the scalar is first converted to the array type.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as the input arrays.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-and">org.opencv.core.Core.bitwise_and</a>
 */
    public static void bitwise_and(Mat src1, Mat src2, Mat dst)
    {

        bitwise_and_1(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void bitwise_not(Mat src, Mat& dst, Mat mask = Mat())
    //

/**
 * <p>Inverts every bit of an array.</p>
 *
 * <p>The function calculates per-element bit-wise inversion of the input array:</p>
 *
 * <p><em>dst(I) = !src(I)</em></p>
 *
 * <p>In case of a floating-point input array, its machine-specific bit
 * representation (usually IEEE754-compliant) is used for the operation. In case
 * of multi-channel arrays, each channel is processed independently.</p>
 *
 * @param src input array.
 * @param dst output array that has the same size and type as the input array.
 * @param mask optional operation mask, 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-not">org.opencv.core.Core.bitwise_not</a>
 */
    public static void bitwise_not(Mat src, Mat dst, Mat mask)
    {

        bitwise_not_0(src.nativeObj, dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Inverts every bit of an array.</p>
 *
 * <p>The function calculates per-element bit-wise inversion of the input array:</p>
 *
 * <p><em>dst(I) = !src(I)</em></p>
 *
 * <p>In case of a floating-point input array, its machine-specific bit
 * representation (usually IEEE754-compliant) is used for the operation. In case
 * of multi-channel arrays, each channel is processed independently.</p>
 *
 * @param src input array.
 * @param dst output array that has the same size and type as the input array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-not">org.opencv.core.Core.bitwise_not</a>
 */
    public static void bitwise_not(Mat src, Mat dst)
    {

        bitwise_not_1(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void bitwise_or(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
    //

/**
 * <p>Calculates the per-element bit-wise disjunction of two arrays or an array and
 * a scalar.</p>
 *
 * <p>The function calculates the per-element bit-wise logical disjunction for:</p>
 * <ul>
 *   <li> Two arrays when <code>src1</code> and <code>src2</code> have the same
 * size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) V src2(I) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> An array and a scalar when <code>src2</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) V src2 if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> A scalar and an array when <code>src1</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1 V src2(I) if mask(I) != 0</em></p>
 *
 * <p>In case of floating-point arrays, their machine-specific bit representations
 * (usually IEEE754-compliant) are used for the operation. In case of
 * multi-channel arrays, each channel is processed independently. In the second
 * and third cases above, the scalar is first converted to the array type.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as the input arrays.
 * @param mask optional operation mask, 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-or">org.opencv.core.Core.bitwise_or</a>
 */
    public static void bitwise_or(Mat src1, Mat src2, Mat dst, Mat mask)
    {

        bitwise_or_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element bit-wise disjunction of two arrays or an array and
 * a scalar.</p>
 *
 * <p>The function calculates the per-element bit-wise logical disjunction for:</p>
 * <ul>
 *   <li> Two arrays when <code>src1</code> and <code>src2</code> have the same
 * size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) V src2(I) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> An array and a scalar when <code>src2</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) V src2 if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> A scalar and an array when <code>src1</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1 V src2(I) if mask(I) != 0</em></p>
 *
 * <p>In case of floating-point arrays, their machine-specific bit representations
 * (usually IEEE754-compliant) are used for the operation. In case of
 * multi-channel arrays, each channel is processed independently. In the second
 * and third cases above, the scalar is first converted to the array type.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as the input arrays.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-or">org.opencv.core.Core.bitwise_or</a>
 */
    public static void bitwise_or(Mat src1, Mat src2, Mat dst)
    {

        bitwise_or_1(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void bitwise_xor(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
    //

/**
 * <p>Calculates the per-element bit-wise "exclusive or" operation on two arrays or
 * an array and a scalar.</p>
 *
 * <p>The function calculates the per-element bit-wise logical "exclusive-or"
 * operation for:</p>
 * <ul>
 *   <li> Two arrays when <code>src1</code> and <code>src2</code> have the same
 * size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I)(+) src2(I) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> An array and a scalar when <code>src2</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(I)(+) src2 if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> A scalar and an array when <code>src1</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(+) src2(I) if mask(I) != 0</em></p>
 *
 * <p>In case of floating-point arrays, their machine-specific bit representations
 * (usually IEEE754-compliant) are used for the operation. In case of
 * multi-channel arrays, each channel is processed independently. In the 2nd and
 * 3rd cases above, the scalar is first converted to the array type.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as the input arrays.
 * @param mask optional operation mask, 8-bit single channel array, that
 * specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-xor">org.opencv.core.Core.bitwise_xor</a>
 */
    public static void bitwise_xor(Mat src1, Mat src2, Mat dst, Mat mask)
    {

        bitwise_xor_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element bit-wise "exclusive or" operation on two arrays or
 * an array and a scalar.</p>
 *
 * <p>The function calculates the per-element bit-wise logical "exclusive-or"
 * operation for:</p>
 * <ul>
 *   <li> Two arrays when <code>src1</code> and <code>src2</code> have the same
 * size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I)(+) src2(I) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> An array and a scalar when <code>src2</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(I)(+) src2 if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> A scalar and an array when <code>src1</code> is constructed from
 * <code>Scalar</code> or has the same number of elements as <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = src1(+) src2(I) if mask(I) != 0</em></p>
 *
 * <p>In case of floating-point arrays, their machine-specific bit representations
 * (usually IEEE754-compliant) are used for the operation. In case of
 * multi-channel arrays, each channel is processed independently. In the 2nd and
 * 3rd cases above, the scalar is first converted to the array type.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array that has the same size and type as the input arrays.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise-xor">org.opencv.core.Core.bitwise_xor</a>
 */
    public static void bitwise_xor(Mat src1, Mat src2, Mat dst)
    {

        bitwise_xor_1(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void calcCovarMatrix(Mat samples, Mat& covar, Mat& mean, int flags, int ctype = CV_64F)
    //

/**
 * <p>Calculates the covariance matrix of a set of vectors.</p>
 *
 * <p>The functions <code>calcCovarMatrix</code> calculate the covariance matrix
 * and, optionally, the mean vector of the set of input vectors.</p>
 *
 * @param samples samples stored either as separate matrices or as rows/columns
 * of a single matrix.
 * @param covar output covariance matrix of the type <code>ctype</code> and
 * square size.
 * @param mean input or output (depending on the flags) array as the average
 * value of the input vectors.
 * @param flags operation flags as a combination of the following values:
 * <ul>
 *   <li> CV_COVAR_SCRAMBLED The output covariance matrix is calculated as:
 * </ul>
 *
 * <p><em>scale * [ vects [0]- mean, vects [1]- mean,...]^T * [ vects [0]- mean,
 * vects [1]- mean,...],</em></p>
 *
 * <p>The covariance matrix will be <code>nsamples x nsamples</code>. Such an
 * unusual covariance matrix is used for fast PCA of a set of very large vectors
 * (see, for example, the EigenFaces technique for face recognition).
 * Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
 * covariance matrix. The "true" eigenvectors can be easily calculated from the
 * eigenvectors of the "scrambled" covariance matrix.</p>
 * <ul>
 *   <li> CV_COVAR_NORMAL The output covariance matrix is calculated as:
 * </ul>
 *
 * <p><em>scale * [ vects [0]- mean, vects [1]- mean,...] * [ vects [0]- mean,
 * vects [1]- mean,...]^T,</em></p>
 *
 * <p><code>covar</code> will be a square matrix of the same size as the total
 * number of elements in each input vector. One and only one of
 * <code>CV_COVAR_SCRAMBLED</code> and <code>CV_COVAR_NORMAL</code> must be
 * specified.</p>
 * <ul>
 *   <li> CV_COVAR_USE_AVG If the flag is specified, the function does not
 * calculate <code>mean</code> from the input vectors but, instead, uses the
 * passed <code>mean</code> vector. This is useful if <code>mean</code> has been
 * pre-calculated or known in advance, or if the covariance matrix is calculated
 * by parts. In this case, <code>mean</code> is not a mean vector of the input
 * sub-set of vectors but rather the mean vector of the whole set.
 *   <li> CV_COVAR_SCALE If the flag is specified, the covariance matrix is
 * scaled. In the "normal" mode, <code>scale</code> is <code>1./nsamples</code>.
 * In the "scrambled" mode, <code>scale</code> is the reciprocal of the total
 * number of elements in each input vector. By default (if the flag is not
 * specified), the covariance matrix is not scaled (<code>scale=1</code>).
 *   <li> CV_COVAR_ROWS [Only useful in the second variant of the function] If
 * the flag is specified, all the input vectors are stored as rows of the
 * <code>samples</code> matrix. <code>mean</code> should be a single-row vector
 * in this case.
 *   <li> CV_COVAR_COLS [Only useful in the second variant of the function] If
 * the flag is specified, all the input vectors are stored as columns of the
 * <code>samples</code> matrix. <code>mean</code> should be a single-column
 * vector in this case.
 * </ul>
 * @param ctype type of the matrixl; it equals 'CV_64F' by default.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#calccovarmatrix">org.opencv.core.Core.calcCovarMatrix</a>
 * @see org.opencv.core.Core#Mahalanobis
 * @see org.opencv.core.Core#mulTransposed
 */
    public static void calcCovarMatrix(Mat samples, Mat covar, Mat mean, int flags, int ctype)
    {

        calcCovarMatrix_0(samples.nativeObj, covar.nativeObj, mean.nativeObj, flags, ctype);

        return;
    }

/**
 * <p>Calculates the covariance matrix of a set of vectors.</p>
 *
 * <p>The functions <code>calcCovarMatrix</code> calculate the covariance matrix
 * and, optionally, the mean vector of the set of input vectors.</p>
 *
 * @param samples samples stored either as separate matrices or as rows/columns
 * of a single matrix.
 * @param covar output covariance matrix of the type <code>ctype</code> and
 * square size.
 * @param mean input or output (depending on the flags) array as the average
 * value of the input vectors.
 * @param flags operation flags as a combination of the following values:
 * <ul>
 *   <li> CV_COVAR_SCRAMBLED The output covariance matrix is calculated as:
 * </ul>
 *
 * <p><em>scale * [ vects [0]- mean, vects [1]- mean,...]^T * [ vects [0]- mean,
 * vects [1]- mean,...],</em></p>
 *
 * <p>The covariance matrix will be <code>nsamples x nsamples</code>. Such an
 * unusual covariance matrix is used for fast PCA of a set of very large vectors
 * (see, for example, the EigenFaces technique for face recognition).
 * Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
 * covariance matrix. The "true" eigenvectors can be easily calculated from the
 * eigenvectors of the "scrambled" covariance matrix.</p>
 * <ul>
 *   <li> CV_COVAR_NORMAL The output covariance matrix is calculated as:
 * </ul>
 *
 * <p><em>scale * [ vects [0]- mean, vects [1]- mean,...] * [ vects [0]- mean,
 * vects [1]- mean,...]^T,</em></p>
 *
 * <p><code>covar</code> will be a square matrix of the same size as the total
 * number of elements in each input vector. One and only one of
 * <code>CV_COVAR_SCRAMBLED</code> and <code>CV_COVAR_NORMAL</code> must be
 * specified.</p>
 * <ul>
 *   <li> CV_COVAR_USE_AVG If the flag is specified, the function does not
 * calculate <code>mean</code> from the input vectors but, instead, uses the
 * passed <code>mean</code> vector. This is useful if <code>mean</code> has been
 * pre-calculated or known in advance, or if the covariance matrix is calculated
 * by parts. In this case, <code>mean</code> is not a mean vector of the input
 * sub-set of vectors but rather the mean vector of the whole set.
 *   <li> CV_COVAR_SCALE If the flag is specified, the covariance matrix is
 * scaled. In the "normal" mode, <code>scale</code> is <code>1./nsamples</code>.
 * In the "scrambled" mode, <code>scale</code> is the reciprocal of the total
 * number of elements in each input vector. By default (if the flag is not
 * specified), the covariance matrix is not scaled (<code>scale=1</code>).
 *   <li> CV_COVAR_ROWS [Only useful in the second variant of the function] If
 * the flag is specified, all the input vectors are stored as rows of the
 * <code>samples</code> matrix. <code>mean</code> should be a single-row vector
 * in this case.
 *   <li> CV_COVAR_COLS [Only useful in the second variant of the function] If
 * the flag is specified, all the input vectors are stored as columns of the
 * <code>samples</code> matrix. <code>mean</code> should be a single-column
 * vector in this case.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#calccovarmatrix">org.opencv.core.Core.calcCovarMatrix</a>
 * @see org.opencv.core.Core#Mahalanobis
 * @see org.opencv.core.Core#mulTransposed
 */
    public static void calcCovarMatrix(Mat samples, Mat covar, Mat mean, int flags)
    {

        calcCovarMatrix_1(samples.nativeObj, covar.nativeObj, mean.nativeObj, flags);

        return;
    }


    //
    // C++:  void cartToPolar(Mat x, Mat y, Mat& magnitude, Mat& angle, bool angleInDegrees = false)
    //

/**
 * <p>Calculates the magnitude and angle of 2D vectors.</p>
 *
 * <p>The function <code>cartToPolar</code> calculates either the magnitude, angle,
 * or both for every 2D vector (x(I),y(I)):</p>
 *
 * <p><em>magnitude(I)= sqrt(x(I)^2+y(I)^2),
 * angle(I)= atan2(y(I), x(I))[ *180 / pi ] </em></p>
 *
 * <p>The angles are calculated with accuracy about 0.3 degrees. For the point
 * (0,0), the angle is set to 0.</p>
 *
 * @param x array of x-coordinates; this must be a single-precision or
 * double-precision floating-point array.
 * @param y array of y-coordinates, that must have the same size and same type
 * as <code>x</code>.
 * @param magnitude output array of magnitudes of the same size and type as
 * <code>x</code>.
 * @param angle output array of angles that has the same size and type as
 * <code>x</code>; the angles are measured in radians (from 0 to 2*Pi) or in
 * degrees (0 to 360 degrees).
 * @param angleInDegrees a flag, indicating whether the angles are measured in
 * radians (which is by default), or in degrees.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#carttopolar">org.opencv.core.Core.cartToPolar</a>
 * @see org.opencv.imgproc.Imgproc#Scharr
 * @see org.opencv.imgproc.Imgproc#Sobel
 */
    public static void cartToPolar(Mat x, Mat y, Mat magnitude, Mat angle, boolean angleInDegrees)
    {

        cartToPolar_0(x.nativeObj, y.nativeObj, magnitude.nativeObj, angle.nativeObj, angleInDegrees);

        return;
    }

/**
 * <p>Calculates the magnitude and angle of 2D vectors.</p>
 *
 * <p>The function <code>cartToPolar</code> calculates either the magnitude, angle,
 * or both for every 2D vector (x(I),y(I)):</p>
 *
 * <p><em>magnitude(I)= sqrt(x(I)^2+y(I)^2),
 * angle(I)= atan2(y(I), x(I))[ *180 / pi ] </em></p>
 *
 * <p>The angles are calculated with accuracy about 0.3 degrees. For the point
 * (0,0), the angle is set to 0.</p>
 *
 * @param x array of x-coordinates; this must be a single-precision or
 * double-precision floating-point array.
 * @param y array of y-coordinates, that must have the same size and same type
 * as <code>x</code>.
 * @param magnitude output array of magnitudes of the same size and type as
 * <code>x</code>.
 * @param angle output array of angles that has the same size and type as
 * <code>x</code>; the angles are measured in radians (from 0 to 2*Pi) or in
 * degrees (0 to 360 degrees).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#carttopolar">org.opencv.core.Core.cartToPolar</a>
 * @see org.opencv.imgproc.Imgproc#Scharr
 * @see org.opencv.imgproc.Imgproc#Sobel
 */
    public static void cartToPolar(Mat x, Mat y, Mat magnitude, Mat angle)
    {

        cartToPolar_1(x.nativeObj, y.nativeObj, magnitude.nativeObj, angle.nativeObj);

        return;
    }


    //
    // C++:  bool checkRange(Mat a, bool quiet = true,  _hidden_ * pos = 0, double minVal = -DBL_MAX, double maxVal = DBL_MAX)
    //

/**
 * <p>Checks every element of an input array for invalid values.</p>
 *
 * <p>The functions <code>checkRange</code> check that every array element is
 * neither NaN nor infinite. When <code>minVal < -DBL_MAX</code> and
 * <code>maxVal < DBL_MAX</code>, the functions also check that each value is
 * between <code>minVal</code> and <code>maxVal</code>. In case of multi-channel
 * arrays, each channel is processed independently.
 * If some values are out of range, position of the first outlier is stored in
 * <code>pos</code> (when <code>pos != NULL</code>). Then, the functions either
 * return false (when <code>quiet=true</code>) or throw an exception.</p>
 *
 * @param a input array.
 * @param quiet a flag, indicating whether the functions quietly return false
 * when the array elements are out of range or they throw an exception.
 * @param minVal inclusive lower boundary of valid values range.
 * @param maxVal exclusive upper boundary of valid values range.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#checkrange">org.opencv.core.Core.checkRange</a>
 */
    public static boolean checkRange(Mat a, boolean quiet, double minVal, double maxVal)
    {

        boolean retVal = checkRange_0(a.nativeObj, quiet, minVal, maxVal);

        return retVal;
    }

/**
 * <p>Checks every element of an input array for invalid values.</p>
 *
 * <p>The functions <code>checkRange</code> check that every array element is
 * neither NaN nor infinite. When <code>minVal < -DBL_MAX</code> and
 * <code>maxVal < DBL_MAX</code>, the functions also check that each value is
 * between <code>minVal</code> and <code>maxVal</code>. In case of multi-channel
 * arrays, each channel is processed independently.
 * If some values are out of range, position of the first outlier is stored in
 * <code>pos</code> (when <code>pos != NULL</code>). Then, the functions either
 * return false (when <code>quiet=true</code>) or throw an exception.</p>
 *
 * @param a input array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#checkrange">org.opencv.core.Core.checkRange</a>
 */
    public static boolean checkRange(Mat a)
    {

        boolean retVal = checkRange_1(a.nativeObj);

        return retVal;
    }


    //
    // C++:  void circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    //

/**
 * <p>Draws a circle.</p>
 *
 * <p>The function <code>circle</code> draws a simple or filled circle with a given
 * center and radius.</p>
 *
 * @param img Image where the circle is drawn.
 * @param center Center of the circle.
 * @param radius Radius of the circle.
 * @param color Circle color.
 * @param thickness Thickness of the circle outline, if positive. Negative
 * thickness means that a filled circle is to be drawn.
 * @param lineType Type of the circle boundary. See the "line" description.
 * @param shift Number of fractional bits in the coordinates of the center and
 * in the radius value.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#circle">org.opencv.core.Core.circle</a>
 */
    public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType, int shift)
    {

        circle_0(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);

        return;
    }

/**
 * <p>Draws a circle.</p>
 *
 * <p>The function <code>circle</code> draws a simple or filled circle with a given
 * center and radius.</p>
 *
 * @param img Image where the circle is drawn.
 * @param center Center of the circle.
 * @param radius Radius of the circle.
 * @param color Circle color.
 * @param thickness Thickness of the circle outline, if positive. Negative
 * thickness means that a filled circle is to be drawn.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#circle">org.opencv.core.Core.circle</a>
 */
    public static void circle(Mat img, Point center, int radius, Scalar color, int thickness)
    {

        circle_1(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws a circle.</p>
 *
 * <p>The function <code>circle</code> draws a simple or filled circle with a given
 * center and radius.</p>
 *
 * @param img Image where the circle is drawn.
 * @param center Center of the circle.
 * @param radius Radius of the circle.
 * @param color Circle color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#circle">org.opencv.core.Core.circle</a>
 */
    public static void circle(Mat img, Point center, int radius, Scalar color)
    {

        circle_2(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  bool clipLine(Rect imgRect, Point& pt1, Point& pt2)
    //

/**
 * <p>Clips the line against the image rectangle.</p>
 *
 * <p>The functions <code>clipLine</code> calculate a part of the line segment that
 * is entirely within the specified rectangle.
 * They return <code>false</code> if the line segment is completely outside the
 * rectangle. Otherwise, they return <code>true</code>.</p>
 *
 * @param imgRect Image rectangle.
 * @param pt1 First line point.
 * @param pt2 Second line point.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#clipline">org.opencv.core.Core.clipLine</a>
 */
    public static boolean clipLine(Rect imgRect, Point pt1, Point pt2)
    {
        double[] pt1_out = new double[2];
        double[] pt2_out = new double[2];
        boolean retVal = clipLine_0(imgRect.x, imgRect.y, imgRect.width, imgRect.height, pt1.x, pt1.y, pt1_out, pt2.x, pt2.y, pt2_out);
        if(pt1!=null){ pt1.x = pt1_out[0]; pt1.y = pt1_out[1]; }
        if(pt2!=null){ pt2.x = pt2_out[0]; pt2.y = pt2_out[1]; }
        return retVal;
    }


    //
    // C++:  void compare(Mat src1, Mat src2, Mat& dst, int cmpop)
    //

/**
 * <p>Performs the per-element comparison of two arrays or an array and scalar
 * value.</p>
 *
 * <p>The function compares:</p>
 * <ul>
 *   <li> Elements of two arrays when <code>src1</code> and <code>src2</code>
 * have the same size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) cmpop src2(I)</em></p>
 *
 * <ul>
 *   <li> Elements of <code>src1</code> with a scalar <code>src2</code> when
 * <code>src2</code> is constructed from <code>Scalar</code> or has a single
 * element:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) cmpop src2</em></p>
 *
 * <ul>
 *   <li> <code>src1</code> with elements of <code>src2</code> when
 * <code>src1</code> is constructed from <code>Scalar</code> or has a single
 * element:
 * </ul>
 *
 * <p><em>dst(I) = src1 cmpop src2(I)</em></p>
 *
 * <p>When the comparison result is true, the corresponding element of output array
 * is set to 255.The comparison operations can be replaced with the equivalent
 * matrix expressions: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat dst1 = src1 >= src2;</p>
 *
 * <p>Mat dst2 = src1 < 8;...</p>
 *
 * @param src1 first input array or a scalar (in the case of <code>cvCmp</code>,
 * <code>cv.Cmp</code>, <code>cvCmpS</code>, <code>cv.CmpS</code> it is always
 * an array); when it is an array, it must have a single channel.
 * @param src2 second input array or a scalar (in the case of <code>cvCmp</code>
 * and <code>cv.Cmp</code> it is always an array; in the case of
 * <code>cvCmpS</code>, <code>cv.CmpS</code> it is always a scalar); when it is
 * an array, it must have a single channel.
 * @param dst output array that has the same size and type as the input arrays.
 * @param cmpop a flag, that specifies correspondence between the arrays:
 * <ul>
 *   <li> CMP_EQ <code>src1</code> is equal to <code>src2</code>.
 *   <li> CMP_GT <code>src1</code> is greater than <code>src2</code>.
 *   <li> CMP_GE <code>src1</code> is greater than or equal to <code>src2</code>.
 *   <li> CMP_LT <code>src1</code> is less than <code>src2</code>.
 *   <li> CMP_LE <code>src1</code> is less than or equal to <code>src2</code>.
 *   <li> CMP_NE <code>src1</code> is unequal to <code>src2</code>.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#compare">org.opencv.core.Core.compare</a>
 * @see org.opencv.imgproc.Imgproc#threshold
 * @see org.opencv.core.Core#max
 * @see org.opencv.core.Core#checkRange
 * @see org.opencv.core.Core#min
 */
    public static void compare(Mat src1, Mat src2, Mat dst, int cmpop)
    {

        compare_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, cmpop);

        return;
    }


    //
    // C++:  void compare(Mat src1, Scalar src2, Mat& dst, int cmpop)
    //

/**
 * <p>Performs the per-element comparison of two arrays or an array and scalar
 * value.</p>
 *
 * <p>The function compares:</p>
 * <ul>
 *   <li> Elements of two arrays when <code>src1</code> and <code>src2</code>
 * have the same size:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) cmpop src2(I)</em></p>
 *
 * <ul>
 *   <li> Elements of <code>src1</code> with a scalar <code>src2</code> when
 * <code>src2</code> is constructed from <code>Scalar</code> or has a single
 * element:
 * </ul>
 *
 * <p><em>dst(I) = src1(I) cmpop src2</em></p>
 *
 * <ul>
 *   <li> <code>src1</code> with elements of <code>src2</code> when
 * <code>src1</code> is constructed from <code>Scalar</code> or has a single
 * element:
 * </ul>
 *
 * <p><em>dst(I) = src1 cmpop src2(I)</em></p>
 *
 * <p>When the comparison result is true, the corresponding element of output array
 * is set to 255.The comparison operations can be replaced with the equivalent
 * matrix expressions: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat dst1 = src1 >= src2;</p>
 *
 * <p>Mat dst2 = src1 < 8;...</p>
 *
 * @param src1 first input array or a scalar (in the case of <code>cvCmp</code>,
 * <code>cv.Cmp</code>, <code>cvCmpS</code>, <code>cv.CmpS</code> it is always
 * an array); when it is an array, it must have a single channel.
 * @param src2 second input array or a scalar (in the case of <code>cvCmp</code>
 * and <code>cv.Cmp</code> it is always an array; in the case of
 * <code>cvCmpS</code>, <code>cv.CmpS</code> it is always a scalar); when it is
 * an array, it must have a single channel.
 * @param dst output array that has the same size and type as the input arrays.
 * @param cmpop a flag, that specifies correspondence between the arrays:
 * <ul>
 *   <li> CMP_EQ <code>src1</code> is equal to <code>src2</code>.
 *   <li> CMP_GT <code>src1</code> is greater than <code>src2</code>.
 *   <li> CMP_GE <code>src1</code> is greater than or equal to <code>src2</code>.
 *   <li> CMP_LT <code>src1</code> is less than <code>src2</code>.
 *   <li> CMP_LE <code>src1</code> is less than or equal to <code>src2</code>.
 *   <li> CMP_NE <code>src1</code> is unequal to <code>src2</code>.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#compare">org.opencv.core.Core.compare</a>
 * @see org.opencv.imgproc.Imgproc#threshold
 * @see org.opencv.core.Core#max
 * @see org.opencv.core.Core#checkRange
 * @see org.opencv.core.Core#min
 */
    public static void compare(Mat src1, Scalar src2, Mat dst, int cmpop)
    {

        compare_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, cmpop);

        return;
    }


    //
    // C++:  void completeSymm(Mat& mtx, bool lowerToUpper = false)
    //

/**
 * <p>Copies the lower or the upper half of a square matrix to another half.</p>
 *
 * <p>The function <code>completeSymm</code> copies the lower half of a square
 * matrix to its another half. The matrix diagonal remains unchanged:</p>
 * <ul>
 *   <li> <em>mtx_(ij)=mtx_(ji)</em> for <em>i &gt j</em> if <code>lowerToUpper=false</code>
 *   <li> <em>mtx_(ij)=mtx_(ji)</em> for <em>i &lt j</em> if <code>lowerToUpper=true</code>
 * </ul>
 *
 * @param mtx input-output floating-point square matrix.
 * @param lowerToUpper operation flag; if true, the lower half is copied to the
 * upper half. Otherwise, the upper half is copied to the lower half.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#completesymm">org.opencv.core.Core.completeSymm</a>
 * @see org.opencv.core.Core#transpose
 * @see org.opencv.core.Core#flip
 */
    public static void completeSymm(Mat mtx, boolean lowerToUpper)
    {

        completeSymm_0(mtx.nativeObj, lowerToUpper);

        return;
    }

/**
 * <p>Copies the lower or the upper half of a square matrix to another half.</p>
 *
 * <p>The function <code>completeSymm</code> copies the lower half of a square
 * matrix to its another half. The matrix diagonal remains unchanged:</p>
 * <ul>
 *   <li> <em>mtx_(ij)=mtx_(ji)</em> for <em>i &gt j</em> if <code>lowerToUpper=false</code>
 *   <li> <em>mtx_(ij)=mtx_(ji)</em> for <em>i &lt j</em> if <code>lowerToUpper=true</code>
 * </ul>
 *
 * @param mtx input-output floating-point square matrix.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#completesymm">org.opencv.core.Core.completeSymm</a>
 * @see org.opencv.core.Core#transpose
 * @see org.opencv.core.Core#flip
 */
    public static void completeSymm(Mat mtx)
    {

        completeSymm_1(mtx.nativeObj);

        return;
    }


    //
    // C++:  void convertScaleAbs(Mat src, Mat& dst, double alpha = 1, double beta = 0)
    //

/**
 * <p>Scales, calculates absolute values, and converts the result to 8-bit.</p>
 *
 * <p>On each element of the input array, the function <code>convertScaleAbs</code>
 * performs three operations sequentially: scaling, taking an absolute value,
 * conversion to an unsigned 8-bit type:</p>
 *
 * <p><em>dst(I)= saturate_cast&ltuchar&gt(| src(I)* alpha + beta|)&ltBR&gtIn case
 * of multi-channel arrays, the function processes each channel independently.
 * When the output is not 8-bit, the operation can be emulated by calling the
 * <code>Mat.convertTo</code> method(or by using matrix expressions) and then
 * by calculating an absolute value of the result. For example:
 * &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat_<float> A(30,30);</p>
 *
 * <p>randu(A, Scalar(-100), Scalar(100));</p>
 *
 * <p>Mat_<float> B = A*5 + 3;</p>
 *
 * <p>B = abs(B);</p>
 *
 * <p>// Mat_<float> B = abs(A*5+3) will also do the job,</p>
 *
 * <p>// but it will allocate a temporary matrix</p>
 *
 * @param src input array.
 * @param dst output array.
 * @param alpha optional scale factor.
 * @param beta optional delta added to the scaled values.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#convertscaleabs">org.opencv.core.Core.convertScaleAbs</a>
 * @see org.opencv.core.Mat#convertTo
 */
    public static void convertScaleAbs(Mat src, Mat dst, double alpha, double beta)
    {

        convertScaleAbs_0(src.nativeObj, dst.nativeObj, alpha, beta);

        return;
    }

/**
 * <p>Scales, calculates absolute values, and converts the result to 8-bit.</p>
 *
 * <p>On each element of the input array, the function <code>convertScaleAbs</code>
 * performs three operations sequentially: scaling, taking an absolute value,
 * conversion to an unsigned 8-bit type:</p>
 *
 * <p><em>dst(I)= saturate_cast&ltuchar&gt(| src(I)* alpha + beta|)&ltBR&gtIn case
 * of multi-channel arrays, the function processes each channel independently.
 * When the output is not 8-bit, the operation can be emulated by calling the
 * <code>Mat.convertTo</code> method(or by using matrix expressions) and then
 * by calculating an absolute value of the result. For example:
 * &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat_<float> A(30,30);</p>
 *
 * <p>randu(A, Scalar(-100), Scalar(100));</p>
 *
 * <p>Mat_<float> B = A*5 + 3;</p>
 *
 * <p>B = abs(B);</p>
 *
 * <p>// Mat_<float> B = abs(A*5+3) will also do the job,</p>
 *
 * <p>// but it will allocate a temporary matrix</p>
 *
 * @param src input array.
 * @param dst output array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#convertscaleabs">org.opencv.core.Core.convertScaleAbs</a>
 * @see org.opencv.core.Mat#convertTo
 */
    public static void convertScaleAbs(Mat src, Mat dst)
    {

        convertScaleAbs_1(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  int countNonZero(Mat src)
    //

/**
 * <p>Counts non-zero array elements.</p>
 *
 * <p>The function returns the number of non-zero elements in <code>src</code> :</p>
 *
 * <p><em>sum(by: I: src(I) != 0) 1</em></p>
 *
 * @param src single-channel array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#countnonzero">org.opencv.core.Core.countNonZero</a>
 * @see org.opencv.core.Core#minMaxLoc
 * @see org.opencv.core.Core#calcCovarMatrix
 * @see org.opencv.core.Core#meanStdDev
 * @see org.opencv.core.Core#norm
 * @see org.opencv.core.Core#mean
 */
    public static int countNonZero(Mat src)
    {

        int retVal = countNonZero_0(src.nativeObj);

        return retVal;
    }


    //
    // C++:  float cubeRoot(float val)
    //

/**
 * <p>Computes the cube root of an argument.</p>
 *
 * <p>The function <code>cubeRoot</code> computes <em>sqrt3(val)</em>. Negative
 * arguments are handled correctly. NaN and Inf are not handled. The accuracy
 * approaches the maximum possible accuracy for single-precision data.</p>
 *
 * @param val A function argument.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#cuberoot">org.opencv.core.Core.cubeRoot</a>
 */
    public static float cubeRoot(float val)
    {

        float retVal = cubeRoot_0(val);

        return retVal;
    }


    //
    // C++:  void dct(Mat src, Mat& dst, int flags = 0)
    //

/**
 * <p>Performs a forward or inverse discrete Cosine transform of 1D or 2D array.</p>
 *
 * <p>The function <code>dct</code> performs a forward or inverse discrete Cosine
 * transform (DCT) of a 1D or 2D floating-point array:</p>
 * <ul>
 *   <li> Forward Cosine transform of a 1D vector of <code>N</code> elements:
 * </ul>
 *
 * <p><em>Y = C^N * X</em></p>
 *
 * <p>where</p>
 *
 * <p><em>C^N_(jk)= sqrt(alpha_j/N) cos((pi(2k+1)j)/(2N))</em></p>
 *
 * <p>and</p>
 *
 * <p><em>alpha_0=1</em>, <em>alpha_j=2</em> for *j > 0*.</p>
 * <ul>
 *   <li> Inverse Cosine transform of a 1D vector of <code>N</code> elements:
 * </ul>
 *
 * <p><em>X = (C^N)^(-1) * Y = (C^N)^T * Y</em></p>
 *
 * <p>(since <em>C^N</em> is an orthogonal matrix, <em>C^N * (C^N)^T = I</em>)</p>
 * <ul>
 *   <li> Forward 2D Cosine transform of <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>Y = C^N * X * (C^N)^T</em></p>
 *
 * <ul>
 *   <li> Inverse 2D Cosine transform of <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>X = (C^N)^T * X * C^N</em></p>
 *
 * <p>The function chooses the mode of operation by looking at the flags and size
 * of the input array:</p>
 * <ul>
 *   <li> If <code>(flags & DCT_INVERSE) == 0</code>, the function does a
 * forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
 *   <li> If <code>(flags & DCT_ROWS) != 0</code>, the function performs a 1D
 * transform of each row.
 *   <li> If the array is a single column or a single row, the function performs
 * a 1D transform.
 *   <li> If none of the above is true, the function performs a 2D transform.
 * </ul>
 *
 * <p>Note:</p>
 *
 * <p>Currently <code>dct</code> supports even-size arrays (2, 4, 6...). For data
 * analysis and approximation, you can pad the array when necessary.</p>
 *
 * <p>Also, the function performance depends very much, and not monotonically, on
 * the array size (see"getOptimalDFTSize"). In the current implementation DCT of
 * a vector of size <code>N</code> is calculated via DFT of a vector of size
 * <code>N/2</code>. Thus, the optimal DCT size <code>N1 >= N</code> can be
 * calculated as: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }</p>
 *
 * <p>N1 = getOptimalDCTSize(N);</p>
 *
 * <p></code></p>
 *
 * @param src input floating-point array.
 * @param dst output array of the same size and type as <code>src</code>.
 * @param flags transformation flags as a combination of the following values:
 * <ul>
 *   <li> DCT_INVERSE performs an inverse 1D or 2D transform instead of the
 * default forward transform.
 *   <li> DCT_ROWS performs a forward or inverse transform of every individual
 * row of the input matrix. This flag enables you to transform multiple vectors
 * simultaneously and can be used to decrease the overhead (which is sometimes
 * several times larger than the processing itself) to perform 3D and
 * higher-dimensional transforms and so forth.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dct">org.opencv.core.Core.dct</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#idct
 * @see org.opencv.core.Core#getOptimalDFTSize
 */
    public static void dct(Mat src, Mat dst, int flags)
    {

        dct_0(src.nativeObj, dst.nativeObj, flags);

        return;
    }

/**
 * <p>Performs a forward or inverse discrete Cosine transform of 1D or 2D array.</p>
 *
 * <p>The function <code>dct</code> performs a forward or inverse discrete Cosine
 * transform (DCT) of a 1D or 2D floating-point array:</p>
 * <ul>
 *   <li> Forward Cosine transform of a 1D vector of <code>N</code> elements:
 * </ul>
 *
 * <p><em>Y = C^N * X</em></p>
 *
 * <p>where</p>
 *
 * <p><em>C^N_(jk)= sqrt(alpha_j/N) cos((pi(2k+1)j)/(2N))</em></p>
 *
 * <p>and</p>
 *
 * <p><em>alpha_0=1</em>, <em>alpha_j=2</em> for *j > 0*.</p>
 * <ul>
 *   <li> Inverse Cosine transform of a 1D vector of <code>N</code> elements:
 * </ul>
 *
 * <p><em>X = (C^N)^(-1) * Y = (C^N)^T * Y</em></p>
 *
 * <p>(since <em>C^N</em> is an orthogonal matrix, <em>C^N * (C^N)^T = I</em>)</p>
 * <ul>
 *   <li> Forward 2D Cosine transform of <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>Y = C^N * X * (C^N)^T</em></p>
 *
 * <ul>
 *   <li> Inverse 2D Cosine transform of <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>X = (C^N)^T * X * C^N</em></p>
 *
 * <p>The function chooses the mode of operation by looking at the flags and size
 * of the input array:</p>
 * <ul>
 *   <li> If <code>(flags & DCT_INVERSE) == 0</code>, the function does a
 * forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
 *   <li> If <code>(flags & DCT_ROWS) != 0</code>, the function performs a 1D
 * transform of each row.
 *   <li> If the array is a single column or a single row, the function performs
 * a 1D transform.
 *   <li> If none of the above is true, the function performs a 2D transform.
 * </ul>
 *
 * <p>Note:</p>
 *
 * <p>Currently <code>dct</code> supports even-size arrays (2, 4, 6...). For data
 * analysis and approximation, you can pad the array when necessary.</p>
 *
 * <p>Also, the function performance depends very much, and not monotonically, on
 * the array size (see"getOptimalDFTSize"). In the current implementation DCT of
 * a vector of size <code>N</code> is calculated via DFT of a vector of size
 * <code>N/2</code>. Thus, the optimal DCT size <code>N1 >= N</code> can be
 * calculated as: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }</p>
 *
 * <p>N1 = getOptimalDCTSize(N);</p>
 *
 * <p></code></p>
 *
 * @param src input floating-point array.
 * @param dst output array of the same size and type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dct">org.opencv.core.Core.dct</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#idct
 * @see org.opencv.core.Core#getOptimalDFTSize
 */
    public static void dct(Mat src, Mat dst)
    {

        dct_1(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  double determinant(Mat mtx)
    //

/**
 * <p>Returns the determinant of a square floating-point matrix.</p>
 *
 * <p>The function <code>determinant</code> calculates and returns the determinant
 * of the specified matrix. For small matrices (<code>mtx.cols=mtx.rows<=3</code>),
 * the direct method is used. For larger matrices, the function uses LU
 * factorization with partial pivoting.</p>
 *
 * <p>For symmetric positively-determined matrices, it is also possible to use
 * "eigen" decomposition to calculate the determinant.</p>
 *
 * @param mtx input matrix that must have <code>CV_32FC1</code> or
 * <code>CV_64FC1</code> type and square size.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#determinant">org.opencv.core.Core.determinant</a>
 * @see org.opencv.core.Core#invert
 * @see org.opencv.core.Core#solve
 * @see org.opencv.core.Core#eigen
 * @see org.opencv.core.Core#trace
 */
    public static double determinant(Mat mtx)
    {

        double retVal = determinant_0(mtx.nativeObj);

        return retVal;
    }


    //
    // C++:  void dft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0)
    //

/**
 * <p>Performs a forward or inverse Discrete Fourier transform of a 1D or 2D
 * floating-point array.</p>
 *
 * <p>The function performs one of the following:</p>
 * <ul>
 *   <li> Forward the Fourier transform of a 1D vector of <code>N</code>
 * elements:
 * </ul>
 *
 * <p><em>Y = F^N * X,</em></p>
 *
 * <p>where <em>F^N_(jk)=exp(-2pi i j k/N)</em> and <em>i=sqrt(-1)</em></p>
 * <ul>
 *   <li> Inverse the Fourier transform of a 1D vector of <code>N</code>
 * elements:
 * </ul>
 *
 * <p><em>X'= (F^N)^(-1) * Y = (F^N)^* * y
 * X = (1/N) * X, </em></p>
 *
 * <p>where <em>F^*=(Re(F^N)-Im(F^N))^T</em></p>
 * <ul>
 *   <li> Forward the 2D Fourier transform of a <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>Y = F^M * X * F^N</em></p>
 *
 * <ul>
 *   <li> Inverse the 2D Fourier transform of a <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>X'= (F^M)^* * Y * (F^N)^*
 * X = 1/(M * N) * X' </em></p>
 *
 * <p>In case of real (single-channel) data, the output spectrum of the forward
 * Fourier transform or input spectrum of the inverse Fourier transform can be
 * represented in a packed format called *CCS* (complex-conjugate-symmetrical).
 * It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D
 * *CCS* spectrum looks:</p>
 *
 * <p><em>Re Y_(0,0) Re Y_(0,1) Im Y_(0,1) Re Y_(0,2) Im Y_(0,2) *s Re Y_(0,N/2-1)
 * Im Y_(0,N/2-1) Re Y_(0,N/2)
 * Re Y_(1,0) Re Y_(1,1) Im Y_(1,1) Re Y_(1,2) Im Y_(1,2) *s Re Y_(1,N/2-1) Im
 * Y_(1,N/2-1) Re Y_(1,N/2)
 * Im Y_(1,0) Re Y_(2,1) Im Y_(2,1) Re Y_(2,2) Im Y_(2,2) *s Re Y_(2,N/2-1) Im
 * Y_(2,N/2-1) Im Y_(1,N/2)...........................
 * Re Y_(M/2-1,0) Re Y_(M-3,1) Im Y_(M-3,1)......... Re Y_(M-3,N/2-1) Im
 * Y_(M-3,N/2-1) Re Y_(M/2-1,N/2)
 * Im Y_(M/2-1,0) Re Y_(M-2,1) Im Y_(M-2,1)......... Re Y_(M-2,N/2-1) Im
 * Y_(M-2,N/2-1) Im Y_(M/2-1,N/2)
 * Re Y_(M/2,0) Re Y_(M-1,1) Im Y_(M-1,1)......... Re Y_(M-1,N/2-1) Im
 * Y_(M-1,N/2-1) Re Y_(M/2,N/2) </em></p>
 *
 * <p>In case of 1D transform of a real vector, the output looks like the first row
 * of the matrix above.</p>
 *
 * <p>So, the function chooses an operation mode depending on the flags and size of
 * the input array:</p>
 * <ul>
 *   <li> If <code>DFT_ROWS</code> is set or the input array has a single row or
 * single column, the function performs a 1D forward or inverse transform of
 * each row of a matrix when <code>DFT_ROWS</code> is set. Otherwise, it
 * performs a 2D transform.
 *   <li> If the input array is real and <code>DFT_INVERSE</code> is not set,
 * the function performs a forward 1D or 2D transform:
 *   <li> When <code>DFT_COMPLEX_OUTPUT</code> is set, the output is a complex
 * matrix of the same size as input.
 *   <li> When <code>DFT_COMPLEX_OUTPUT</code> is not set, the output is a real
 * matrix of the same size as input. In case of 2D transform, it uses the packed
 * format as shown above. In case of a single 1D transform, it looks like the
 * first row of the matrix above. In case of multiple 1D transforms (when using
 * the <code>DFT_ROWS</code> flag), each row of the output matrix looks like the
 * first row of the matrix above.
 *   <li> If the input array is complex and either <code>DFT_INVERSE</code> or
 * <code>DFT_REAL_OUTPUT</code> are not set, the output is a complex array of
 * the same size as input. The function performs a forward or inverse 1D or 2D
 * transform of the whole input array or each row of the input array
 * independently, depending on the flags <code>DFT_INVERSE</code> and
 * <code>DFT_ROWS</code>.
 *   <li> When <code>DFT_INVERSE</code> is set and the input array is real, or
 * it is complex but <code>DFT_REAL_OUTPUT</code> is set, the output is a real
 * array of the same size as input. The function performs a 1D or 2D inverse
 * transformation of the whole input array or each individual row, depending on
 * the flags <code>DFT_INVERSE</code> and <code>DFT_ROWS</code>.
 * </ul>
 *
 * <p>If <code>DFT_SCALE</code> is set, the scaling is done after the
 * transformation.</p>
 *
 * <p>Unlike "dct", the function supports arrays of arbitrary size. But only those
 * arrays are processed efficiently, whose sizes can be factorized in a product
 * of small prime numbers (2, 3, and 5 in the current implementation). Such an
 * efficient DFT size can be calculated using the "getOptimalDFTSize" method.
 * The sample below illustrates how to calculate a DFT-based convolution of two
 * 2D real arrays: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>void convolveDFT(InputArray A, InputArray B, OutputArray C)</p>
 *
 *
 * <p>// reallocate the output array if needed</p>
 *
 * <p>C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());</p>
 *
 * <p>Size dftSize;</p>
 *
 * <p>// calculate the size of DFT transform</p>
 *
 * <p>dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);</p>
 *
 * <p>dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);</p>
 *
 * <p>// allocate temporary buffers and initialize them with 0's</p>
 *
 * <p>Mat tempA(dftSize, A.type(), Scalar.all(0));</p>
 *
 * <p>Mat tempB(dftSize, B.type(), Scalar.all(0));</p>
 *
 * <p>// copy A and B to the top-left corners of tempA and tempB, respectively</p>
 *
 * <p>Mat roiA(tempA, Rect(0,0,A.cols,A.rows));</p>
 *
 * <p>A.copyTo(roiA);</p>
 *
 * <p>Mat roiB(tempB, Rect(0,0,B.cols,B.rows));</p>
 *
 * <p>B.copyTo(roiB);</p>
 *
 * <p>// now transform the padded A & B in-place;</p>
 *
 * <p>// use "nonzeroRows" hint for faster processing</p>
 *
 * <p>dft(tempA, tempA, 0, A.rows);</p>
 *
 * <p>dft(tempB, tempB, 0, B.rows);</p>
 *
 * <p>// multiply the spectrums;</p>
 *
 * <p>// the function handles packed spectrum representations well</p>
 *
 * <p>mulSpectrums(tempA, tempB, tempA);</p>
 *
 * <p>// transform the product back from the frequency domain.</p>
 *
 * <p>// Even though all the result rows will be non-zero,</p>
 *
 * <p>// you need only the first C.rows of them, and thus you</p>
 *
 * <p>// pass nonzeroRows == C.rows</p>
 *
 * <p>dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);</p>
 *
 * <p>// now copy the result back to C.</p>
 *
 * <p>tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);</p>
 *
 * <p>// all the temporary buffers will be deallocated automatically</p>
 *
 *
 * <p>To optimize this sample, consider the following approaches: </code></p>
 * <ul>
 *   <li> Since <code>nonzeroRows != 0</code> is passed to the forward transform
 * calls and since <code>A</code> and <code>B</code> are copied to the top-left
 * corners of <code>tempA</code> and <code>tempB</code>, respectively, it is not
 * necessary to clear the whole <code>tempA</code> and <code>tempB</code>. It is
 * only necessary to clear the <code>tempA.cols - A.cols</code>
 * (<code>tempB.cols - B.cols</code>) rightmost columns of the matrices.
 *   <li> This DFT-based convolution does not have to be applied to the whole
 * big arrays, especially if <code>B</code> is significantly smaller than
 * <code>A</code> or vice versa. Instead, you can calculate convolution by
 * parts. To do this, you need to split the output array <code>C</code> into
 * multiple tiles. For each tile, estimate which parts of <code>A</code> and
 * <code>B</code> are required to calculate convolution in this tile. If the
 * tiles in <code>C</code> are too small, the speed will decrease a lot because
 * of repeated work. In the ultimate case, when each tile in <code>C</code> is a
 * single pixel, the algorithm becomes equivalent to the naive convolution
 * algorithm. If the tiles are too big, the temporary arrays <code>tempA</code>
 * and <code>tempB</code> become too big and there is also a slowdown because of
 * bad cache locality. So, there is an optimal tile size somewhere in the
 * middle.
 *   <li> If different tiles in <code>C</code> can be calculated in parallel
 * and, thus, the convolution is done by parts, the loop can be threaded.
 * </ul>
 *
 * <p>All of the above improvements have been implemented in "matchTemplate" and
 * "filter2D". Therefore, by using them, you can get the performance even better
 * than with the above theoretically optimal implementation. Though, those two
 * functions actually calculate cross-correlation, not convolution, so you need
 * to "flip" the second convolution operand <code>B</code> vertically and
 * horizontally using "flip".</p>
 *
 * <p>Note:</p>
 * <ul>
 *   <li> An example using the discrete fourier transform can be found at
 * opencv_source_code/samples/cpp/dft.cpp
 *   <li> (Python) An example using the dft functionality to perform Wiener
 * deconvolution can be found at opencv_source/samples/python2/deconvolution.py
 *   <li> (Python) An example rearranging the quadrants of a Fourier image can
 * be found at opencv_source/samples/python2/dft.py
 * </ul>
 *
 * @param src input array that could be real or complex.
 * @param dst output array whose size and type depends on the <code>flags</code>.
 * @param flags transformation flags, representing a combination of the
 * following values:
 * <ul>
 *   <li> DFT_INVERSE performs an inverse 1D or 2D transform instead of the
 * default forward transform.
 *   <li> DFT_SCALE scales the result: divide it by the number of array
 * elements. Normally, it is combined with <code>DFT_INVERSE</code>.
 *   <li> DFT_ROWS performs a forward or inverse transform of every individual
 * row of the input matrix; this flag enables you to transform multiple vectors
 * simultaneously and can be used to decrease the overhead (which is sometimes
 * several times larger than the processing itself) to perform 3D and
 * higher-dimensional transformations and so forth.
 *   <li> DFT_COMPLEX_OUTPUT performs a forward transformation of 1D or 2D real
 * array; the result, though being a complex array, has complex-conjugate
 * symmetry (*CCS*, see the function description below for details), and such an
 * array can be packed into a real array of the same size as input, which is the
 * fastest option and which is what the function does by default; however, you
 * may wish to get a full complex array (for simpler spectrum analysis, and so
 * on) - pass the flag to enable the function to produce a full-size complex
 * output array.
 *   <li> DFT_REAL_OUTPUT performs an inverse transformation of a 1D or 2D
 * complex array; the result is normally a complex array of the same size,
 * however, if the input array has conjugate-complex symmetry (for example, it
 * is a result of forward transformation with <code>DFT_COMPLEX_OUTPUT</code>
 * flag), the output is a real array; while the function itself does not check
 * whether the input is symmetrical or not, you can pass the flag and then the
 * function will assume the symmetry and produce the real output array (note
 * that when the input is packed into a real array and inverse transformation is
 * executed, the function treats the input as a packed complex-conjugate
 * symmetrical array, and the output will also be a real array).
 * </ul>
 * @param nonzeroRows when the parameter is not zero, the function assumes that
 * only the first <code>nonzeroRows</code> rows of the input array
 * (<code>DFT_INVERSE</code> is not set) or only the first <code>nonzeroRows</code>
 * of the output array (<code>DFT_INVERSE</code> is set) contain non-zeros,
 * thus, the function can handle the rest of the rows more efficiently and save
 * some time; this technique is very useful for calculating array
 * cross-correlation or convolution using DFT.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dft">org.opencv.core.Core.dft</a>
 * @see org.opencv.imgproc.Imgproc#matchTemplate
 * @see org.opencv.core.Core#mulSpectrums
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#flip
 * @see org.opencv.core.Core#magnitude
 * @see org.opencv.core.Core#phase
 * @see org.opencv.core.Core#dct
 * @see org.opencv.imgproc.Imgproc#filter2D
 * @see org.opencv.core.Core#getOptimalDFTSize
 */
    public static void dft(Mat src, Mat dst, int flags, int nonzeroRows)
    {

        dft_0(src.nativeObj, dst.nativeObj, flags, nonzeroRows);

        return;
    }

/**
 * <p>Performs a forward or inverse Discrete Fourier transform of a 1D or 2D
 * floating-point array.</p>
 *
 * <p>The function performs one of the following:</p>
 * <ul>
 *   <li> Forward the Fourier transform of a 1D vector of <code>N</code>
 * elements:
 * </ul>
 *
 * <p><em>Y = F^N * X,</em></p>
 *
 * <p>where <em>F^N_(jk)=exp(-2pi i j k/N)</em> and <em>i=sqrt(-1)</em></p>
 * <ul>
 *   <li> Inverse the Fourier transform of a 1D vector of <code>N</code>
 * elements:
 * </ul>
 *
 * <p><em>X'= (F^N)^(-1) * Y = (F^N)^* * y
 * X = (1/N) * X, </em></p>
 *
 * <p>where <em>F^*=(Re(F^N)-Im(F^N))^T</em></p>
 * <ul>
 *   <li> Forward the 2D Fourier transform of a <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>Y = F^M * X * F^N</em></p>
 *
 * <ul>
 *   <li> Inverse the 2D Fourier transform of a <code>M x N</code> matrix:
 * </ul>
 *
 * <p><em>X'= (F^M)^* * Y * (F^N)^*
 * X = 1/(M * N) * X' </em></p>
 *
 * <p>In case of real (single-channel) data, the output spectrum of the forward
 * Fourier transform or input spectrum of the inverse Fourier transform can be
 * represented in a packed format called *CCS* (complex-conjugate-symmetrical).
 * It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D
 * *CCS* spectrum looks:</p>
 *
 * <p><em>Re Y_(0,0) Re Y_(0,1) Im Y_(0,1) Re Y_(0,2) Im Y_(0,2) *s Re Y_(0,N/2-1)
 * Im Y_(0,N/2-1) Re Y_(0,N/2)
 * Re Y_(1,0) Re Y_(1,1) Im Y_(1,1) Re Y_(1,2) Im Y_(1,2) *s Re Y_(1,N/2-1) Im
 * Y_(1,N/2-1) Re Y_(1,N/2)
 * Im Y_(1,0) Re Y_(2,1) Im Y_(2,1) Re Y_(2,2) Im Y_(2,2) *s Re Y_(2,N/2-1) Im
 * Y_(2,N/2-1) Im Y_(1,N/2)...........................
 * Re Y_(M/2-1,0) Re Y_(M-3,1) Im Y_(M-3,1)......... Re Y_(M-3,N/2-1) Im
 * Y_(M-3,N/2-1) Re Y_(M/2-1,N/2)
 * Im Y_(M/2-1,0) Re Y_(M-2,1) Im Y_(M-2,1)......... Re Y_(M-2,N/2-1) Im
 * Y_(M-2,N/2-1) Im Y_(M/2-1,N/2)
 * Re Y_(M/2,0) Re Y_(M-1,1) Im Y_(M-1,1)......... Re Y_(M-1,N/2-1) Im
 * Y_(M-1,N/2-1) Re Y_(M/2,N/2) </em></p>
 *
 * <p>In case of 1D transform of a real vector, the output looks like the first row
 * of the matrix above.</p>
 *
 * <p>So, the function chooses an operation mode depending on the flags and size of
 * the input array:</p>
 * <ul>
 *   <li> If <code>DFT_ROWS</code> is set or the input array has a single row or
 * single column, the function performs a 1D forward or inverse transform of
 * each row of a matrix when <code>DFT_ROWS</code> is set. Otherwise, it
 * performs a 2D transform.
 *   <li> If the input array is real and <code>DFT_INVERSE</code> is not set,
 * the function performs a forward 1D or 2D transform:
 *   <li> When <code>DFT_COMPLEX_OUTPUT</code> is set, the output is a complex
 * matrix of the same size as input.
 *   <li> When <code>DFT_COMPLEX_OUTPUT</code> is not set, the output is a real
 * matrix of the same size as input. In case of 2D transform, it uses the packed
 * format as shown above. In case of a single 1D transform, it looks like the
 * first row of the matrix above. In case of multiple 1D transforms (when using
 * the <code>DFT_ROWS</code> flag), each row of the output matrix looks like the
 * first row of the matrix above.
 *   <li> If the input array is complex and either <code>DFT_INVERSE</code> or
 * <code>DFT_REAL_OUTPUT</code> are not set, the output is a complex array of
 * the same size as input. The function performs a forward or inverse 1D or 2D
 * transform of the whole input array or each row of the input array
 * independently, depending on the flags <code>DFT_INVERSE</code> and
 * <code>DFT_ROWS</code>.
 *   <li> When <code>DFT_INVERSE</code> is set and the input array is real, or
 * it is complex but <code>DFT_REAL_OUTPUT</code> is set, the output is a real
 * array of the same size as input. The function performs a 1D or 2D inverse
 * transformation of the whole input array or each individual row, depending on
 * the flags <code>DFT_INVERSE</code> and <code>DFT_ROWS</code>.
 * </ul>
 *
 * <p>If <code>DFT_SCALE</code> is set, the scaling is done after the
 * transformation.</p>
 *
 * <p>Unlike "dct", the function supports arrays of arbitrary size. But only those
 * arrays are processed efficiently, whose sizes can be factorized in a product
 * of small prime numbers (2, 3, and 5 in the current implementation). Such an
 * efficient DFT size can be calculated using the "getOptimalDFTSize" method.
 * The sample below illustrates how to calculate a DFT-based convolution of two
 * 2D real arrays: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>void convolveDFT(InputArray A, InputArray B, OutputArray C)</p>
 *
 *
 * <p>// reallocate the output array if needed</p>
 *
 * <p>C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());</p>
 *
 * <p>Size dftSize;</p>
 *
 * <p>// calculate the size of DFT transform</p>
 *
 * <p>dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);</p>
 *
 * <p>dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);</p>
 *
 * <p>// allocate temporary buffers and initialize them with 0's</p>
 *
 * <p>Mat tempA(dftSize, A.type(), Scalar.all(0));</p>
 *
 * <p>Mat tempB(dftSize, B.type(), Scalar.all(0));</p>
 *
 * <p>// copy A and B to the top-left corners of tempA and tempB, respectively</p>
 *
 * <p>Mat roiA(tempA, Rect(0,0,A.cols,A.rows));</p>
 *
 * <p>A.copyTo(roiA);</p>
 *
 * <p>Mat roiB(tempB, Rect(0,0,B.cols,B.rows));</p>
 *
 * <p>B.copyTo(roiB);</p>
 *
 * <p>// now transform the padded A & B in-place;</p>
 *
 * <p>// use "nonzeroRows" hint for faster processing</p>
 *
 * <p>dft(tempA, tempA, 0, A.rows);</p>
 *
 * <p>dft(tempB, tempB, 0, B.rows);</p>
 *
 * <p>// multiply the spectrums;</p>
 *
 * <p>// the function handles packed spectrum representations well</p>
 *
 * <p>mulSpectrums(tempA, tempB, tempA);</p>
 *
 * <p>// transform the product back from the frequency domain.</p>
 *
 * <p>// Even though all the result rows will be non-zero,</p>
 *
 * <p>// you need only the first C.rows of them, and thus you</p>
 *
 * <p>// pass nonzeroRows == C.rows</p>
 *
 * <p>dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);</p>
 *
 * <p>// now copy the result back to C.</p>
 *
 * <p>tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);</p>
 *
 * <p>// all the temporary buffers will be deallocated automatically</p>
 *
 *
 * <p>To optimize this sample, consider the following approaches: </code></p>
 * <ul>
 *   <li> Since <code>nonzeroRows != 0</code> is passed to the forward transform
 * calls and since <code>A</code> and <code>B</code> are copied to the top-left
 * corners of <code>tempA</code> and <code>tempB</code>, respectively, it is not
 * necessary to clear the whole <code>tempA</code> and <code>tempB</code>. It is
 * only necessary to clear the <code>tempA.cols - A.cols</code>
 * (<code>tempB.cols - B.cols</code>) rightmost columns of the matrices.
 *   <li> This DFT-based convolution does not have to be applied to the whole
 * big arrays, especially if <code>B</code> is significantly smaller than
 * <code>A</code> or vice versa. Instead, you can calculate convolution by
 * parts. To do this, you need to split the output array <code>C</code> into
 * multiple tiles. For each tile, estimate which parts of <code>A</code> and
 * <code>B</code> are required to calculate convolution in this tile. If the
 * tiles in <code>C</code> are too small, the speed will decrease a lot because
 * of repeated work. In the ultimate case, when each tile in <code>C</code> is a
 * single pixel, the algorithm becomes equivalent to the naive convolution
 * algorithm. If the tiles are too big, the temporary arrays <code>tempA</code>
 * and <code>tempB</code> become too big and there is also a slowdown because of
 * bad cache locality. So, there is an optimal tile size somewhere in the
 * middle.
 *   <li> If different tiles in <code>C</code> can be calculated in parallel
 * and, thus, the convolution is done by parts, the loop can be threaded.
 * </ul>
 *
 * <p>All of the above improvements have been implemented in "matchTemplate" and
 * "filter2D". Therefore, by using them, you can get the performance even better
 * than with the above theoretically optimal implementation. Though, those two
 * functions actually calculate cross-correlation, not convolution, so you need
 * to "flip" the second convolution operand <code>B</code> vertically and
 * horizontally using "flip".</p>
 *
 * <p>Note:</p>
 * <ul>
 *   <li> An example using the discrete fourier transform can be found at
 * opencv_source_code/samples/cpp/dft.cpp
 *   <li> (Python) An example using the dft functionality to perform Wiener
 * deconvolution can be found at opencv_source/samples/python2/deconvolution.py
 *   <li> (Python) An example rearranging the quadrants of a Fourier image can
 * be found at opencv_source/samples/python2/dft.py
 * </ul>
 *
 * @param src input array that could be real or complex.
 * @param dst output array whose size and type depends on the <code>flags</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dft">org.opencv.core.Core.dft</a>
 * @see org.opencv.imgproc.Imgproc#matchTemplate
 * @see org.opencv.core.Core#mulSpectrums
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#flip
 * @see org.opencv.core.Core#magnitude
 * @see org.opencv.core.Core#phase
 * @see org.opencv.core.Core#dct
 * @see org.opencv.imgproc.Imgproc#filter2D
 * @see org.opencv.core.Core#getOptimalDFTSize
 */
    public static void dft(Mat src, Mat dst)
    {

        dft_1(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void divide(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1)
    //

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 * @param scale scalar factor.
 * @param dtype optional depth of the output array; if <code>-1</code>,
 * <code>dst</code> will have depth <code>src2.depth()</code>, but in case of an
 * array-by-array division, you can only pass <code>-1</code> when
 * <code>src1.depth()==src2.depth()</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(Mat src1, Mat src2, Mat dst, double scale, int dtype)
    {

        divide_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale, dtype);

        return;
    }

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 * @param scale scalar factor.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(Mat src1, Mat src2, Mat dst, double scale)
    {

        divide_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale);

        return;
    }

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(Mat src1, Mat src2, Mat dst)
    {

        divide_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void divide(double scale, Mat src2, Mat& dst, int dtype = -1)
    //

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param scale scalar factor.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 * @param dtype optional depth of the output array; if <code>-1</code>,
 * <code>dst</code> will have depth <code>src2.depth()</code>, but in case of an
 * array-by-array division, you can only pass <code>-1</code> when
 * <code>src1.depth()==src2.depth()</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(double scale, Mat src2, Mat dst, int dtype)
    {

        divide_3(scale, src2.nativeObj, dst.nativeObj, dtype);

        return;
    }

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param scale scalar factor.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(double scale, Mat src2, Mat dst)
    {

        divide_4(scale, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void divide(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1)
    //

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 * @param scale scalar factor.
 * @param dtype optional depth of the output array; if <code>-1</code>,
 * <code>dst</code> will have depth <code>src2.depth()</code>, but in case of an
 * array-by-array division, you can only pass <code>-1</code> when
 * <code>src1.depth()==src2.depth()</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(Mat src1, Scalar src2, Mat dst, double scale, int dtype)
    {

        divide_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale, dtype);

        return;
    }

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 * @param scale scalar factor.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(Mat src1, Scalar src2, Mat dst, double scale)
    {

        divide_6(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale);

        return;
    }

/**
 * <p>Performs per-element division of two arrays or a scalar by an array.</p>
 *
 * <p>The functions <code>divide</code> divide one array by another:</p>
 *
 * <p><em>dst(I) = saturate(src1(I)*scale/src2(I))</em></p>
 *
 * <p>or a scalar by an array when there is no <code>src1</code> :</p>
 *
 * <p><em>dst(I) = saturate(scale/src2(I))</em></p>
 *
 * <p>When <code>src2(I)</code> is zero, <code>dst(I)</code> will also be zero.
 * Different channels of multi-channel arrays are processed independently.</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src2</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#divide">org.opencv.core.Core.divide</a>
 * @see org.opencv.core.Core#multiply
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void divide(Mat src1, Scalar src2, Mat dst)
    {

        divide_7(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  bool eigen(Mat src, bool computeEigenvectors, Mat& eigenvalues, Mat& eigenvectors)
    //

/**
 * <p>Calculates eigenvalues and eigenvectors of a symmetric matrix.</p>
 *
 * <p>The functions <code>eigen</code> calculate just eigenvalues, or eigenvalues
 * and eigenvectors of the symmetric matrix <code>src</code> : <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()</p>
 *
 * <p>Note: in the new and the old interfaces different ordering of eigenvalues and
 * eigenvectors parameters is used.
 * </code></p>
 *
 * @param src input matrix that must have <code>CV_32FC1</code> or
 * <code>CV_64FC1</code> type, square size and be symmetrical (<code>src</code>^"T"
 * == <code>src</code>).
 * @param computeEigenvectors a computeEigenvectors
 * @param eigenvalues output vector of eigenvalues of the same type as
 * <code>src</code>; the eigenvalues are stored in the descending order.
 * @param eigenvectors output matrix of eigenvectors; it has the same size and
 * type as <code>src</code>; the eigenvectors are stored as subsequent matrix
 * rows, in the same order as the corresponding eigenvalues.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#eigen">org.opencv.core.Core.eigen</a>
 * @see org.opencv.core.Core#completeSymm
 */
    public static boolean eigen(Mat src, boolean computeEigenvectors, Mat eigenvalues, Mat eigenvectors)
    {

        boolean retVal = eigen_0(src.nativeObj, computeEigenvectors, eigenvalues.nativeObj, eigenvectors.nativeObj);

        return retVal;
    }


    //
    // C++:  void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    //

/**
 * <p>Draws a simple or thick elliptic arc or fills an ellipse sector.</p>
 *
 * <p>The functions <code>ellipse</code> with less parameters draw an ellipse
 * outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
 * A piecewise-linear curve is used to approximate the elliptic arc boundary. If
 * you need more control of the ellipse rendering, you can retrieve the curve
 * using "ellipse2Poly" and then render it with "polylines" or fill it with
 * "fillPoly". If you use the first variant of the function and want to draw the
 * whole ellipse, not an arc, pass <code>startAngle=0</code> and
 * <code>endAngle=360</code>. The figure below explains the meaning of the
 * parameters.
 * Figure 1. Parameters of Elliptic Arc</p>
 *
 * @param img Image.
 * @param center Center of the ellipse.
 * @param axes Half of the size of the ellipse main axes.
 * @param angle Ellipse rotation angle in degrees.
 * @param startAngle Starting angle of the elliptic arc in degrees.
 * @param endAngle Ending angle of the elliptic arc in degrees.
 * @param color Ellipse color.
 * @param thickness Thickness of the ellipse arc outline, if positive.
 * Otherwise, this indicates that a filled ellipse sector is to be drawn.
 * @param lineType Type of the ellipse boundary. See the "line" description.
 * @param shift Number of fractional bits in the coordinates of the center and
 * values of axes.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse">org.opencv.core.Core.ellipse</a>
 */
    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType, int shift)
    {

        ellipse_0(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);

        return;
    }

/**
 * <p>Draws a simple or thick elliptic arc or fills an ellipse sector.</p>
 *
 * <p>The functions <code>ellipse</code> with less parameters draw an ellipse
 * outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
 * A piecewise-linear curve is used to approximate the elliptic arc boundary. If
 * you need more control of the ellipse rendering, you can retrieve the curve
 * using "ellipse2Poly" and then render it with "polylines" or fill it with
 * "fillPoly". If you use the first variant of the function and want to draw the
 * whole ellipse, not an arc, pass <code>startAngle=0</code> and
 * <code>endAngle=360</code>. The figure below explains the meaning of the
 * parameters.
 * Figure 1. Parameters of Elliptic Arc</p>
 *
 * @param img Image.
 * @param center Center of the ellipse.
 * @param axes Half of the size of the ellipse main axes.
 * @param angle Ellipse rotation angle in degrees.
 * @param startAngle Starting angle of the elliptic arc in degrees.
 * @param endAngle Ending angle of the elliptic arc in degrees.
 * @param color Ellipse color.
 * @param thickness Thickness of the ellipse arc outline, if positive.
 * Otherwise, this indicates that a filled ellipse sector is to be drawn.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse">org.opencv.core.Core.ellipse</a>
 */
    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness)
    {

        ellipse_1(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws a simple or thick elliptic arc or fills an ellipse sector.</p>
 *
 * <p>The functions <code>ellipse</code> with less parameters draw an ellipse
 * outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
 * A piecewise-linear curve is used to approximate the elliptic arc boundary. If
 * you need more control of the ellipse rendering, you can retrieve the curve
 * using "ellipse2Poly" and then render it with "polylines" or fill it with
 * "fillPoly". If you use the first variant of the function and want to draw the
 * whole ellipse, not an arc, pass <code>startAngle=0</code> and
 * <code>endAngle=360</code>. The figure below explains the meaning of the
 * parameters.
 * Figure 1. Parameters of Elliptic Arc</p>
 *
 * @param img Image.
 * @param center Center of the ellipse.
 * @param axes Half of the size of the ellipse main axes.
 * @param angle Ellipse rotation angle in degrees.
 * @param startAngle Starting angle of the elliptic arc in degrees.
 * @param endAngle Ending angle of the elliptic arc in degrees.
 * @param color Ellipse color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse">org.opencv.core.Core.ellipse</a>
 */
    public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color)
    {

        ellipse_2(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = 8)
    //

/**
 * <p>Draws a simple or thick elliptic arc or fills an ellipse sector.</p>
 *
 * <p>The functions <code>ellipse</code> with less parameters draw an ellipse
 * outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
 * A piecewise-linear curve is used to approximate the elliptic arc boundary. If
 * you need more control of the ellipse rendering, you can retrieve the curve
 * using "ellipse2Poly" and then render it with "polylines" or fill it with
 * "fillPoly". If you use the first variant of the function and want to draw the
 * whole ellipse, not an arc, pass <code>startAngle=0</code> and
 * <code>endAngle=360</code>. The figure below explains the meaning of the
 * parameters.
 * Figure 1. Parameters of Elliptic Arc</p>
 *
 * @param img Image.
 * @param box Alternative ellipse representation via "RotatedRect" or
 * <code>CvBox2D</code>. This means that the function draws an ellipse inscribed
 * in the rotated rectangle.
 * @param color Ellipse color.
 * @param thickness Thickness of the ellipse arc outline, if positive.
 * Otherwise, this indicates that a filled ellipse sector is to be drawn.
 * @param lineType Type of the ellipse boundary. See the "line" description.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse">org.opencv.core.Core.ellipse</a>
 */
    public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness, int lineType)
    {

        ellipse_3(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType);

        return;
    }

/**
 * <p>Draws a simple or thick elliptic arc or fills an ellipse sector.</p>
 *
 * <p>The functions <code>ellipse</code> with less parameters draw an ellipse
 * outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
 * A piecewise-linear curve is used to approximate the elliptic arc boundary. If
 * you need more control of the ellipse rendering, you can retrieve the curve
 * using "ellipse2Poly" and then render it with "polylines" or fill it with
 * "fillPoly". If you use the first variant of the function and want to draw the
 * whole ellipse, not an arc, pass <code>startAngle=0</code> and
 * <code>endAngle=360</code>. The figure below explains the meaning of the
 * parameters.
 * Figure 1. Parameters of Elliptic Arc</p>
 *
 * @param img Image.
 * @param box Alternative ellipse representation via "RotatedRect" or
 * <code>CvBox2D</code>. This means that the function draws an ellipse inscribed
 * in the rotated rectangle.
 * @param color Ellipse color.
 * @param thickness Thickness of the ellipse arc outline, if positive.
 * Otherwise, this indicates that a filled ellipse sector is to be drawn.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse">org.opencv.core.Core.ellipse</a>
 */
    public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness)
    {

        ellipse_4(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws a simple or thick elliptic arc or fills an ellipse sector.</p>
 *
 * <p>The functions <code>ellipse</code> with less parameters draw an ellipse
 * outline, a filled ellipse, an elliptic arc, or a filled ellipse sector.
 * A piecewise-linear curve is used to approximate the elliptic arc boundary. If
 * you need more control of the ellipse rendering, you can retrieve the curve
 * using "ellipse2Poly" and then render it with "polylines" or fill it with
 * "fillPoly". If you use the first variant of the function and want to draw the
 * whole ellipse, not an arc, pass <code>startAngle=0</code> and
 * <code>endAngle=360</code>. The figure below explains the meaning of the
 * parameters.
 * Figure 1. Parameters of Elliptic Arc</p>
 *
 * @param img Image.
 * @param box Alternative ellipse representation via "RotatedRect" or
 * <code>CvBox2D</code>. This means that the function draws an ellipse inscribed
 * in the rotated rectangle.
 * @param color Ellipse color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse">org.opencv.core.Core.ellipse</a>
 */
    public static void ellipse(Mat img, RotatedRect box, Scalar color)
    {

        ellipse_5(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts)
    //

/**
 * <p>Approximates an elliptic arc with a polyline.</p>
 *
 * <p>The function <code>ellipse2Poly</code> computes the vertices of a polyline
 * that approximates the specified elliptic arc. It is used by "ellipse".</p>
 *
 * @param center Center of the arc.
 * @param axes Half of the size of the ellipse main axes. See the "ellipse" for
 * details.
 * @param angle Rotation angle of the ellipse in degrees. See the "ellipse" for
 * details.
 * @param arcStart Starting angle of the elliptic arc in degrees.
 * @param arcEnd Ending angle of the elliptic arc in degrees.
 * @param delta Angle between the subsequent polyline vertices. It defines the
 * approximation accuracy.
 * @param pts Output vector of polyline vertices.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#ellipse2poly">org.opencv.core.Core.ellipse2Poly</a>
 */
    public static void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, MatOfPoint pts)
    {
        Mat pts_mat = pts;
        ellipse2Poly_0(center.x, center.y, axes.width, axes.height, angle, arcStart, arcEnd, delta, pts_mat.nativeObj);

        return;
    }


    //
    // C++:  void exp(Mat src, Mat& dst)
    //

/**
 * <p>Calculates the exponent of every array element.</p>
 *
 * <p>The function <code>exp</code> calculates the exponent of every element of the
 * input array:</p>
 *
 * <p><em>dst [I] = e^(src(I))</em></p>
 *
 * <p>The maximum relative error is about <code>7e-6</code> for single-precision
 * input and less than <code>1e-10</code> for double-precision input. Currently,
 * the function converts denormalized values to zeros on output. Special values
 * (NaN, Inf) are not handled.</p>
 *
 * @param src input array.
 * @param dst output array of the same size and type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#exp">org.opencv.core.Core.exp</a>
 * @see org.opencv.core.Core#log
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#pow
 * @see org.opencv.core.Core#sqrt
 * @see org.opencv.core.Core#magnitude
 * @see org.opencv.core.Core#polarToCart
 * @see org.opencv.core.Core#phase
 */
    public static void exp(Mat src, Mat dst)
    {

        exp_0(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void extractChannel(Mat src, Mat& dst, int coi)
    //

    public static void extractChannel(Mat src, Mat dst, int coi)
    {

        extractChannel_0(src.nativeObj, dst.nativeObj, coi);

        return;
    }


    //
    // C++:  float fastAtan2(float y, float x)
    //

/**
 * <p>Calculates the angle of a 2D vector in degrees.</p>
 *
 * <p>The function <code>fastAtan2</code> calculates the full-range angle of an
 * input 2D vector. The angle is measured in degrees and varies from 0 to 360
 * degrees. The accuracy is about 0.3 degrees.</p>
 *
 * @param y y-coordinate of the vector.
 * @param x x-coordinate of the vector.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#fastatan2">org.opencv.core.Core.fastAtan2</a>
 */
    public static float fastAtan2(float y, float x)
    {

        float retVal = fastAtan2_0(y, x);

        return retVal;
    }


    //
    // C++:  void fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = 8, int shift = 0)
    //

/**
 * <p>Fills a convex polygon.</p>
 *
 * <p>The function <code>fillConvexPoly</code> draws a filled convex polygon.
 * This function is much faster than the function <code>fillPoly</code>. It can
 * fill not only convex polygons but any monotonic polygon without
 * self-intersections, that is, a polygon whose contour intersects every
 * horizontal line (scan line) twice at the most (though, its top-most and/or
 * the bottom edge could be horizontal).</p>
 *
 * @param img Image.
 * @param points a points
 * @param color Polygon color.
 * @param lineType Type of the polygon boundaries. See the "line" description.
 * @param shift Number of fractional bits in the vertex coordinates.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#fillconvexpoly">org.opencv.core.Core.fillConvexPoly</a>
 */
    public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType, int shift)
    {
        Mat points_mat = points;
        fillConvexPoly_0(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift);

        return;
    }

/**
 * <p>Fills a convex polygon.</p>
 *
 * <p>The function <code>fillConvexPoly</code> draws a filled convex polygon.
 * This function is much faster than the function <code>fillPoly</code>. It can
 * fill not only convex polygons but any monotonic polygon without
 * self-intersections, that is, a polygon whose contour intersects every
 * horizontal line (scan line) twice at the most (though, its top-most and/or
 * the bottom edge could be horizontal).</p>
 *
 * @param img Image.
 * @param points a points
 * @param color Polygon color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#fillconvexpoly">org.opencv.core.Core.fillConvexPoly</a>
 */
    public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color)
    {
        Mat points_mat = points;
        fillConvexPoly_1(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = 8, int shift = 0, Point offset = Point())
    //

/**
 * <p>Fills the area bounded by one or more polygons.</p>
 *
 * <p>The function <code>fillPoly</code> fills an area bounded by several polygonal
 * contours. The function can fill complex areas, for example, areas with holes,
 * contours with self-intersections (some of their parts), and so forth.</p>
 *
 * @param img Image.
 * @param pts Array of polygons where each polygon is represented as an array of
 * points.
 * @param color Polygon color.
 * @param lineType Type of the polygon boundaries. See the "line" description.
 * @param shift Number of fractional bits in the vertex coordinates.
 * @param offset Optional offset of all points of the contours.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#fillpoly">org.opencv.core.Core.fillPoly</a>
 */
    public static void fillPoly(Mat img, List<MatOfPoint> pts, Scalar color, int lineType, int shift, Point offset)
    {
        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
        fillPoly_0(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift, offset.x, offset.y);

        return;
    }

/**
 * <p>Fills the area bounded by one or more polygons.</p>
 *
 * <p>The function <code>fillPoly</code> fills an area bounded by several polygonal
 * contours. The function can fill complex areas, for example, areas with holes,
 * contours with self-intersections (some of their parts), and so forth.</p>
 *
 * @param img Image.
 * @param pts Array of polygons where each polygon is represented as an array of
 * points.
 * @param color Polygon color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#fillpoly">org.opencv.core.Core.fillPoly</a>
 */
    public static void fillPoly(Mat img, List<MatOfPoint> pts, Scalar color)
    {
        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
        fillPoly_1(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void findNonZero(Mat src, Mat& idx)
    //

    public static void findNonZero(Mat src, Mat idx)
    {

        findNonZero_0(src.nativeObj, idx.nativeObj);

        return;
    }


    //
    // C++:  void flip(Mat src, Mat& dst, int flipCode)
    //

/**
 * <p>Flips a 2D array around vertical, horizontal, or both axes.</p>
 *
 * <p>The function <code>flip</code> flips the array in one of three different ways
 * (row and column indices are 0-based):</p>
 *
 * <p><em>dst _(ij) =&ltBR&gt <= ft(&ltBR&gt ltBR gtsrc _(src.rows-i-1,j) if
 * flipCode = 0
 * ltBR gtsrc _(i, src.cols -j-1) if flipCode gt 0
 * ltBR gtsrc _(src.rows -i-1, src.cols -j-1) if flipCode lt 0
 * ltBR gt&ltBR&gtright.</em></p>
 *
 * <p>The example scenarios of using the function are the following:</p>
 * <ul>
 *   <li> Vertical flipping of the image (<code>flipCode == 0</code>) to switch
 * between top-left and bottom-left image origin. This is a typical operation in
 * video processing on Microsoft Windows* OS.
 *   <li> Horizontal flipping of the image with the subsequent horizontal shift
 * and absolute difference calculation to check for a vertical-axis symmetry
 * (<code>flipCode > 0</code>).
 *   <li> Simultaneous horizontal and vertical flipping of the image with the
 * subsequent shift and absolute difference calculation to check for a central
 * symmetry (<code>flipCode < 0</code>).
 *   <li> Reversing the order of point arrays (<code>flipCode > 0</code> or
 * <code>flipCode == 0</code>).
 * </ul>
 *
 * @param src input array.
 * @param dst output array of the same size and type as <code>src</code>.
 * @param flipCode a flag to specify how to flip the array; 0 means flipping
 * around the x-axis and positive value (for example, 1) means flipping around
 * y-axis. Negative value (for example, -1) means flipping around both axes (see
 * the discussion below for the formulas).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#flip">org.opencv.core.Core.flip</a>
 * @see org.opencv.core.Core#repeat
 * @see org.opencv.core.Core#transpose
 * @see org.opencv.core.Core#completeSymm
 */
    public static void flip(Mat src, Mat dst, int flipCode)
    {

        flip_0(src.nativeObj, dst.nativeObj, flipCode);

        return;
    }


    //
    // C++:  void gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat& dst, int flags = 0)
    //

/**
 * <p>Performs generalized matrix multiplication.</p>
 *
 * <p>The function performs generalized matrix multiplication similar to the
 * <code>gemm</code> functions in BLAS level 3. For example, <code>gemm(src1,
 * src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)</code> corresponds to</p>
 *
 * <p><em>dst = alpha * src1 ^T * src2 + beta * src3 ^T&ltBR&gtThe function can be
 * replaced with a matrix expression. For example, the above call can be
 * replaced with: &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = alpha*src1.t()*src2 + beta*src3.t();</p>
 *
 * <p></code></p>
 *
 * @param src1 first multiplied input matrix that should have <code>CV_32FC1</code>,
 * <code>CV_64FC1</code>, <code>CV_32FC2</code>, or <code>CV_64FC2</code> type.
 * @param src2 second multiplied input matrix of the same type as
 * <code>src1</code>.
 * @param alpha weight of the matrix product.
 * @param src3 third optional delta matrix added to the matrix product; it
 * should have the same type as <code>src1</code> and <code>src2</code>.
 * @param beta weight of <code>src3</code>.
 * @param dst output matrix; it has the proper size and the same type as input
 * matrices.
 * @param flags operation flags:
 * <ul>
 *   <li> GEMM_1_T transposes <code>src1</code>.
 *   <li> GEMM_2_T transposes <code>src2</code>.
 *   <li> GEMM_3_T transposes <code>src3</code>.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#gemm">org.opencv.core.Core.gemm</a>
 * @see org.opencv.core.Core#mulTransposed
 * @see org.opencv.core.Core#transform
 */
    public static void gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst, int flags)
    {

        gemm_0(src1.nativeObj, src2.nativeObj, alpha, src3.nativeObj, beta, dst.nativeObj, flags);

        return;
    }

/**
 * <p>Performs generalized matrix multiplication.</p>
 *
 * <p>The function performs generalized matrix multiplication similar to the
 * <code>gemm</code> functions in BLAS level 3. For example, <code>gemm(src1,
 * src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)</code> corresponds to</p>
 *
 * <p><em>dst = alpha * src1 ^T * src2 + beta * src3 ^T&ltBR&gtThe function can be
 * replaced with a matrix expression. For example, the above call can be
 * replaced with: &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = alpha*src1.t()*src2 + beta*src3.t();</p>
 *
 * <p></code></p>
 *
 * @param src1 first multiplied input matrix that should have <code>CV_32FC1</code>,
 * <code>CV_64FC1</code>, <code>CV_32FC2</code>, or <code>CV_64FC2</code> type.
 * @param src2 second multiplied input matrix of the same type as
 * <code>src1</code>.
 * @param alpha weight of the matrix product.
 * @param src3 third optional delta matrix added to the matrix product; it
 * should have the same type as <code>src1</code> and <code>src2</code>.
 * @param beta weight of <code>src3</code>.
 * @param dst output matrix; it has the proper size and the same type as input
 * matrices.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#gemm">org.opencv.core.Core.gemm</a>
 * @see org.opencv.core.Core#mulTransposed
 * @see org.opencv.core.Core#transform
 */
    public static void gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst)
    {

        gemm_1(src1.nativeObj, src2.nativeObj, alpha, src3.nativeObj, beta, dst.nativeObj);

        return;
    }


    //
    // C++:  string getBuildInformation()
    //

/**
 * <p>Returns full configuration time cmake output.</p>
 *
 * <p>Returned value is raw cmake output including version control system revision,
 * compiler version, compiler flags, enabled modules and third party libraries,
 * etc. Output format depends on target architecture.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#getbuildinformation">org.opencv.core.Core.getBuildInformation</a>
 */
    public static String getBuildInformation()
    {

        String retVal = getBuildInformation_0();

        return retVal;
    }


    //
    // C++:  int64 getCPUTickCount()
    //

/**
 * <p>Returns the number of CPU ticks.</p>
 *
 * <p>The function returns the current number of CPU ticks on some architectures
 * (such as x86, x64, PowerPC). On other platforms the function is equivalent to
 * <code>getTickCount</code>. It can also be used for very accurate time
 * measurements, as well as for RNG initialization. Note that in case of
 * multi-CPU systems a thread, from which <code>getCPUTickCount</code> is
 * called, can be suspended and resumed at another CPU with its own counter. So,
 * theoretically (and practically) the subsequent calls to the function do not
 * necessary return the monotonously increasing values. Also, since a modern CPU
 * varies the CPU frequency depending on the load, the number of CPU clocks
 * spent in some code cannot be directly converted to time units. Therefore,
 * <code>getTickCount</code> is generally a preferable solution for measuring
 * execution time.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#getcputickcount">org.opencv.core.Core.getCPUTickCount</a>
 */
    public static long getCPUTickCount()
    {

        long retVal = getCPUTickCount_0();

        return retVal;
    }


    //
    // C++:  int getNumberOfCPUs()
    //

/**
 * <p>Returns the number of logical CPUs available for the process.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#getnumberofcpus">org.opencv.core.Core.getNumberOfCPUs</a>
 */
    public static int getNumberOfCPUs()
    {

        int retVal = getNumberOfCPUs_0();

        return retVal;
    }


    //
    // C++:  int getOptimalDFTSize(int vecsize)
    //

/**
 * <p>Returns the optimal DFT size for a given vector size.</p>
 *
 * <p>DFT performance is not a monotonic function of a vector size. Therefore, when
 * you calculate convolution of two arrays or perform the spectral analysis of
 * an array, it usually makes sense to pad the input data with zeros to get a
 * bit larger array that can be transformed much faster than the original one.
 * Arrays whose size is a power-of-two (2, 4, 8, 16, 32,...) are the fastest to
 * process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for
 * example, 300 = 5*5*3*2*2) are also processed quite efficiently.</p>
 *
 * <p>The function <code>getOptimalDFTSize</code> returns the minimum number
 * <code>N</code> that is greater than or equal to <code>vecsize</code> so that
 * the DFT of a vector of size <code>N</code> can be processed efficiently. In
 * the current implementation <code>N</code> = 2^"p" * 3^"q" * 5^"r" for some
 * integer <code>p</code>, <code>q</code>, <code>r</code>.</p>
 *
 * <p>The function returns a negative number if <code>vecsize</code> is too large
 * (very close to <code>INT_MAX</code>).</p>
 *
 * <p>While the function cannot be used directly to estimate the optimal vector
 * size for DCT transform (since the current DCT implementation supports only
 * even-size vectors), it can be easily processed as <code>getOptimalDFTSize((vecsize+1)/2)*2</code>.</p>
 *
 * @param vecsize vector size.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#getoptimaldftsize">org.opencv.core.Core.getOptimalDFTSize</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#dct
 * @see org.opencv.core.Core#idct
 * @see org.opencv.core.Core#mulSpectrums
 * @see org.opencv.core.Core#idft
 */
    public static int getOptimalDFTSize(int vecsize)
    {

        int retVal = getOptimalDFTSize_0(vecsize);

        return retVal;
    }


    //
    // C++:  int64 getTickCount()
    //

/**
 * <p>Returns the number of ticks.</p>
 *
 * <p>The function returns the number of ticks after the certain event (for
 * example, when the machine was turned on).
 * It can be used to initialize "RNG" or to measure a function execution time by
 * reading the tick count before and after the function call. See also the tick
 * frequency.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#gettickcount">org.opencv.core.Core.getTickCount</a>
 */
    public static long getTickCount()
    {

        long retVal = getTickCount_0();

        return retVal;
    }


    //
    // C++:  double getTickFrequency()
    //

/**
 * <p>Returns the number of ticks per second.</p>
 *
 * <p>The function returns the number of ticks per second.That is, the following
 * code computes the execution time in seconds: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>double t = (double)getTickCount();</p>
 *
 * <p>// do something...</p>
 *
 * <p>t = ((double)getTickCount() - t)/getTickFrequency();</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/utility_and_system_functions_and_macros.html#gettickfrequency">org.opencv.core.Core.getTickFrequency</a>
 */
    public static double getTickFrequency()
    {

        double retVal = getTickFrequency_0();

        return retVal;
    }


    //
    // C++:  void hconcat(vector_Mat src, Mat& dst)
    //

    public static void hconcat(List<Mat> src, Mat dst)
    {
        Mat src_mat = Converters.vector_Mat_to_Mat(src);
        hconcat_0(src_mat.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void idct(Mat src, Mat& dst, int flags = 0)
    //

/**
 * <p>Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.</p>
 *
 * <p><code>idct(src, dst, flags)</code> is equivalent to <code>dct(src, dst, flags
 * | DCT_INVERSE)</code>.</p>
 *
 * @param src input floating-point single-channel array.
 * @param dst output array of the same size and type as <code>src</code>.
 * @param flags operation flags.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#idct">org.opencv.core.Core.idct</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#dct
 * @see org.opencv.core.Core#getOptimalDFTSize
 * @see org.opencv.core.Core#idft
 */
    public static void idct(Mat src, Mat dst, int flags)
    {

        idct_0(src.nativeObj, dst.nativeObj, flags);

        return;
    }

/**
 * <p>Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.</p>
 *
 * <p><code>idct(src, dst, flags)</code> is equivalent to <code>dct(src, dst, flags
 * | DCT_INVERSE)</code>.</p>
 *
 * @param src input floating-point single-channel array.
 * @param dst output array of the same size and type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#idct">org.opencv.core.Core.idct</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#dct
 * @see org.opencv.core.Core#getOptimalDFTSize
 * @see org.opencv.core.Core#idft
 */
    public static void idct(Mat src, Mat dst)
    {

        idct_1(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void idft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0)
    //

/**
 * <p>Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.</p>
 *
 * <p><code>idft(src, dst, flags)</code> is equivalent to <code>dft(src, dst, flags
 * | DFT_INVERSE)</code>.</p>
 *
 * <p>See "dft" for details.</p>
 *
 * <p>Note: None of <code>dft</code> and <code>idft</code> scales the result by
 * default. So, you should pass <code>DFT_SCALE</code> to one of
 * <code>dft</code> or <code>idft</code> explicitly to make these transforms
 * mutually inverse.</p>
 *
 * @param src input floating-point real or complex array.
 * @param dst output array whose size and type depend on the <code>flags</code>.
 * @param flags operation flags (see "dft").
 * @param nonzeroRows number of <code>dst</code> rows to process; the rest of
 * the rows have undefined content (see the convolution sample in "dft"
 * description.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#idft">org.opencv.core.Core.idft</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#dct
 * @see org.opencv.core.Core#getOptimalDFTSize
 * @see org.opencv.core.Core#idct
 * @see org.opencv.core.Core#mulSpectrums
 */
    public static void idft(Mat src, Mat dst, int flags, int nonzeroRows)
    {

        idft_0(src.nativeObj, dst.nativeObj, flags, nonzeroRows);

        return;
    }

/**
 * <p>Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.</p>
 *
 * <p><code>idft(src, dst, flags)</code> is equivalent to <code>dft(src, dst, flags
 * | DFT_INVERSE)</code>.</p>
 *
 * <p>See "dft" for details.</p>
 *
 * <p>Note: None of <code>dft</code> and <code>idft</code> scales the result by
 * default. So, you should pass <code>DFT_SCALE</code> to one of
 * <code>dft</code> or <code>idft</code> explicitly to make these transforms
 * mutually inverse.</p>
 *
 * @param src input floating-point real or complex array.
 * @param dst output array whose size and type depend on the <code>flags</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#idft">org.opencv.core.Core.idft</a>
 * @see org.opencv.core.Core#dft
 * @see org.opencv.core.Core#dct
 * @see org.opencv.core.Core#getOptimalDFTSize
 * @see org.opencv.core.Core#idct
 * @see org.opencv.core.Core#mulSpectrums
 */
    public static void idft(Mat src, Mat dst)
    {

        idft_1(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat& dst)
    //

/**
 * <p>Checks if array elements lie between the elements of two other arrays.</p>
 *
 * <p>The function checks the range as follows:</p>
 * <ul>
 *   <li> For every element of a single-channel input array:
 * </ul>
 *
 * <p><em>dst(I)= lowerb(I)_0 <= src(I)_0 <= upperb(I)_0</em></p>
 *
 * <ul>
 *   <li> For two-channel arrays:
 * </ul>
 *
 * <p><em>dst(I)= lowerb(I)_0 <= src(I)_0 <= upperb(I)_0 land lowerb(I)_1 <=
 * src(I)_1 <= upperb(I)_1</em></p>
 *
 * <ul>
 *   <li> and so forth.
 * </ul>
 *
 * <p>That is, <code>dst</code> (I) is set to 255 (all <code>1</code> -bits) if
 * <code>src</code> (I) is within the specified 1D, 2D, 3D,... box and 0
 * otherwise.</p>
 *
 * <p>When the lower and/or upper boundary parameters are scalars, the indexes
 * <code>(I)</code> at <code>lowerb</code> and <code>upperb</code> in the above
 * formulas should be omitted.</p>
 *
 * @param src first input array.
 * @param lowerb inclusive lower boundary array or a scalar.
 * @param upperb inclusive upper boundary array or a scalar.
 * @param dst output array of the same size as <code>src</code> and
 * <code>CV_8U</code> type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#inrange">org.opencv.core.Core.inRange</a>
 */
    public static void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat dst)
    {

        inRange_0(src.nativeObj, lowerb.val[0], lowerb.val[1], lowerb.val[2], lowerb.val[3], upperb.val[0], upperb.val[1], upperb.val[2], upperb.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  void insertChannel(Mat src, Mat& dst, int coi)
    //

    public static void insertChannel(Mat src, Mat dst, int coi)
    {

        insertChannel_0(src.nativeObj, dst.nativeObj, coi);

        return;
    }


    //
    // C++:  double invert(Mat src, Mat& dst, int flags = DECOMP_LU)
    //

/**
 * <p>Finds the inverse or pseudo-inverse of a matrix.</p>
 *
 * <p>The function <code>invert</code> inverts the matrix <code>src</code> and
 * stores the result in <code>dst</code>.
 * When the matrix <code>src</code> is singular or non-square, the function
 * calculates the pseudo-inverse matrix (the <code>dst</code> matrix) so that
 * <code>norm(src*dst - I)</code> is minimal, where I is an identity matrix.</p>
 *
 * <p>In case of the <code>DECOMP_LU</code> method, the function returns non-zero
 * value if the inverse has been successfully calculated and 0 if
 * <code>src</code> is singular.</p>
 *
 * <p>In case of the <code>DECOMP_SVD</code> method, the function returns the
 * inverse condition number of <code>src</code> (the ratio of the smallest
 * singular value to the largest singular value) and 0 if <code>src</code> is
 * singular. The SVD method calculates a pseudo-inverse matrix if
 * <code>src</code> is singular.</p>
 *
 * <p>Similarly to <code>DECOMP_LU</code>, the method <code>DECOMP_CHOLESKY</code>
 * works only with non-singular square matrices that should also be symmetrical
 * and positively defined. In this case, the function stores the inverted matrix
 * in <code>dst</code> and returns non-zero. Otherwise, it returns 0.</p>
 *
 * @param src input floating-point <code>M x N</code> matrix.
 * @param dst output matrix of <code>N x M</code> size and the same type as
 * <code>src</code>.
 * @param flags inversion method :
 * <ul>
 *   <li> DECOMP_LU Gaussian elimination with the optimal pivot element chosen.
 *   <li> DECOMP_SVD singular value decomposition (SVD) method.
 *   <li> DECOMP_CHOLESKY Cholesky decomposition; the matrix must be symmetrical
 * and positively defined.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#invert">org.opencv.core.Core.invert</a>
 * @see org.opencv.core.Core#solve
 */
    public static double invert(Mat src, Mat dst, int flags)
    {

        double retVal = invert_0(src.nativeObj, dst.nativeObj, flags);

        return retVal;
    }

/**
 * <p>Finds the inverse or pseudo-inverse of a matrix.</p>
 *
 * <p>The function <code>invert</code> inverts the matrix <code>src</code> and
 * stores the result in <code>dst</code>.
 * When the matrix <code>src</code> is singular or non-square, the function
 * calculates the pseudo-inverse matrix (the <code>dst</code> matrix) so that
 * <code>norm(src*dst - I)</code> is minimal, where I is an identity matrix.</p>
 *
 * <p>In case of the <code>DECOMP_LU</code> method, the function returns non-zero
 * value if the inverse has been successfully calculated and 0 if
 * <code>src</code> is singular.</p>
 *
 * <p>In case of the <code>DECOMP_SVD</code> method, the function returns the
 * inverse condition number of <code>src</code> (the ratio of the smallest
 * singular value to the largest singular value) and 0 if <code>src</code> is
 * singular. The SVD method calculates a pseudo-inverse matrix if
 * <code>src</code> is singular.</p>
 *
 * <p>Similarly to <code>DECOMP_LU</code>, the method <code>DECOMP_CHOLESKY</code>
 * works only with non-singular square matrices that should also be symmetrical
 * and positively defined. In this case, the function stores the inverted matrix
 * in <code>dst</code> and returns non-zero. Otherwise, it returns 0.</p>
 *
 * @param src input floating-point <code>M x N</code> matrix.
 * @param dst output matrix of <code>N x M</code> size and the same type as
 * <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#invert">org.opencv.core.Core.invert</a>
 * @see org.opencv.core.Core#solve
 */
    public static double invert(Mat src, Mat dst)
    {

        double retVal = invert_1(src.nativeObj, dst.nativeObj);

        return retVal;
    }


    //
    // C++:  double kmeans(Mat data, int K, Mat& bestLabels, TermCriteria criteria, int attempts, int flags, Mat& centers = Mat())
    //

/**
 * <p>Finds centers of clusters and groups input samples around the clusters.</p>
 *
 * <p>The function <code>kmeans</code> implements a k-means algorithm that finds
 * the centers of <code>cluster_count</code> clusters and groups the input
 * samples around the clusters. As an output, <em>labels_i</em> contains a
 * 0-based cluster index for the sample stored in the <em>i^(th)</em> row of the
 * <code>samples</code> matrix.</p>
 *
 * <p>The function returns the compactness measure that is computed as</p>
 *
 * <p><em>sum _i|samples _i - centers _(labels _i)| ^2</em></p>
 *
 * <p>after every attempt. The best (minimum) value is chosen and the corresponding
 * labels and the compactness value are returned by the function.
 * Basically, you can use only the core of the function, set the number of
 * attempts to 1, initialize labels each time using a custom algorithm, pass
 * them with the (<code>flags</code> = <code>KMEANS_USE_INITIAL_LABELS</code>)
 * flag, and then choose the best (most-compact) clustering.</p>
 *
 * <p>Note:</p>
 * <ul>
 *   <li> An example on K-means clustering can be found at opencv_source_code/samples/cpp/kmeans.cpp
 *   <li> (Python) An example on K-means clustering can be found at
 * opencv_source_code/samples/python2/kmeans.py
 * </ul>
 *
 * @param data Data for clustering. An array of N-Dimensional points with float
 * coordinates is needed. Examples of this array can be:
 * <ul>
 *   <li> <code>Mat points(count, 2, CV_32F);</code>
 *   <li> <code>Mat points(count, 1, CV_32FC2);</code>
 *   <li> <code>Mat points(1, count, CV_32FC2);</code>
 *   <li> <code>std.vector<cv.Point2f> points(sampleCount);</code>
 * </ul>
 * @param K Number of clusters to split the set by.
 * @param bestLabels a bestLabels
 * @param criteria The algorithm termination criteria, that is, the maximum
 * number of iterations and/or the desired accuracy. The accuracy is specified
 * as <code>criteria.epsilon</code>. As soon as each of the cluster centers
 * moves by less than <code>criteria.epsilon</code> on some iteration, the
 * algorithm stops.
 * @param attempts Flag to specify the number of times the algorithm is executed
 * using different initial labellings. The algorithm returns the labels that
 * yield the best compactness (see the last function parameter).
 * @param flags Flag that can take the following values:
 * <ul>
 *   <li> KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.
 *   <li> KMEANS_PP_CENTERS Use <code>kmeans++</code> center initialization by
 * Arthur and Vassilvitskii [Arthur2007].
 *   <li> KMEANS_USE_INITIAL_LABELS During the first (and possibly the only)
 * attempt, use the user-supplied labels instead of computing them from the
 * initial centers. For the second and further attempts, use the random or
 * semi-random centers. Use one of <code>KMEANS_*_CENTERS</code> flag to specify
 * the exact method.
 * </ul>
 * @param centers Output matrix of the cluster centers, one row per each cluster
 * center.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/clustering.html#kmeans">org.opencv.core.Core.kmeans</a>
 */
    public static double kmeans(Mat data, int K, Mat bestLabels, TermCriteria criteria, int attempts, int flags, Mat centers)
    {

        double retVal = kmeans_0(data.nativeObj, K, bestLabels.nativeObj, criteria.type, criteria.maxCount, criteria.epsilon, attempts, flags, centers.nativeObj);

        return retVal;
    }

/**
 * <p>Finds centers of clusters and groups input samples around the clusters.</p>
 *
 * <p>The function <code>kmeans</code> implements a k-means algorithm that finds
 * the centers of <code>cluster_count</code> clusters and groups the input
 * samples around the clusters. As an output, <em>labels_i</em> contains a
 * 0-based cluster index for the sample stored in the <em>i^(th)</em> row of the
 * <code>samples</code> matrix.</p>
 *
 * <p>The function returns the compactness measure that is computed as</p>
 *
 * <p><em>sum _i|samples _i - centers _(labels _i)| ^2</em></p>
 *
 * <p>after every attempt. The best (minimum) value is chosen and the corresponding
 * labels and the compactness value are returned by the function.
 * Basically, you can use only the core of the function, set the number of
 * attempts to 1, initialize labels each time using a custom algorithm, pass
 * them with the (<code>flags</code> = <code>KMEANS_USE_INITIAL_LABELS</code>)
 * flag, and then choose the best (most-compact) clustering.</p>
 *
 * <p>Note:</p>
 * <ul>
 *   <li> An example on K-means clustering can be found at opencv_source_code/samples/cpp/kmeans.cpp
 *   <li> (Python) An example on K-means clustering can be found at
 * opencv_source_code/samples/python2/kmeans.py
 * </ul>
 *
 * @param data Data for clustering. An array of N-Dimensional points with float
 * coordinates is needed. Examples of this array can be:
 * <ul>
 *   <li> <code>Mat points(count, 2, CV_32F);</code>
 *   <li> <code>Mat points(count, 1, CV_32FC2);</code>
 *   <li> <code>Mat points(1, count, CV_32FC2);</code>
 *   <li> <code>std.vector<cv.Point2f> points(sampleCount);</code>
 * </ul>
 * @param K Number of clusters to split the set by.
 * @param bestLabels a bestLabels
 * @param criteria The algorithm termination criteria, that is, the maximum
 * number of iterations and/or the desired accuracy. The accuracy is specified
 * as <code>criteria.epsilon</code>. As soon as each of the cluster centers
 * moves by less than <code>criteria.epsilon</code> on some iteration, the
 * algorithm stops.
 * @param attempts Flag to specify the number of times the algorithm is executed
 * using different initial labellings. The algorithm returns the labels that
 * yield the best compactness (see the last function parameter).
 * @param flags Flag that can take the following values:
 * <ul>
 *   <li> KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.
 *   <li> KMEANS_PP_CENTERS Use <code>kmeans++</code> center initialization by
 * Arthur and Vassilvitskii [Arthur2007].
 *   <li> KMEANS_USE_INITIAL_LABELS During the first (and possibly the only)
 * attempt, use the user-supplied labels instead of computing them from the
 * initial centers. For the second and further attempts, use the random or
 * semi-random centers. Use one of <code>KMEANS_*_CENTERS</code> flag to specify
 * the exact method.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/clustering.html#kmeans">org.opencv.core.Core.kmeans</a>
 */
    public static double kmeans(Mat data, int K, Mat bestLabels, TermCriteria criteria, int attempts, int flags)
    {

        double retVal = kmeans_1(data.nativeObj, K, bestLabels.nativeObj, criteria.type, criteria.maxCount, criteria.epsilon, attempts, flags);

        return retVal;
    }


    //
    // C++:  void line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    //

/**
 * <p>Draws a line segment connecting two points.</p>
 *
 * <p>The function <code>line</code> draws the line segment between
 * <code>pt1</code> and <code>pt2</code> points in the image. The line is
 * clipped by the image boundaries. For non-antialiased lines with integer
 * coordinates, the 8-connected or 4-connected Bresenham algorithm is used.
 * Thick lines are drawn with rounding endings.
 * Antialiased lines are drawn using Gaussian filtering. To specify the line
 * color, you may use the macro <code>CV_RGB(r, g, b)</code>.</p>
 *
 * @param img Image.
 * @param pt1 First point of the line segment.
 * @param pt2 Second point of the line segment.
 * @param color Line color.
 * @param thickness Line thickness.
 * @param lineType Type of the line:
 * <ul>
 *   <li> 8 (or omitted) - 8-connected line.
 *   <li> 4 - 4-connected line.
 *   <li> CV_AA - antialiased line.
 * </ul>
 * @param shift Number of fractional bits in the point coordinates.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#line">org.opencv.core.Core.line</a>
 */
    public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift)
    {

        line_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);

        return;
    }

/**
 * <p>Draws a line segment connecting two points.</p>
 *
 * <p>The function <code>line</code> draws the line segment between
 * <code>pt1</code> and <code>pt2</code> points in the image. The line is
 * clipped by the image boundaries. For non-antialiased lines with integer
 * coordinates, the 8-connected or 4-connected Bresenham algorithm is used.
 * Thick lines are drawn with rounding endings.
 * Antialiased lines are drawn using Gaussian filtering. To specify the line
 * color, you may use the macro <code>CV_RGB(r, g, b)</code>.</p>
 *
 * @param img Image.
 * @param pt1 First point of the line segment.
 * @param pt2 Second point of the line segment.
 * @param color Line color.
 * @param thickness Line thickness.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#line">org.opencv.core.Core.line</a>
 */
    public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness)
    {

        line_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws a line segment connecting two points.</p>
 *
 * <p>The function <code>line</code> draws the line segment between
 * <code>pt1</code> and <code>pt2</code> points in the image. The line is
 * clipped by the image boundaries. For non-antialiased lines with integer
 * coordinates, the 8-connected or 4-connected Bresenham algorithm is used.
 * Thick lines are drawn with rounding endings.
 * Antialiased lines are drawn using Gaussian filtering. To specify the line
 * color, you may use the macro <code>CV_RGB(r, g, b)</code>.</p>
 *
 * @param img Image.
 * @param pt1 First point of the line segment.
 * @param pt2 Second point of the line segment.
 * @param color Line color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#line">org.opencv.core.Core.line</a>
 */
    public static void line(Mat img, Point pt1, Point pt2, Scalar color)
    {

        line_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void log(Mat src, Mat& dst)
    //

/**
 * <p>Calculates the natural logarithm of every array element.</p>
 *
 * <p>The function <code>log</code> calculates the natural logarithm of the
 * absolute value of every element of the input array:</p>
 *
 * <p><em>dst(I) = log|src(I)| if src(I) != 0 ; C otherwise</em></p>
 *
 * <p>where <code>C</code> is a large negative number (about -700 in the current
 * implementation).
 * The maximum relative error is about <code>7e-6</code> for single-precision
 * input and less than <code>1e-10</code> for double-precision input. Special
 * values (NaN, Inf) are not handled.</p>
 *
 * @param src input array.
 * @param dst output array of the same size and type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#log">org.opencv.core.Core.log</a>
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#pow
 * @see org.opencv.core.Core#sqrt
 * @see org.opencv.core.Core#magnitude
 * @see org.opencv.core.Core#polarToCart
 * @see org.opencv.core.Core#exp
 * @see org.opencv.core.Core#phase
 */
    public static void log(Mat src, Mat dst)
    {

        log_0(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void magnitude(Mat x, Mat y, Mat& magnitude)
    //

/**
 * <p>Calculates the magnitude of 2D vectors.</p>
 *
 * <p>The function <code>magnitude</code> calculates the magnitude of 2D vectors
 * formed from the corresponding elements of <code>x</code> and <code>y</code>
 * arrays:</p>
 *
 * <p><em>dst(I) = sqrt(x(I)^2 + y(I)^2)</em></p>
 *
 * @param x floating-point array of x-coordinates of the vectors.
 * @param y floating-point array of y-coordinates of the vectors; it must have
 * the same size as <code>x</code>.
 * @param magnitude output array of the same size and type as <code>x</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#magnitude">org.opencv.core.Core.magnitude</a>
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#phase
 * @see org.opencv.core.Core#sqrt
 * @see org.opencv.core.Core#polarToCart
 */
    public static void magnitude(Mat x, Mat y, Mat magnitude)
    {

        magnitude_0(x.nativeObj, y.nativeObj, magnitude.nativeObj);

        return;
    }


    //
    // C++:  void max(Mat src1, Mat src2, Mat& dst)
    //

/**
 * <p>Calculates per-element maximum of two arrays or an array and a scalar.</p>
 *
 * <p>The functions <code>max</code> calculate the per-element maximum of two
 * arrays:</p>
 *
 * <p><em>dst(I)= max(src1(I), src2(I))</em></p>
 *
 * <p>or array and a scalar:</p>
 *
 * <p><em>dst(I)= max(src1(I), value)</em></p>
 *
 * <p>In the second variant, when the input array is multi-channel, each channel is
 * compared with <code>value</code> independently.</p>
 *
 * <p>The first 3 variants of the function listed above are actually a part of
 * "MatrixExpressions". They return an expression object that can be further
 * either transformed/ assigned to a matrix, or passed to a function, and so on.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#max">org.opencv.core.Core.max</a>
 * @see org.opencv.core.Core#compare
 * @see org.opencv.core.Core#inRange
 * @see org.opencv.core.Core#minMaxLoc
 * @see org.opencv.core.Core#min
 */
    public static void max(Mat src1, Mat src2, Mat dst)
    {

        max_0(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void max(Mat src1, Scalar src2, Mat& dst)
    //

/**
 * <p>Calculates per-element maximum of two arrays or an array and a scalar.</p>
 *
 * <p>The functions <code>max</code> calculate the per-element maximum of two
 * arrays:</p>
 *
 * <p><em>dst(I)= max(src1(I), src2(I))</em></p>
 *
 * <p>or array and a scalar:</p>
 *
 * <p><em>dst(I)= max(src1(I), value)</em></p>
 *
 * <p>In the second variant, when the input array is multi-channel, each channel is
 * compared with <code>value</code> independently.</p>
 *
 * <p>The first 3 variants of the function listed above are actually a part of
 * "MatrixExpressions". They return an expression object that can be further
 * either transformed/ assigned to a matrix, or passed to a function, and so on.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#max">org.opencv.core.Core.max</a>
 * @see org.opencv.core.Core#compare
 * @see org.opencv.core.Core#inRange
 * @see org.opencv.core.Core#minMaxLoc
 * @see org.opencv.core.Core#min
 */
    public static void max(Mat src1, Scalar src2, Mat dst)
    {

        max_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  Scalar mean(Mat src, Mat mask = Mat())
    //

/**
 * <p>Calculates an average (mean) of array elements.</p>
 *
 * <p>The function <code>mean</code> calculates the mean value <code>M</code> of
 * array elements, independently for each channel, and return it:</p>
 *
 * <p><em>N = sum(by: I: mask(I) != 0) 1
 * M_c = (sum(by: I: mask(I) != 0)(mtx(I)_c))/N </em></p>
 *
 * <p>When all the mask elements are 0's, the functions return <code>Scalar.all(0)</code>.</p>
 *
 * @param src input array that should have from 1 to 4 channels so that the
 * result can be stored in "Scalar_".
 * @param mask optional operation mask.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#mean">org.opencv.core.Core.mean</a>
 * @see org.opencv.core.Core#countNonZero
 * @see org.opencv.core.Core#meanStdDev
 * @see org.opencv.core.Core#norm
 * @see org.opencv.core.Core#minMaxLoc
 */
    public static Scalar mean(Mat src, Mat mask)
    {

        Scalar retVal = new Scalar(mean_0(src.nativeObj, mask.nativeObj));

        return retVal;
    }

/**
 * <p>Calculates an average (mean) of array elements.</p>
 *
 * <p>The function <code>mean</code> calculates the mean value <code>M</code> of
 * array elements, independently for each channel, and return it:</p>
 *
 * <p><em>N = sum(by: I: mask(I) != 0) 1
 * M_c = (sum(by: I: mask(I) != 0)(mtx(I)_c))/N </em></p>
 *
 * <p>When all the mask elements are 0's, the functions return <code>Scalar.all(0)</code>.</p>
 *
 * @param src input array that should have from 1 to 4 channels so that the
 * result can be stored in "Scalar_".
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#mean">org.opencv.core.Core.mean</a>
 * @see org.opencv.core.Core#countNonZero
 * @see org.opencv.core.Core#meanStdDev
 * @see org.opencv.core.Core#norm
 * @see org.opencv.core.Core#minMaxLoc
 */
    public static Scalar mean(Mat src)
    {

        Scalar retVal = new Scalar(mean_1(src.nativeObj));

        return retVal;
    }


    //
    // C++:  void meanStdDev(Mat src, vector_double& mean, vector_double& stddev, Mat mask = Mat())
    //

/**
 * <p>Calculates a mean and standard deviation of array elements.</p>
 *
 * <p>The function <code>meanStdDev</code> calculates the mean and the standard
 * deviation <code>M</code> of array elements independently for each channel and
 * returns it via the output parameters:</p>
 *
 * <p><em>N = sum(by: I, mask(I) != 0) 1
 * mean _c = (sum_(I: mask(I) != 0) src(I)_c)/(N)
 * stddev _c = sqrt((sum_(I: mask(I) != 0)(src(I)_c - mean _c)^2)/(N)) </em></p>
 *
 * <p>When all the mask elements are 0's, the functions return <code>mean=stddev=Scalar.all(0)</code>.</p>
 *
 * <p>Note: The calculated standard deviation is only the diagonal of the complete
 * normalized covariance matrix. If the full matrix is needed, you can reshape
 * the multi-channel array <code>M x N</code> to the single-channel array
 * <code>M*N x mtx.channels()</code> (only possible when the matrix is
 * continuous) and then pass the matrix to "calcCovarMatrix".</p>
 *
 * @param src input array that should have from 1 to 4 channels so that the
 * results can be stored in "Scalar_" 's.
 * @param mean output parameter: calculated mean value.
 * @param stddev output parameter: calculateded standard deviation.
 * @param mask optional operation mask.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#meanstddev">org.opencv.core.Core.meanStdDev</a>
 * @see org.opencv.core.Core#countNonZero
 * @see org.opencv.core.Core#calcCovarMatrix
 * @see org.opencv.core.Core#minMaxLoc
 * @see org.opencv.core.Core#norm
 * @see org.opencv.core.Core#mean
 */
    public static void meanStdDev(Mat src, MatOfDouble mean, MatOfDouble stddev, Mat mask)
    {
        Mat mean_mat = mean;
        Mat stddev_mat = stddev;
        meanStdDev_0(src.nativeObj, mean_mat.nativeObj, stddev_mat.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates a mean and standard deviation of array elements.</p>
 *
 * <p>The function <code>meanStdDev</code> calculates the mean and the standard
 * deviation <code>M</code> of array elements independently for each channel and
 * returns it via the output parameters:</p>
 *
 * <p><em>N = sum(by: I, mask(I) != 0) 1
 * mean _c = (sum_(I: mask(I) != 0) src(I)_c)/(N)
 * stddev _c = sqrt((sum_(I: mask(I) != 0)(src(I)_c - mean _c)^2)/(N)) </em></p>
 *
 * <p>When all the mask elements are 0's, the functions return <code>mean=stddev=Scalar.all(0)</code>.</p>
 *
 * <p>Note: The calculated standard deviation is only the diagonal of the complete
 * normalized covariance matrix. If the full matrix is needed, you can reshape
 * the multi-channel array <code>M x N</code> to the single-channel array
 * <code>M*N x mtx.channels()</code> (only possible when the matrix is
 * continuous) and then pass the matrix to "calcCovarMatrix".</p>
 *
 * @param src input array that should have from 1 to 4 channels so that the
 * results can be stored in "Scalar_" 's.
 * @param mean output parameter: calculated mean value.
 * @param stddev output parameter: calculateded standard deviation.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#meanstddev">org.opencv.core.Core.meanStdDev</a>
 * @see org.opencv.core.Core#countNonZero
 * @see org.opencv.core.Core#calcCovarMatrix
 * @see org.opencv.core.Core#minMaxLoc
 * @see org.opencv.core.Core#norm
 * @see org.opencv.core.Core#mean
 */
    public static void meanStdDev(Mat src, MatOfDouble mean, MatOfDouble stddev)
    {
        Mat mean_mat = mean;
        Mat stddev_mat = stddev;
        meanStdDev_1(src.nativeObj, mean_mat.nativeObj, stddev_mat.nativeObj);

        return;
    }


    //
    // C++:  void merge(vector_Mat mv, Mat& dst)
    //

/**
 * <p>Creates one multichannel array out of several single-channel ones.</p>
 *
 * <p>The functions <code>merge</code> merge several arrays to make a single
 * multi-channel array. That is, each element of the output array will be a
 * concatenation of the elements of the input arrays, where elements of i-th
 * input array are treated as <code>mv[i].channels()</code>-element vectors.</p>
 *
 * <p>The function "split" does the reverse operation. If you need to shuffle
 * channels in some other advanced way, use "mixChannels".</p>
 *
 * @param mv input array or vector of matrices to be merged; all the matrices in
 * <code>mv</code> must have the same size and the same depth.
 * @param dst output array of the same size and the same depth as
 * <code>mv[0]</code>; The number of channels will be the total number of
 * channels in the matrix array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#merge">org.opencv.core.Core.merge</a>
 * @see org.opencv.core.Mat#reshape
 * @see org.opencv.core.Core#mixChannels
 * @see org.opencv.core.Core#split
 */
    public static void merge(List<Mat> mv, Mat dst)
    {
        Mat mv_mat = Converters.vector_Mat_to_Mat(mv);
        merge_0(mv_mat.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void min(Mat src1, Mat src2, Mat& dst)
    //

/**
 * <p>Calculates per-element minimum of two arrays or an array and a scalar.</p>
 *
 * <p>The functions <code>min</code> calculate the per-element minimum of two
 * arrays:</p>
 *
 * <p><em>dst(I)= min(src1(I), src2(I))</em></p>
 *
 * <p>or array and a scalar:</p>
 *
 * <p><em>dst(I)= min(src1(I), value)</em></p>
 *
 * <p>In the second variant, when the input array is multi-channel, each channel is
 * compared with <code>value</code> independently.</p>
 *
 * <p>The first three variants of the function listed above are actually a part of
 * "MatrixExpressions". They return the expression object that can be further
 * either transformed/assigned to a matrix, or passed to a function, and so on.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#min">org.opencv.core.Core.min</a>
 * @see org.opencv.core.Core#max
 * @see org.opencv.core.Core#compare
 * @see org.opencv.core.Core#inRange
 * @see org.opencv.core.Core#minMaxLoc
 */
    public static void min(Mat src1, Mat src2, Mat dst)
    {

        min_0(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void min(Mat src1, Scalar src2, Mat& dst)
    //

/**
 * <p>Calculates per-element minimum of two arrays or an array and a scalar.</p>
 *
 * <p>The functions <code>min</code> calculate the per-element minimum of two
 * arrays:</p>
 *
 * <p><em>dst(I)= min(src1(I), src2(I))</em></p>
 *
 * <p>or array and a scalar:</p>
 *
 * <p><em>dst(I)= min(src1(I), value)</em></p>
 *
 * <p>In the second variant, when the input array is multi-channel, each channel is
 * compared with <code>value</code> independently.</p>
 *
 * <p>The first three variants of the function listed above are actually a part of
 * "MatrixExpressions". They return the expression object that can be further
 * either transformed/assigned to a matrix, or passed to a function, and so on.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#min">org.opencv.core.Core.min</a>
 * @see org.opencv.core.Core#max
 * @see org.opencv.core.Core#compare
 * @see org.opencv.core.Core#inRange
 * @see org.opencv.core.Core#minMaxLoc
 */
    public static void min(Mat src1, Scalar src2, Mat dst)
    {

        min_1(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  void mixChannels(vector_Mat src, vector_Mat dst, vector_int fromTo)
    //

/**
 * <p>Copies specified channels from input arrays to the specified channels of
 * output arrays.</p>
 *
 * <p>The functions <code>mixChannels</code> provide an advanced mechanism for
 * shuffling image channels.</p>
 *
 * <p>"split" and "merge" and some forms of "cvtColor" are partial cases of
 * <code>mixChannels</code>.
 * In the example below, the code splits a 4-channel RGBA image into a 3-channel
 * BGR (with R and B channels swapped) and a separate alpha-channel image:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat rgba(100, 100, CV_8UC4, Scalar(1,2,3,4));</p>
 *
 * <p>Mat bgr(rgba.rows, rgba.cols, CV_8UC3);</p>
 *
 * <p>Mat alpha(rgba.rows, rgba.cols, CV_8UC1);</p>
 *
 * <p>// forming an array of matrices is a quite efficient operation,</p>
 *
 * <p>// because the matrix data is not copied, only the headers</p>
 *
 * <p>Mat out[] = { bgr, alpha };</p>
 *
 * <p>// rgba[0] -> bgr[2], rgba[1] -> bgr[1],</p>
 *
 * <p>// rgba[2] -> bgr[0], rgba[3] -> alpha[0]</p>
 *
 * <p>int from_to[] = { 0,2, 1,1, 2,0, 3,3 };</p>
 *
 * <p>mixChannels(&rgba, 1, out, 2, from_to, 4);</p>
 *
 * <p>Note: Unlike many other new-style C++ functions in OpenCV (see the
 * introduction section and "Mat.create"), <code>mixChannels</code> requires
 * the output arrays to be pre-allocated before calling the function.
 * </code></p>
 *
 * @param src input array or vector of matricesl; all of the matrices must have
 * the same size and the same depth.
 * @param dst output array or vector of matrices; all the matrices *must be
 * allocated*; their size and depth must be the same as in <code>src[0]</code>.
 * @param fromTo array of index pairs specifying which channels are copied and
 * where; <code>fromTo[k*2]</code> is a 0-based index of the input channel in
 * <code>src</code>, <code>fromTo[k*2+1]</code> is an index of the output
 * channel in <code>dst</code>; the continuous channel numbering is used: the
 * first input image channels are indexed from <code>0</code> to
 * <code>src[0].channels()-1</code>, the second input image channels are indexed
 * from <code>src[0].channels()</code> to <code>src[0].channels() +
 * src[1].channels()-1</code>, and so on, the same scheme is used for the output
 * image channels; as a special case, when <code>fromTo[k*2]</code> is negative,
 * the corresponding output channel is filled with zero.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#mixchannels">org.opencv.core.Core.mixChannels</a>
 * @see org.opencv.core.Core#merge
 * @see org.opencv.core.Core#split
 * @see org.opencv.imgproc.Imgproc#cvtColor
 */
    public static void mixChannels(List<Mat> src, List<Mat> dst, MatOfInt fromTo)
    {
        Mat src_mat = Converters.vector_Mat_to_Mat(src);
        Mat dst_mat = Converters.vector_Mat_to_Mat(dst);
        Mat fromTo_mat = fromTo;
        mixChannels_0(src_mat.nativeObj, dst_mat.nativeObj, fromTo_mat.nativeObj);

        return;
    }


    //
    // C++:  void mulSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false)
    //

/**
 * <p>Performs the per-element multiplication of two Fourier spectrums.</p>
 *
 * <p>The function <code>mulSpectrums</code> performs the per-element
 * multiplication of the two CCS-packed or complex matrices that are results of
 * a real or complex Fourier transform.</p>
 *
 * <p>The function, together with "dft" and "idft", may be used to calculate
 * convolution (pass <code>conjB=false</code>) or correlation (pass
 * <code>conjB=true</code>) of two arrays rapidly. When the arrays are complex,
 * they are simply multiplied (per element) with an optional conjugation of the
 * second-array elements. When the arrays are real, they are assumed to be
 * CCS-packed (see "dft" for details).</p>
 *
 * @param a a a
 * @param b a b
 * @param c a c
 * @param flags operation flags; currently, the only supported flag is
 * <code>DFT_ROWS</code>, which indicates that each row of <code>src1</code> and
 * <code>src2</code> is an independent 1D Fourier spectrum.
 * @param conjB optional flag that conjugates the second input array before the
 * multiplication (true) or not (false).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#mulspectrums">org.opencv.core.Core.mulSpectrums</a>
 */
    public static void mulSpectrums(Mat a, Mat b, Mat c, int flags, boolean conjB)
    {

        mulSpectrums_0(a.nativeObj, b.nativeObj, c.nativeObj, flags, conjB);

        return;
    }

/**
 * <p>Performs the per-element multiplication of two Fourier spectrums.</p>
 *
 * <p>The function <code>mulSpectrums</code> performs the per-element
 * multiplication of the two CCS-packed or complex matrices that are results of
 * a real or complex Fourier transform.</p>
 *
 * <p>The function, together with "dft" and "idft", may be used to calculate
 * convolution (pass <code>conjB=false</code>) or correlation (pass
 * <code>conjB=true</code>) of two arrays rapidly. When the arrays are complex,
 * they are simply multiplied (per element) with an optional conjugation of the
 * second-array elements. When the arrays are real, they are assumed to be
 * CCS-packed (see "dft" for details).</p>
 *
 * @param a a a
 * @param b a b
 * @param c a c
 * @param flags operation flags; currently, the only supported flag is
 * <code>DFT_ROWS</code>, which indicates that each row of <code>src1</code> and
 * <code>src2</code> is an independent 1D Fourier spectrum.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#mulspectrums">org.opencv.core.Core.mulSpectrums</a>
 */
    public static void mulSpectrums(Mat a, Mat b, Mat c, int flags)
    {

        mulSpectrums_1(a.nativeObj, b.nativeObj, c.nativeObj, flags);

        return;
    }


    //
    // C++:  void mulTransposed(Mat src, Mat& dst, bool aTa, Mat delta = Mat(), double scale = 1, int dtype = -1)
    //

/**
 * <p>Calculates the product of a matrix and its transposition.</p>
 *
 * <p>The function <code>mulTransposed</code> calculates the product of
 * <code>src</code> and its transposition:</p>
 *
 * <p><em>dst = scale(src - delta)^T(src - delta)</em></p>
 *
 * <p>if <code>aTa=true</code>, and</p>
 *
 * <p><em>dst = scale(src - delta)(src - delta)^T</em></p>
 *
 * <p>otherwise. The function is used to calculate the covariance matrix. With zero
 * delta, it can be used as a faster substitute for general matrix product
 * <code>A*B</code> when <code>B=A'</code></p>
 *
 * @param src input single-channel matrix. Note that unlike "gemm", the function
 * can multiply not only floating-point matrices.
 * @param dst output square matrix.
 * @param aTa Flag specifying the multiplication ordering. See the description
 * below.
 * @param delta Optional delta matrix subtracted from <code>src</code> before
 * the multiplication. When the matrix is empty (<code>delta=noArray()</code>),
 * it is assumed to be zero, that is, nothing is subtracted. If it has the same
 * size as <code>src</code>, it is simply subtracted. Otherwise, it is
 * "repeated" (see "repeat") to cover the full <code>src</code> and then
 * subtracted. Type of the delta matrix, when it is not empty, must be the same
 * as the type of created output matrix. See the <code>dtype</code> parameter
 * description below.
 * @param scale Optional scale factor for the matrix product.
 * @param dtype Optional type of the output matrix. When it is negative, the
 * output matrix will have the same type as <code>src</code>. Otherwise, it will
 * be <code>type=CV_MAT_DEPTH(dtype)</code> that should be either
 * <code>CV_32F</code> or <code>CV_64F</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multransposed">org.opencv.core.Core.mulTransposed</a>
 * @see org.opencv.core.Core#calcCovarMatrix
 * @see org.opencv.core.Core#repeat
 * @see org.opencv.core.Core#reduce
 * @see org.opencv.core.Core#gemm
 */
    public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta, double scale, int dtype)
    {

        mulTransposed_0(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj, scale, dtype);

        return;
    }

/**
 * <p>Calculates the product of a matrix and its transposition.</p>
 *
 * <p>The function <code>mulTransposed</code> calculates the product of
 * <code>src</code> and its transposition:</p>
 *
 * <p><em>dst = scale(src - delta)^T(src - delta)</em></p>
 *
 * <p>if <code>aTa=true</code>, and</p>
 *
 * <p><em>dst = scale(src - delta)(src - delta)^T</em></p>
 *
 * <p>otherwise. The function is used to calculate the covariance matrix. With zero
 * delta, it can be used as a faster substitute for general matrix product
 * <code>A*B</code> when <code>B=A'</code></p>
 *
 * @param src input single-channel matrix. Note that unlike "gemm", the function
 * can multiply not only floating-point matrices.
 * @param dst output square matrix.
 * @param aTa Flag specifying the multiplication ordering. See the description
 * below.
 * @param delta Optional delta matrix subtracted from <code>src</code> before
 * the multiplication. When the matrix is empty (<code>delta=noArray()</code>),
 * it is assumed to be zero, that is, nothing is subtracted. If it has the same
 * size as <code>src</code>, it is simply subtracted. Otherwise, it is
 * "repeated" (see "repeat") to cover the full <code>src</code> and then
 * subtracted. Type of the delta matrix, when it is not empty, must be the same
 * as the type of created output matrix. See the <code>dtype</code> parameter
 * description below.
 * @param scale Optional scale factor for the matrix product.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multransposed">org.opencv.core.Core.mulTransposed</a>
 * @see org.opencv.core.Core#calcCovarMatrix
 * @see org.opencv.core.Core#repeat
 * @see org.opencv.core.Core#reduce
 * @see org.opencv.core.Core#gemm
 */
    public static void mulTransposed(Mat src, Mat dst, boolean aTa, Mat delta, double scale)
    {

        mulTransposed_1(src.nativeObj, dst.nativeObj, aTa, delta.nativeObj, scale);

        return;
    }

/**
 * <p>Calculates the product of a matrix and its transposition.</p>
 *
 * <p>The function <code>mulTransposed</code> calculates the product of
 * <code>src</code> and its transposition:</p>
 *
 * <p><em>dst = scale(src - delta)^T(src - delta)</em></p>
 *
 * <p>if <code>aTa=true</code>, and</p>
 *
 * <p><em>dst = scale(src - delta)(src - delta)^T</em></p>
 *
 * <p>otherwise. The function is used to calculate the covariance matrix. With zero
 * delta, it can be used as a faster substitute for general matrix product
 * <code>A*B</code> when <code>B=A'</code></p>
 *
 * @param src input single-channel matrix. Note that unlike "gemm", the function
 * can multiply not only floating-point matrices.
 * @param dst output square matrix.
 * @param aTa Flag specifying the multiplication ordering. See the description
 * below.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multransposed">org.opencv.core.Core.mulTransposed</a>
 * @see org.opencv.core.Core#calcCovarMatrix
 * @see org.opencv.core.Core#repeat
 * @see org.opencv.core.Core#reduce
 * @see org.opencv.core.Core#gemm
 */
    public static void mulTransposed(Mat src, Mat dst, boolean aTa)
    {

        mulTransposed_2(src.nativeObj, dst.nativeObj, aTa);

        return;
    }


    //
    // C++:  void multiply(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1)
    //

/**
 * <p>Calculates the per-element scaled product of two arrays.</p>
 *
 * <p>The function <code>multiply</code> calculates the per-element product of two
 * arrays:</p>
 *
 * <p><em>dst(I)= saturate(scale * src1(I) * src2(I))</em></p>
 *
 * <p>There is also a "MatrixExpressions" -friendly variant of the first function.
 * See "Mat.mul".</p>
 *
 * <p>For a not-per-element matrix product, see "gemm".</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 * @param scale optional scale factor.
 * @param dtype a dtype
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multiply">org.opencv.core.Core.multiply</a>
 * @see org.opencv.core.Core#divide
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.imgproc.Imgproc#accumulateSquare
 * @see org.opencv.imgproc.Imgproc#accumulate
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.imgproc.Imgproc#accumulateProduct
 */
    public static void multiply(Mat src1, Mat src2, Mat dst, double scale, int dtype)
    {

        multiply_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale, dtype);

        return;
    }

/**
 * <p>Calculates the per-element scaled product of two arrays.</p>
 *
 * <p>The function <code>multiply</code> calculates the per-element product of two
 * arrays:</p>
 *
 * <p><em>dst(I)= saturate(scale * src1(I) * src2(I))</em></p>
 *
 * <p>There is also a "MatrixExpressions" -friendly variant of the first function.
 * See "Mat.mul".</p>
 *
 * <p>For a not-per-element matrix product, see "gemm".</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 * @param scale optional scale factor.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multiply">org.opencv.core.Core.multiply</a>
 * @see org.opencv.core.Core#divide
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.imgproc.Imgproc#accumulateSquare
 * @see org.opencv.imgproc.Imgproc#accumulate
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.imgproc.Imgproc#accumulateProduct
 */
    public static void multiply(Mat src1, Mat src2, Mat dst, double scale)
    {

        multiply_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, scale);

        return;
    }

/**
 * <p>Calculates the per-element scaled product of two arrays.</p>
 *
 * <p>The function <code>multiply</code> calculates the per-element product of two
 * arrays:</p>
 *
 * <p><em>dst(I)= saturate(scale * src1(I) * src2(I))</em></p>
 *
 * <p>There is also a "MatrixExpressions" -friendly variant of the first function.
 * See "Mat.mul".</p>
 *
 * <p>For a not-per-element matrix product, see "gemm".</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multiply">org.opencv.core.Core.multiply</a>
 * @see org.opencv.core.Core#divide
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.imgproc.Imgproc#accumulateSquare
 * @see org.opencv.imgproc.Imgproc#accumulate
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.imgproc.Imgproc#accumulateProduct
 */
    public static void multiply(Mat src1, Mat src2, Mat dst)
    {

        multiply_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void multiply(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1)
    //

/**
 * <p>Calculates the per-element scaled product of two arrays.</p>
 *
 * <p>The function <code>multiply</code> calculates the per-element product of two
 * arrays:</p>
 *
 * <p><em>dst(I)= saturate(scale * src1(I) * src2(I))</em></p>
 *
 * <p>There is also a "MatrixExpressions" -friendly variant of the first function.
 * See "Mat.mul".</p>
 *
 * <p>For a not-per-element matrix product, see "gemm".</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 * @param scale optional scale factor.
 * @param dtype a dtype
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multiply">org.opencv.core.Core.multiply</a>
 * @see org.opencv.core.Core#divide
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.imgproc.Imgproc#accumulateSquare
 * @see org.opencv.imgproc.Imgproc#accumulate
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.imgproc.Imgproc#accumulateProduct
 */
    public static void multiply(Mat src1, Scalar src2, Mat dst, double scale, int dtype)
    {

        multiply_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale, dtype);

        return;
    }

/**
 * <p>Calculates the per-element scaled product of two arrays.</p>
 *
 * <p>The function <code>multiply</code> calculates the per-element product of two
 * arrays:</p>
 *
 * <p><em>dst(I)= saturate(scale * src1(I) * src2(I))</em></p>
 *
 * <p>There is also a "MatrixExpressions" -friendly variant of the first function.
 * See "Mat.mul".</p>
 *
 * <p>For a not-per-element matrix product, see "gemm".</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 * @param scale optional scale factor.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multiply">org.opencv.core.Core.multiply</a>
 * @see org.opencv.core.Core#divide
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.imgproc.Imgproc#accumulateSquare
 * @see org.opencv.imgproc.Imgproc#accumulate
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.imgproc.Imgproc#accumulateProduct
 */
    public static void multiply(Mat src1, Scalar src2, Mat dst, double scale)
    {

        multiply_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, scale);

        return;
    }

/**
 * <p>Calculates the per-element scaled product of two arrays.</p>
 *
 * <p>The function <code>multiply</code> calculates the per-element product of two
 * arrays:</p>
 *
 * <p><em>dst(I)= saturate(scale * src1(I) * src2(I))</em></p>
 *
 * <p>There is also a "MatrixExpressions" -friendly variant of the first function.
 * See "Mat.mul".</p>
 *
 * <p>For a not-per-element matrix product, see "gemm".</p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#multiply">org.opencv.core.Core.multiply</a>
 * @see org.opencv.core.Core#divide
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.imgproc.Imgproc#accumulateSquare
 * @see org.opencv.imgproc.Imgproc#accumulate
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Core#subtract
 * @see org.opencv.imgproc.Imgproc#accumulateProduct
 */
    public static void multiply(Mat src1, Scalar src2, Mat dst)
    {

        multiply_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  double norm(Mat src1, int normType = NORM_L2, Mat mask = Mat())
    //

/**
 * <p>Calculates an absolute array norm, an absolute difference norm, or a relative
 * difference norm.</p>
 *
 * <p>The functions <code>norm</code> calculate an absolute norm of
 * <code>src1</code> (when there is no <code>src2</code>):</p>
 *
 * <p><em>norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType =
 * NORM_INF)&ltBR&gt(|src1|_(L_1) = sum _I|src1(I)|)(if normType =
 * NORM_L1)&ltBR&gt(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType =
 * NORM_L2)</em></p>
 *
 * <p>or an absolute or relative difference norm if <code>src2</code> is there:</p>
 *
 * <p><em>norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if
 * normType = NORM_INF)&ltBR&gt(|src1 - src2|_(L_1) = sum _I|src1(I) -
 * src2(I)|)(if normType = NORM_L1)&ltBR&gt(|src1 - src2|_(L_2) =
 * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)</em></p>
 *
 * <p>or</p>
 *
 * <p><em>norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if
 * normType = NORM_RELATIVE_INF)&ltBR&gt((|src1-src2|_(L_1))/(|src2|_(L_1)))(if
 * normType = NORM_RELATIVE_L1)&ltBR&gt((|src1-src2|_(L_2))/(|src2|_(L_2)))(if
 * normType = NORM_RELATIVE_L2)</em></p>
 *
 * <p>The functions <code>norm</code> return the calculated norm.</p>
 *
 * <p>When the <code>mask</code> parameter is specified and it is not empty, the
 * norm is calculated only over the region specified by the mask.</p>
 *
 * <p>A multi-channel input arrays are treated as a single-channel, that is, the
 * results for all channels are combined.</p>
 *
 * @param src1 first input array.
 * @param normType type of the norm (see the details below).
 * @param mask optional operation mask; it must have the same size as
 * <code>src1</code> and <code>CV_8UC1</code> type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#norm">org.opencv.core.Core.norm</a>
 */
    public static double norm(Mat src1, int normType, Mat mask)
    {

        double retVal = norm_0(src1.nativeObj, normType, mask.nativeObj);

        return retVal;
    }

/**
 * <p>Calculates an absolute array norm, an absolute difference norm, or a relative
 * difference norm.</p>
 *
 * <p>The functions <code>norm</code> calculate an absolute norm of
 * <code>src1</code> (when there is no <code>src2</code>):</p>
 *
 * <p><em>norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType =
 * NORM_INF)&ltBR&gt(|src1|_(L_1) = sum _I|src1(I)|)(if normType =
 * NORM_L1)&ltBR&gt(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType =
 * NORM_L2)</em></p>
 *
 * <p>or an absolute or relative difference norm if <code>src2</code> is there:</p>
 *
 * <p><em>norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if
 * normType = NORM_INF)&ltBR&gt(|src1 - src2|_(L_1) = sum _I|src1(I) -
 * src2(I)|)(if normType = NORM_L1)&ltBR&gt(|src1 - src2|_(L_2) =
 * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)</em></p>
 *
 * <p>or</p>
 *
 * <p><em>norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if
 * normType = NORM_RELATIVE_INF)&ltBR&gt((|src1-src2|_(L_1))/(|src2|_(L_1)))(if
 * normType = NORM_RELATIVE_L1)&ltBR&gt((|src1-src2|_(L_2))/(|src2|_(L_2)))(if
 * normType = NORM_RELATIVE_L2)</em></p>
 *
 * <p>The functions <code>norm</code> return the calculated norm.</p>
 *
 * <p>When the <code>mask</code> parameter is specified and it is not empty, the
 * norm is calculated only over the region specified by the mask.</p>
 *
 * <p>A multi-channel input arrays are treated as a single-channel, that is, the
 * results for all channels are combined.</p>
 *
 * @param src1 first input array.
 * @param normType type of the norm (see the details below).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#norm">org.opencv.core.Core.norm</a>
 */
    public static double norm(Mat src1, int normType)
    {

        double retVal = norm_1(src1.nativeObj, normType);

        return retVal;
    }

/**
 * <p>Calculates an absolute array norm, an absolute difference norm, or a relative
 * difference norm.</p>
 *
 * <p>The functions <code>norm</code> calculate an absolute norm of
 * <code>src1</code> (when there is no <code>src2</code>):</p>
 *
 * <p><em>norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType =
 * NORM_INF)&ltBR&gt(|src1|_(L_1) = sum _I|src1(I)|)(if normType =
 * NORM_L1)&ltBR&gt(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType =
 * NORM_L2)</em></p>
 *
 * <p>or an absolute or relative difference norm if <code>src2</code> is there:</p>
 *
 * <p><em>norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if
 * normType = NORM_INF)&ltBR&gt(|src1 - src2|_(L_1) = sum _I|src1(I) -
 * src2(I)|)(if normType = NORM_L1)&ltBR&gt(|src1 - src2|_(L_2) =
 * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)</em></p>
 *
 * <p>or</p>
 *
 * <p><em>norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if
 * normType = NORM_RELATIVE_INF)&ltBR&gt((|src1-src2|_(L_1))/(|src2|_(L_1)))(if
 * normType = NORM_RELATIVE_L1)&ltBR&gt((|src1-src2|_(L_2))/(|src2|_(L_2)))(if
 * normType = NORM_RELATIVE_L2)</em></p>
 *
 * <p>The functions <code>norm</code> return the calculated norm.</p>
 *
 * <p>When the <code>mask</code> parameter is specified and it is not empty, the
 * norm is calculated only over the region specified by the mask.</p>
 *
 * <p>A multi-channel input arrays are treated as a single-channel, that is, the
 * results for all channels are combined.</p>
 *
 * @param src1 first input array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#norm">org.opencv.core.Core.norm</a>
 */
    public static double norm(Mat src1)
    {

        double retVal = norm_2(src1.nativeObj);

        return retVal;
    }


    //
    // C++:  double norm(Mat src1, Mat src2, int normType = NORM_L2, Mat mask = Mat())
    //

/**
 * <p>Calculates an absolute array norm, an absolute difference norm, or a relative
 * difference norm.</p>
 *
 * <p>The functions <code>norm</code> calculate an absolute norm of
 * <code>src1</code> (when there is no <code>src2</code>):</p>
 *
 * <p><em>norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType =
 * NORM_INF)&ltBR&gt(|src1|_(L_1) = sum _I|src1(I)|)(if normType =
 * NORM_L1)&ltBR&gt(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType =
 * NORM_L2)</em></p>
 *
 * <p>or an absolute or relative difference norm if <code>src2</code> is there:</p>
 *
 * <p><em>norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if
 * normType = NORM_INF)&ltBR&gt(|src1 - src2|_(L_1) = sum _I|src1(I) -
 * src2(I)|)(if normType = NORM_L1)&ltBR&gt(|src1 - src2|_(L_2) =
 * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)</em></p>
 *
 * <p>or</p>
 *
 * <p><em>norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if
 * normType = NORM_RELATIVE_INF)&ltBR&gt((|src1-src2|_(L_1))/(|src2|_(L_1)))(if
 * normType = NORM_RELATIVE_L1)&ltBR&gt((|src1-src2|_(L_2))/(|src2|_(L_2)))(if
 * normType = NORM_RELATIVE_L2)</em></p>
 *
 * <p>The functions <code>norm</code> return the calculated norm.</p>
 *
 * <p>When the <code>mask</code> parameter is specified and it is not empty, the
 * norm is calculated only over the region specified by the mask.</p>
 *
 * <p>A multi-channel input arrays are treated as a single-channel, that is, the
 * results for all channels are combined.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param normType type of the norm (see the details below).
 * @param mask optional operation mask; it must have the same size as
 * <code>src1</code> and <code>CV_8UC1</code> type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#norm">org.opencv.core.Core.norm</a>
 */
    public static double norm(Mat src1, Mat src2, int normType, Mat mask)
    {

        double retVal = norm_3(src1.nativeObj, src2.nativeObj, normType, mask.nativeObj);

        return retVal;
    }

/**
 * <p>Calculates an absolute array norm, an absolute difference norm, or a relative
 * difference norm.</p>
 *
 * <p>The functions <code>norm</code> calculate an absolute norm of
 * <code>src1</code> (when there is no <code>src2</code>):</p>
 *
 * <p><em>norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType =
 * NORM_INF)&ltBR&gt(|src1|_(L_1) = sum _I|src1(I)|)(if normType =
 * NORM_L1)&ltBR&gt(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType =
 * NORM_L2)</em></p>
 *
 * <p>or an absolute or relative difference norm if <code>src2</code> is there:</p>
 *
 * <p><em>norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if
 * normType = NORM_INF)&ltBR&gt(|src1 - src2|_(L_1) = sum _I|src1(I) -
 * src2(I)|)(if normType = NORM_L1)&ltBR&gt(|src1 - src2|_(L_2) =
 * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)</em></p>
 *
 * <p>or</p>
 *
 * <p><em>norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if
 * normType = NORM_RELATIVE_INF)&ltBR&gt((|src1-src2|_(L_1))/(|src2|_(L_1)))(if
 * normType = NORM_RELATIVE_L1)&ltBR&gt((|src1-src2|_(L_2))/(|src2|_(L_2)))(if
 * normType = NORM_RELATIVE_L2)</em></p>
 *
 * <p>The functions <code>norm</code> return the calculated norm.</p>
 *
 * <p>When the <code>mask</code> parameter is specified and it is not empty, the
 * norm is calculated only over the region specified by the mask.</p>
 *
 * <p>A multi-channel input arrays are treated as a single-channel, that is, the
 * results for all channels are combined.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 * @param normType type of the norm (see the details below).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#norm">org.opencv.core.Core.norm</a>
 */
    public static double norm(Mat src1, Mat src2, int normType)
    {

        double retVal = norm_4(src1.nativeObj, src2.nativeObj, normType);

        return retVal;
    }

/**
 * <p>Calculates an absolute array norm, an absolute difference norm, or a relative
 * difference norm.</p>
 *
 * <p>The functions <code>norm</code> calculate an absolute norm of
 * <code>src1</code> (when there is no <code>src2</code>):</p>
 *
 * <p><em>norm = forkthree(|src1|_(L_(infty)) = max _I|src1(I)|)(if normType =
 * NORM_INF)&ltBR&gt(|src1|_(L_1) = sum _I|src1(I)|)(if normType =
 * NORM_L1)&ltBR&gt(|src1|_(L_2) = sqrt(sum_I src1(I)^2))(if normType =
 * NORM_L2)</em></p>
 *
 * <p>or an absolute or relative difference norm if <code>src2</code> is there:</p>
 *
 * <p><em>norm = forkthree(|src1-src2|_(L_(infty)) = max _I|src1(I) - src2(I)|)(if
 * normType = NORM_INF)&ltBR&gt(|src1 - src2|_(L_1) = sum _I|src1(I) -
 * src2(I)|)(if normType = NORM_L1)&ltBR&gt(|src1 - src2|_(L_2) =
 * sqrt(sum_I(src1(I) - src2(I))^2))(if normType = NORM_L2)</em></p>
 *
 * <p>or</p>
 *
 * <p><em>norm = forkthree((|src1-src2|_(L_(infty)))/(|src2|_(L_(infty))))(if
 * normType = NORM_RELATIVE_INF)&ltBR&gt((|src1-src2|_(L_1))/(|src2|_(L_1)))(if
 * normType = NORM_RELATIVE_L1)&ltBR&gt((|src1-src2|_(L_2))/(|src2|_(L_2)))(if
 * normType = NORM_RELATIVE_L2)</em></p>
 *
 * <p>The functions <code>norm</code> return the calculated norm.</p>
 *
 * <p>When the <code>mask</code> parameter is specified and it is not empty, the
 * norm is calculated only over the region specified by the mask.</p>
 *
 * <p>A multi-channel input arrays are treated as a single-channel, that is, the
 * results for all channels are combined.</p>
 *
 * @param src1 first input array.
 * @param src2 second input array of the same size and the same type as
 * <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#norm">org.opencv.core.Core.norm</a>
 */
    public static double norm(Mat src1, Mat src2)
    {

        double retVal = norm_5(src1.nativeObj, src2.nativeObj);

        return retVal;
    }


    //
    // C++:  void normalize(Mat src, Mat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, Mat mask = Mat())
    //

/**
 * <p>Normalizes the norm or value range of an array.</p>
 *
 * <p>The functions <code>normalize</code> scale and shift the input array elements
 * so that</p>
 *
 * <p><em>| dst|_(L_p)= alpha</em></p>
 *
 * <p>(where p=Inf, 1 or 2) when <code>normType=NORM_INF</code>, <code>NORM_L1</code>,
 * or <code>NORM_L2</code>, respectively; or so that</p>
 *
 * <p><em>min _I dst(I)= alpha, max _I dst(I)= beta</em></p>
 *
 * <p>when <code>normType=NORM_MINMAX</code> (for dense arrays only).
 * The optional mask specifies a sub-array to be normalized. This means that the
 * norm or min-n-max are calculated over the sub-array, and then this sub-array
 * is modified to be normalized. If you want to only use the mask to calculate
 * the norm or min-max but modify the whole array, you can use "norm" and
 * "Mat.convertTo".</p>
 *
 * <p>In case of sparse matrices, only the non-zero values are analyzed and
 * transformed. Because of this, the range transformation for sparse matrices is
 * not allowed since it can shift the zero level.</p>
 *
 * @param src input array.
 * @param dst output array of the same size as <code>src</code>.
 * @param alpha norm value to normalize to or the lower range boundary in case
 * of the range normalization.
 * @param beta upper range boundary in case of the range normalization; it is
 * not used for the norm normalization.
 * @param norm_type a norm_type
 * @param dtype when negative, the output array has the same type as
 * <code>src</code>; otherwise, it has the same number of channels as
 * <code>src</code> and the depth <code>=CV_MAT_DEPTH(dtype)</code>.
 * @param mask optional operation mask.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#normalize">org.opencv.core.Core.normalize</a>
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#norm
 */
    public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype, Mat mask)
    {

        normalize_0(src.nativeObj, dst.nativeObj, alpha, beta, norm_type, dtype, mask.nativeObj);

        return;
    }

/**
 * <p>Normalizes the norm or value range of an array.</p>
 *
 * <p>The functions <code>normalize</code> scale and shift the input array elements
 * so that</p>
 *
 * <p><em>| dst|_(L_p)= alpha</em></p>
 *
 * <p>(where p=Inf, 1 or 2) when <code>normType=NORM_INF</code>, <code>NORM_L1</code>,
 * or <code>NORM_L2</code>, respectively; or so that</p>
 *
 * <p><em>min _I dst(I)= alpha, max _I dst(I)= beta</em></p>
 *
 * <p>when <code>normType=NORM_MINMAX</code> (for dense arrays only).
 * The optional mask specifies a sub-array to be normalized. This means that the
 * norm or min-n-max are calculated over the sub-array, and then this sub-array
 * is modified to be normalized. If you want to only use the mask to calculate
 * the norm or min-max but modify the whole array, you can use "norm" and
 * "Mat.convertTo".</p>
 *
 * <p>In case of sparse matrices, only the non-zero values are analyzed and
 * transformed. Because of this, the range transformation for sparse matrices is
 * not allowed since it can shift the zero level.</p>
 *
 * @param src input array.
 * @param dst output array of the same size as <code>src</code>.
 * @param alpha norm value to normalize to or the lower range boundary in case
 * of the range normalization.
 * @param beta upper range boundary in case of the range normalization; it is
 * not used for the norm normalization.
 * @param norm_type a norm_type
 * @param dtype when negative, the output array has the same type as
 * <code>src</code>; otherwise, it has the same number of channels as
 * <code>src</code> and the depth <code>=CV_MAT_DEPTH(dtype)</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#normalize">org.opencv.core.Core.normalize</a>
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#norm
 */
    public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype)
    {

        normalize_1(src.nativeObj, dst.nativeObj, alpha, beta, norm_type, dtype);

        return;
    }

/**
 * <p>Normalizes the norm or value range of an array.</p>
 *
 * <p>The functions <code>normalize</code> scale and shift the input array elements
 * so that</p>
 *
 * <p><em>| dst|_(L_p)= alpha</em></p>
 *
 * <p>(where p=Inf, 1 or 2) when <code>normType=NORM_INF</code>, <code>NORM_L1</code>,
 * or <code>NORM_L2</code>, respectively; or so that</p>
 *
 * <p><em>min _I dst(I)= alpha, max _I dst(I)= beta</em></p>
 *
 * <p>when <code>normType=NORM_MINMAX</code> (for dense arrays only).
 * The optional mask specifies a sub-array to be normalized. This means that the
 * norm or min-n-max are calculated over the sub-array, and then this sub-array
 * is modified to be normalized. If you want to only use the mask to calculate
 * the norm or min-max but modify the whole array, you can use "norm" and
 * "Mat.convertTo".</p>
 *
 * <p>In case of sparse matrices, only the non-zero values are analyzed and
 * transformed. Because of this, the range transformation for sparse matrices is
 * not allowed since it can shift the zero level.</p>
 *
 * @param src input array.
 * @param dst output array of the same size as <code>src</code>.
 * @param alpha norm value to normalize to or the lower range boundary in case
 * of the range normalization.
 * @param beta upper range boundary in case of the range normalization; it is
 * not used for the norm normalization.
 * @param norm_type a norm_type
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#normalize">org.opencv.core.Core.normalize</a>
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#norm
 */
    public static void normalize(Mat src, Mat dst, double alpha, double beta, int norm_type)
    {

        normalize_2(src.nativeObj, dst.nativeObj, alpha, beta, norm_type);

        return;
    }

/**
 * <p>Normalizes the norm or value range of an array.</p>
 *
 * <p>The functions <code>normalize</code> scale and shift the input array elements
 * so that</p>
 *
 * <p><em>| dst|_(L_p)= alpha</em></p>
 *
 * <p>(where p=Inf, 1 or 2) when <code>normType=NORM_INF</code>, <code>NORM_L1</code>,
 * or <code>NORM_L2</code>, respectively; or so that</p>
 *
 * <p><em>min _I dst(I)= alpha, max _I dst(I)= beta</em></p>
 *
 * <p>when <code>normType=NORM_MINMAX</code> (for dense arrays only).
 * The optional mask specifies a sub-array to be normalized. This means that the
 * norm or min-n-max are calculated over the sub-array, and then this sub-array
 * is modified to be normalized. If you want to only use the mask to calculate
 * the norm or min-max but modify the whole array, you can use "norm" and
 * "Mat.convertTo".</p>
 *
 * <p>In case of sparse matrices, only the non-zero values are analyzed and
 * transformed. Because of this, the range transformation for sparse matrices is
 * not allowed since it can shift the zero level.</p>
 *
 * @param src input array.
 * @param dst output array of the same size as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#normalize">org.opencv.core.Core.normalize</a>
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#norm
 */
    public static void normalize(Mat src, Mat dst)
    {

        normalize_3(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void patchNaNs(Mat& a, double val = 0)
    //

    public static void patchNaNs(Mat a, double val)
    {

        patchNaNs_0(a.nativeObj, val);

        return;
    }

    public static void patchNaNs(Mat a)
    {

        patchNaNs_1(a.nativeObj);

        return;
    }


    //
    // C++:  void perspectiveTransform(Mat src, Mat& dst, Mat m)
    //

/**
 * <p>Performs the perspective matrix transformation of vectors.</p>
 *
 * <p>The function <code>perspectiveTransform</code> transforms every element of
 * <code>src</code> by treating it as a 2D or 3D vector, in the following way:</p>
 *
 * <p><em>(x, y, z) -> (x'/w, y'/w, z'/w)</em></p>
 *
 * <p>where</p>
 *
 * <p><em>(x', y', z', w') = mat * x y z 1 </em></p>
 *
 * <p>and</p>
 *
 * <p><em>w = w' if w' != 0; infty otherwise</em></p>
 *
 * <p>Here a 3D vector transformation is shown. In case of a 2D vector
 * transformation, the <code>z</code> component is omitted.</p>
 *
 * <p>Note: The function transforms a sparse set of 2D or 3D vectors. If you want
 * to transform an image using perspective transformation, use "warpPerspective".
 * If you have an inverse problem, that is, you want to compute the most
 * probable perspective transformation out of several pairs of corresponding
 * points, you can use "getPerspectiveTransform" or "findHomography".</p>
 *
 * @param src input two-channel or three-channel floating-point array; each
 * element is a 2D/3D vector to be transformed.
 * @param dst output array of the same size and type as <code>src</code>.
 * @param m <code>3x3</code> or <code>4x4</code> floating-point transformation
 * matrix.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#perspectivetransform">org.opencv.core.Core.perspectiveTransform</a>
 * @see org.opencv.calib3d.Calib3d#findHomography
 * @see org.opencv.imgproc.Imgproc#warpPerspective
 * @see org.opencv.core.Core#transform
 * @see org.opencv.imgproc.Imgproc#getPerspectiveTransform
 */
    public static void perspectiveTransform(Mat src, Mat dst, Mat m)
    {

        perspectiveTransform_0(src.nativeObj, dst.nativeObj, m.nativeObj);

        return;
    }


    //
    // C++:  void phase(Mat x, Mat y, Mat& angle, bool angleInDegrees = false)
    //

/**
 * <p>Calculates the rotation angle of 2D vectors.</p>
 *
 * <p>The function <code>phase</code> calculates the rotation angle of each 2D
 * vector that is formed from the corresponding elements of <code>x</code> and
 * <code>y</code> :</p>
 *
 * <p><em>angle(I) = atan2(y(I), x(I))</em></p>
 *
 * <p>The angle estimation accuracy is about 0.3 degrees. When <code>x(I)=y(I)=0</code>,
 * the corresponding <code>angle(I)</code> is set to 0.</p>
 *
 * @param x input floating-point array of x-coordinates of 2D vectors.
 * @param y input array of y-coordinates of 2D vectors; it must have the same
 * size and the same type as <code>x</code>.
 * @param angle output array of vector angles; it has the same size and same
 * type as <code>x</code>.
 * @param angleInDegrees when true, the function calculates the angle in
 * degrees, otherwise, they are measured in radians.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#phase">org.opencv.core.Core.phase</a>
 */
    public static void phase(Mat x, Mat y, Mat angle, boolean angleInDegrees)
    {

        phase_0(x.nativeObj, y.nativeObj, angle.nativeObj, angleInDegrees);

        return;
    }

/**
 * <p>Calculates the rotation angle of 2D vectors.</p>
 *
 * <p>The function <code>phase</code> calculates the rotation angle of each 2D
 * vector that is formed from the corresponding elements of <code>x</code> and
 * <code>y</code> :</p>
 *
 * <p><em>angle(I) = atan2(y(I), x(I))</em></p>
 *
 * <p>The angle estimation accuracy is about 0.3 degrees. When <code>x(I)=y(I)=0</code>,
 * the corresponding <code>angle(I)</code> is set to 0.</p>
 *
 * @param x input floating-point array of x-coordinates of 2D vectors.
 * @param y input array of y-coordinates of 2D vectors; it must have the same
 * size and the same type as <code>x</code>.
 * @param angle output array of vector angles; it has the same size and same
 * type as <code>x</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#phase">org.opencv.core.Core.phase</a>
 */
    public static void phase(Mat x, Mat y, Mat angle)
    {

        phase_1(x.nativeObj, y.nativeObj, angle.nativeObj);

        return;
    }


    //
    // C++:  void polarToCart(Mat magnitude, Mat angle, Mat& x, Mat& y, bool angleInDegrees = false)
    //

/**
 * <p>Calculates x and y coordinates of 2D vectors from their magnitude and angle.</p>
 *
 * <p>The function <code>polarToCart</code> calculates the Cartesian coordinates of
 * each 2D vector represented by the corresponding elements of <code>magnitude</code>
 * and <code>angle</code> :</p>
 *
 * <p><em>x(I) = magnitude(I) cos(angle(I))
 * y(I) = magnitude(I) sin(angle(I))
 * </em></p>
 *
 * <p>The relative accuracy of the estimated coordinates is about <code>1e-6</code>.</p>
 *
 * @param magnitude input floating-point array of magnitudes of 2D vectors; it
 * can be an empty matrix (<code>=Mat()</code>), in this case, the function
 * assumes that all the magnitudes are =1; if it is not empty, it must have the
 * same size and type as <code>angle</code>.
 * @param angle input floating-point array of angles of 2D vectors.
 * @param x output array of x-coordinates of 2D vectors; it has the same size
 * and type as <code>angle</code>.
 * @param y output array of y-coordinates of 2D vectors; it has the same size
 * and type as <code>angle</code>.
 * @param angleInDegrees when true, the input angles are measured in degrees,
 * otherwise, they are measured in radians.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#polartocart">org.opencv.core.Core.polarToCart</a>
 * @see org.opencv.core.Core#log
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#pow
 * @see org.opencv.core.Core#sqrt
 * @see org.opencv.core.Core#magnitude
 * @see org.opencv.core.Core#exp
 * @see org.opencv.core.Core#phase
 */
    public static void polarToCart(Mat magnitude, Mat angle, Mat x, Mat y, boolean angleInDegrees)
    {

        polarToCart_0(magnitude.nativeObj, angle.nativeObj, x.nativeObj, y.nativeObj, angleInDegrees);

        return;
    }

/**
 * <p>Calculates x and y coordinates of 2D vectors from their magnitude and angle.</p>
 *
 * <p>The function <code>polarToCart</code> calculates the Cartesian coordinates of
 * each 2D vector represented by the corresponding elements of <code>magnitude</code>
 * and <code>angle</code> :</p>
 *
 * <p><em>x(I) = magnitude(I) cos(angle(I))
 * y(I) = magnitude(I) sin(angle(I))
 * </em></p>
 *
 * <p>The relative accuracy of the estimated coordinates is about <code>1e-6</code>.</p>
 *
 * @param magnitude input floating-point array of magnitudes of 2D vectors; it
 * can be an empty matrix (<code>=Mat()</code>), in this case, the function
 * assumes that all the magnitudes are =1; if it is not empty, it must have the
 * same size and type as <code>angle</code>.
 * @param angle input floating-point array of angles of 2D vectors.
 * @param x output array of x-coordinates of 2D vectors; it has the same size
 * and type as <code>angle</code>.
 * @param y output array of y-coordinates of 2D vectors; it has the same size
 * and type as <code>angle</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#polartocart">org.opencv.core.Core.polarToCart</a>
 * @see org.opencv.core.Core#log
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#pow
 * @see org.opencv.core.Core#sqrt
 * @see org.opencv.core.Core#magnitude
 * @see org.opencv.core.Core#exp
 * @see org.opencv.core.Core#phase
 */
    public static void polarToCart(Mat magnitude, Mat angle, Mat x, Mat y)
    {

        polarToCart_1(magnitude.nativeObj, angle.nativeObj, x.nativeObj, y.nativeObj);

        return;
    }


    //
    // C++:  void polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    //

/**
 * <p>Draws several polygonal curves.</p>
 *
 * <p>The function <code>polylines</code> draws one or more polygonal curves.</p>
 *
 * @param img Image.
 * @param pts Array of polygonal curves.
 * @param isClosed Flag indicating whether the drawn polylines are closed or
 * not. If they are closed, the function draws a line from the last vertex of
 * each curve to its first vertex.
 * @param color Polyline color.
 * @param thickness Thickness of the polyline edges.
 * @param lineType Type of the line segments. See the "line" description.
 * @param shift Number of fractional bits in the vertex coordinates.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#polylines">org.opencv.core.Core.polylines</a>
 */
    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color, int thickness, int lineType, int shift)
    {
        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
        polylines_0(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);

        return;
    }

/**
 * <p>Draws several polygonal curves.</p>
 *
 * <p>The function <code>polylines</code> draws one or more polygonal curves.</p>
 *
 * @param img Image.
 * @param pts Array of polygonal curves.
 * @param isClosed Flag indicating whether the drawn polylines are closed or
 * not. If they are closed, the function draws a line from the last vertex of
 * each curve to its first vertex.
 * @param color Polyline color.
 * @param thickness Thickness of the polyline edges.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#polylines">org.opencv.core.Core.polylines</a>
 */
    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color, int thickness)
    {
        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
        polylines_1(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws several polygonal curves.</p>
 *
 * <p>The function <code>polylines</code> draws one or more polygonal curves.</p>
 *
 * @param img Image.
 * @param pts Array of polygonal curves.
 * @param isClosed Flag indicating whether the drawn polylines are closed or
 * not. If they are closed, the function draws a line from the last vertex of
 * each curve to its first vertex.
 * @param color Polyline color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#polylines">org.opencv.core.Core.polylines</a>
 */
    public static void polylines(Mat img, List<MatOfPoint> pts, boolean isClosed, Scalar color)
    {
        List<Mat> pts_tmplm = new ArrayList<Mat>((pts != null) ? pts.size() : 0);
        Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm);
        polylines_2(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void pow(Mat src, double power, Mat& dst)
    //

/**
 * <p>Raises every array element to a power.</p>
 *
 * <p>The function <code>pow</code> raises every element of the input array to
 * <code>power</code> :</p>
 *
 * <p><em>dst(I) = src(I)^power if power is integer; |src(I)|^power
 * otherwise&ltBR&gtSo, for a non-integer power exponent, the absolute values of
 * input array elements are used. However, it is possible to get true values for
 * negative values using some extra operations. In the example below, computing
 * the 5th root of array <code>src</code> shows: &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat mask = src < 0;</p>
 *
 * <p>pow(src, 1./5, dst);</p>
 *
 * <p>subtract(Scalar.all(0), dst, dst, mask);</p>
 *
 * <p>For some values of <code>power</code>, such as integer values, 0.5 and -0.5,
 * specialized faster algorithms are used.
 * </code></p>
 *
 * <p>Special values (NaN, Inf) are not handled.</p>
 *
 * @param src input array.
 * @param power exponent of power.
 * @param dst output array of the same size and type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#pow">org.opencv.core.Core.pow</a>
 * @see org.opencv.core.Core#cartToPolar
 * @see org.opencv.core.Core#polarToCart
 * @see org.opencv.core.Core#exp
 * @see org.opencv.core.Core#sqrt
 * @see org.opencv.core.Core#log
 */
    public static void pow(Mat src, double power, Mat dst)
    {

        pow_0(src.nativeObj, power, dst.nativeObj);

        return;
    }


    //
    // C++:  void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = 8, bool bottomLeftOrigin = false)
    //

/**
 * <p>Draws a text string.</p>
 *
 * <p>The function <code>putText</code> renders the specified text string in the
 * image.
 * Symbols that cannot be rendered using the specified font are replaced by
 * question marks. See "getTextSize" for a text rendering code example.</p>
 *
 * @param img Image.
 * @param text Text string to be drawn.
 * @param org Bottom-left corner of the text string in the image.
 * @param fontFace Font type. One of <code>FONT_HERSHEY_SIMPLEX</code>,
 * <code>FONT_HERSHEY_PLAIN</code>, <code>FONT_HERSHEY_DUPLEX</code>,
 * <code>FONT_HERSHEY_COMPLEX</code>, <code>FONT_HERSHEY_TRIPLEX</code>,
 * <code>FONT_HERSHEY_COMPLEX_SMALL</code>, <code>FONT_HERSHEY_SCRIPT_SIMPLEX</code>,
 * or <code>FONT_HERSHEY_SCRIPT_COMPLEX</code>, where each of the font ID's can
 * be combined with <code>FONT_ITALIC</code> to get the slanted letters.
 * @param fontScale Font scale factor that is multiplied by the font-specific
 * base size.
 * @param color Text color.
 * @param thickness Thickness of the lines used to draw a text.
 * @param lineType Line type. See the <code>line</code> for details.
 * @param bottomLeftOrigin When true, the image data origin is at the
 * bottom-left corner. Otherwise, it is at the top-left corner.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#puttext">org.opencv.core.Core.putText</a>
 */
    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType, boolean bottomLeftOrigin)
    {

        putText_0(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, bottomLeftOrigin);

        return;
    }

/**
 * <p>Draws a text string.</p>
 *
 * <p>The function <code>putText</code> renders the specified text string in the
 * image.
 * Symbols that cannot be rendered using the specified font are replaced by
 * question marks. See "getTextSize" for a text rendering code example.</p>
 *
 * @param img Image.
 * @param text Text string to be drawn.
 * @param org Bottom-left corner of the text string in the image.
 * @param fontFace Font type. One of <code>FONT_HERSHEY_SIMPLEX</code>,
 * <code>FONT_HERSHEY_PLAIN</code>, <code>FONT_HERSHEY_DUPLEX</code>,
 * <code>FONT_HERSHEY_COMPLEX</code>, <code>FONT_HERSHEY_TRIPLEX</code>,
 * <code>FONT_HERSHEY_COMPLEX_SMALL</code>, <code>FONT_HERSHEY_SCRIPT_SIMPLEX</code>,
 * or <code>FONT_HERSHEY_SCRIPT_COMPLEX</code>, where each of the font ID's can
 * be combined with <code>FONT_ITALIC</code> to get the slanted letters.
 * @param fontScale Font scale factor that is multiplied by the font-specific
 * base size.
 * @param color Text color.
 * @param thickness Thickness of the lines used to draw a text.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#puttext">org.opencv.core.Core.putText</a>
 */
    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness)
    {

        putText_1(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws a text string.</p>
 *
 * <p>The function <code>putText</code> renders the specified text string in the
 * image.
 * Symbols that cannot be rendered using the specified font are replaced by
 * question marks. See "getTextSize" for a text rendering code example.</p>
 *
 * @param img Image.
 * @param text Text string to be drawn.
 * @param org Bottom-left corner of the text string in the image.
 * @param fontFace Font type. One of <code>FONT_HERSHEY_SIMPLEX</code>,
 * <code>FONT_HERSHEY_PLAIN</code>, <code>FONT_HERSHEY_DUPLEX</code>,
 * <code>FONT_HERSHEY_COMPLEX</code>, <code>FONT_HERSHEY_TRIPLEX</code>,
 * <code>FONT_HERSHEY_COMPLEX_SMALL</code>, <code>FONT_HERSHEY_SCRIPT_SIMPLEX</code>,
 * or <code>FONT_HERSHEY_SCRIPT_COMPLEX</code>, where each of the font ID's can
 * be combined with <code>FONT_ITALIC</code> to get the slanted letters.
 * @param fontScale Font scale factor that is multiplied by the font-specific
 * base size.
 * @param color Text color.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#puttext">org.opencv.core.Core.putText</a>
 */
    public static void putText(Mat img, String text, Point org, int fontFace, double fontScale, Scalar color)
    {

        putText_2(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void randShuffle_(Mat& dst, double iterFactor = 1.)
    //

    public static void randShuffle(Mat dst, double iterFactor)
    {

        randShuffle_0(dst.nativeObj, iterFactor);

        return;
    }

    public static void randShuffle(Mat dst)
    {

        randShuffle_1(dst.nativeObj);

        return;
    }


    //
    // C++:  void randn(Mat& dst, double mean, double stddev)
    //

/**
 * <p>Fills the array with normally distributed random numbers.</p>
 *
 * <p>The function <code>randn</code> fills the matrix <code>dst</code> with
 * normally distributed random numbers with the specified mean vector and the
 * standard deviation matrix. The generated random numbers are clipped to fit
 * the value range of the output array data type.</p>
 *
 * @param dst output array of random numbers; the array must be pre-allocated
 * and have 1 to 4 channels.
 * @param mean mean value (expectation) of the generated random numbers.
 * @param stddev standard deviation of the generated random numbers; it can be
 * either a vector (in which case a diagonal standard deviation matrix is
 * assumed) or a square matrix.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#randn">org.opencv.core.Core.randn</a>
 * @see org.opencv.core.Core#randu
 */
    public static void randn(Mat dst, double mean, double stddev)
    {

        randn_0(dst.nativeObj, mean, stddev);

        return;
    }


    //
    // C++:  void randu(Mat& dst, double low, double high)
    //

/**
 * <p>Generates a single uniformly-distributed random number or an array of random
 * numbers.</p>
 *
 * <p>The template functions <code>randu</code> generate and return the next
 * uniformly-distributed random value of the specified type. <code>randu<int>()</code>
 * is an equivalent to <code>(int)theRNG();</code>, and so on. See "RNG"
 * description.</p>
 *
 * <p>The second non-template variant of the function fills the matrix
 * <code>dst</code> with uniformly-distributed random numbers from the specified
 * range:</p>
 *
 * <p><em>low _c <= dst(I)_c &lt high _c</em></p>
 *
 * @param dst output array of random numbers; the array must be pre-allocated.
 * @param low inclusive lower boundary of the generated random numbers.
 * @param high exclusive upper boundary of the generated random numbers.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#randu">org.opencv.core.Core.randu</a>
 * @see org.opencv.core.Core#randn
 */
    public static void randu(Mat dst, double low, double high)
    {

        randu_0(dst.nativeObj, low, high);

        return;
    }


    //
    // C++:  void rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    //

/**
 * <p>Draws a simple, thick, or filled up-right rectangle.</p>
 *
 * <p>The function <code>rectangle</code> draws a rectangle outline or a filled
 * rectangle whose two opposite corners are <code>pt1</code> and
 * <code>pt2</code>, or <code>r.tl()</code> and <code>r.br()-Point(1,1)</code>.</p>
 *
 * @param img Image.
 * @param pt1 Vertex of the rectangle.
 * @param pt2 Vertex of the rectangle opposite to <code>pt1</code>.
 * @param color Rectangle color or brightness (grayscale image).
 * @param thickness Thickness of lines that make up the rectangle. Negative
 * values, like <code>CV_FILLED</code>, mean that the function has to draw a
 * filled rectangle.
 * @param lineType Type of the line. See the "line" description.
 * @param shift Number of fractional bits in the point coordinates.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#rectangle">org.opencv.core.Core.rectangle</a>
 */
    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift)
    {

        rectangle_0(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift);

        return;
    }

/**
 * <p>Draws a simple, thick, or filled up-right rectangle.</p>
 *
 * <p>The function <code>rectangle</code> draws a rectangle outline or a filled
 * rectangle whose two opposite corners are <code>pt1</code> and
 * <code>pt2</code>, or <code>r.tl()</code> and <code>r.br()-Point(1,1)</code>.</p>
 *
 * @param img Image.
 * @param pt1 Vertex of the rectangle.
 * @param pt2 Vertex of the rectangle opposite to <code>pt1</code>.
 * @param color Rectangle color or brightness (grayscale image).
 * @param thickness Thickness of lines that make up the rectangle. Negative
 * values, like <code>CV_FILLED</code>, mean that the function has to draw a
 * filled rectangle.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#rectangle">org.opencv.core.Core.rectangle</a>
 */
    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness)
    {

        rectangle_1(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness);

        return;
    }

/**
 * <p>Draws a simple, thick, or filled up-right rectangle.</p>
 *
 * <p>The function <code>rectangle</code> draws a rectangle outline or a filled
 * rectangle whose two opposite corners are <code>pt1</code> and
 * <code>pt2</code>, or <code>r.tl()</code> and <code>r.br()-Point(1,1)</code>.</p>
 *
 * @param img Image.
 * @param pt1 Vertex of the rectangle.
 * @param pt2 Vertex of the rectangle opposite to <code>pt1</code>.
 * @param color Rectangle color or brightness (grayscale image).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#rectangle">org.opencv.core.Core.rectangle</a>
 */
    public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color)
    {

        rectangle_2(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]);

        return;
    }


    //
    // C++:  void reduce(Mat src, Mat& dst, int dim, int rtype, int dtype = -1)
    //

/**
 * <p>Reduces a matrix to a vector.</p>
 *
 * <p>The function <code>reduce</code> reduces the matrix to a vector by treating
 * the matrix rows/columns as a set of 1D vectors and performing the specified
 * operation on the vectors until a single row/column is obtained. For example,
 * the function can be used to compute horizontal and vertical projections of a
 * raster image. In case of <code>CV_REDUCE_SUM</code> and <code>CV_REDUCE_AVG</code>,
 * the output may have a larger element bit-depth to preserve accuracy. And
 * multi-channel arrays are also supported in these two reduction modes.</p>
 *
 * @param src input 2D matrix.
 * @param dst output vector. Its size and type is defined by <code>dim</code>
 * and <code>dtype</code> parameters.
 * @param dim dimension index along which the matrix is reduced. 0 means that
 * the matrix is reduced to a single row. 1 means that the matrix is reduced to
 * a single column.
 * @param rtype reduction operation that could be one of the following:
 * <ul>
 *   <li> CV_REDUCE_SUM: the output is the sum of all rows/columns of the
 * matrix.
 *   <li> CV_REDUCE_AVG: the output is the mean vector of all rows/columns of
 * the matrix.
 *   <li> CV_REDUCE_MAX: the output is the maximum (column/row-wise) of all
 * rows/columns of the matrix.
 *   <li> CV_REDUCE_MIN: the output is the minimum (column/row-wise) of all
 * rows/columns of the matrix.
 * </ul>
 * @param dtype when negative, the output vector will have the same type as the
 * input matrix, otherwise, its type will be <code>CV_MAKE_TYPE(CV_MAT_DEPTH(dtype),
 * src.channels())</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#reduce">org.opencv.core.Core.reduce</a>
 * @see org.opencv.core.Core#repeat
 */
    public static void reduce(Mat src, Mat dst, int dim, int rtype, int dtype)
    {

        reduce_0(src.nativeObj, dst.nativeObj, dim, rtype, dtype);

        return;
    }

/**
 * <p>Reduces a matrix to a vector.</p>
 *
 * <p>The function <code>reduce</code> reduces the matrix to a vector by treating
 * the matrix rows/columns as a set of 1D vectors and performing the specified
 * operation on the vectors until a single row/column is obtained. For example,
 * the function can be used to compute horizontal and vertical projections of a
 * raster image. In case of <code>CV_REDUCE_SUM</code> and <code>CV_REDUCE_AVG</code>,
 * the output may have a larger element bit-depth to preserve accuracy. And
 * multi-channel arrays are also supported in these two reduction modes.</p>
 *
 * @param src input 2D matrix.
 * @param dst output vector. Its size and type is defined by <code>dim</code>
 * and <code>dtype</code> parameters.
 * @param dim dimension index along which the matrix is reduced. 0 means that
 * the matrix is reduced to a single row. 1 means that the matrix is reduced to
 * a single column.
 * @param rtype reduction operation that could be one of the following:
 * <ul>
 *   <li> CV_REDUCE_SUM: the output is the sum of all rows/columns of the
 * matrix.
 *   <li> CV_REDUCE_AVG: the output is the mean vector of all rows/columns of
 * the matrix.
 *   <li> CV_REDUCE_MAX: the output is the maximum (column/row-wise) of all
 * rows/columns of the matrix.
 *   <li> CV_REDUCE_MIN: the output is the minimum (column/row-wise) of all
 * rows/columns of the matrix.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#reduce">org.opencv.core.Core.reduce</a>
 * @see org.opencv.core.Core#repeat
 */
    public static void reduce(Mat src, Mat dst, int dim, int rtype)
    {

        reduce_1(src.nativeObj, dst.nativeObj, dim, rtype);

        return;
    }


    //
    // C++:  void repeat(Mat src, int ny, int nx, Mat& dst)
    //

/**
 * <p>Fills the output array with repeated copies of the input array.</p>
 *
 * <p>The functions "repeat" duplicate the input array one or more times along each
 * of the two axes:</p>
 *
 * <p><em>dst _(ij)= src _(i mod src.rows, j mod src.cols)</em></p>
 *
 * <p>The second variant of the function is more convenient to use with
 * "MatrixExpressions".</p>
 *
 * @param src input array to replicate.
 * @param ny Flag to specify how many times the <code>src</code> is repeated
 * along the vertical axis.
 * @param nx Flag to specify how many times the <code>src</code> is repeated
 * along the horizontal axis.
 * @param dst output array of the same type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#repeat">org.opencv.core.Core.repeat</a>
 * @see org.opencv.core.Core#reduce
 */
    public static void repeat(Mat src, int ny, int nx, Mat dst)
    {

        repeat_0(src.nativeObj, ny, nx, dst.nativeObj);

        return;
    }


    //
    // C++:  void scaleAdd(Mat src1, double alpha, Mat src2, Mat& dst)
    //

/**
 * <p>Calculates the sum of a scaled array and another array.</p>
 *
 * <p>The function <code>scaleAdd</code> is one of the classical primitive linear
 * algebra operations, known as <code>DAXPY</code> or <code>SAXPY</code> in BLAS
 * (http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It
 * calculates the sum of a scaled array and another array:</p>
 *
 * <p><em>dst(I)= scale * src1(I) + src2(I)&ltBR&gtThe function can also be
 * emulated with a matrix expression, for example: &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A(3, 3, CV_64F);...</p>
 *
 * <p>A.row(0) = A.row(1)*2 + A.row(2);</p>
 *
 * @param src1 first input array.
 * @param alpha a alpha
 * @param src2 second input array of the same size and type as <code>src1</code>.
 * @param dst output array of the same size and type as <code>src1</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#scaleadd">org.opencv.core.Core.scaleAdd</a>
 * @see org.opencv.core.Mat#dot
 * @see org.opencv.core.Mat#convertTo
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#subtract
 */
    public static void scaleAdd(Mat src1, double alpha, Mat src2, Mat dst)
    {

        scaleAdd_0(src1.nativeObj, alpha, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void setErrorVerbosity(bool verbose)
    //

    public static void setErrorVerbosity(boolean verbose)
    {

        setErrorVerbosity_0(verbose);

        return;
    }


    //
    // C++:  void setIdentity(Mat& mtx, Scalar s = Scalar(1))
    //

/**
 * <p>Initializes a scaled identity matrix.</p>
 *
 * <p>The function "setIdentity" initializes a scaled identity matrix:</p>
 *
 * <p><em>mtx(i,j)= value if i=j; 0 otherwise&ltBR&gtThe function can also be
 * emulated using the matrix initializers and the matrix expressions:
 * &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A = Mat.eye(4, 3, CV_32F)*5;</p>
 *
 * <p>// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]</p>
 *
 * @param mtx matrix to initialize (not necessarily square).
 * @param s a s
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#setidentity">org.opencv.core.Core.setIdentity</a>
 * @see org.opencv.core.Mat#setTo
 * @see org.opencv.core.Mat#ones
 * @see org.opencv.core.Mat#zeros
 */
    public static void setIdentity(Mat mtx, Scalar s)
    {

        setIdentity_0(mtx.nativeObj, s.val[0], s.val[1], s.val[2], s.val[3]);

        return;
    }

/**
 * <p>Initializes a scaled identity matrix.</p>
 *
 * <p>The function "setIdentity" initializes a scaled identity matrix:</p>
 *
 * <p><em>mtx(i,j)= value if i=j; 0 otherwise&ltBR&gtThe function can also be
 * emulated using the matrix initializers and the matrix expressions:
 * &ltBR&gt&ltcode&gt</em></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A = Mat.eye(4, 3, CV_32F)*5;</p>
 *
 * <p>// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]</p>
 *
 * @param mtx matrix to initialize (not necessarily square).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#setidentity">org.opencv.core.Core.setIdentity</a>
 * @see org.opencv.core.Mat#setTo
 * @see org.opencv.core.Mat#ones
 * @see org.opencv.core.Mat#zeros
 */
    public static void setIdentity(Mat mtx)
    {

        setIdentity_1(mtx.nativeObj);

        return;
    }


    //
    // C++:  bool solve(Mat src1, Mat src2, Mat& dst, int flags = DECOMP_LU)
    //

/**
 * <p>Solves one or more linear systems or least-squares problems.</p>
 *
 * <p>The function <code>solve</code> solves a linear system or least-squares
 * problem (the latter is possible with SVD or QR methods, or by specifying the
 * flag <code>DECOMP_NORMAL</code>):</p>
 *
 * <p><em>dst = arg min _X|src1 * X - src2|</em></p>
 *
 * <p>If <code>DECOMP_LU</code> or <code>DECOMP_CHOLESKY</code> method is used, the
 * function returns 1 if <code>src1</code> (or <em>src1^Tsrc1</em>) is
 * non-singular. Otherwise, it returns 0. In the latter case, <code>dst</code>
 * is not valid. Other methods find a pseudo-solution in case of a singular
 * left-hand side part.</p>
 *
 * <p>Note: If you want to find a unity-norm solution of an under-defined singular
 * system <em>src1*dst=0</em>, the function <code>solve</code> will not do the
 * work. Use "SVD.solveZ" instead.</p>
 *
 * @param src1 input matrix on the left-hand side of the system.
 * @param src2 input matrix on the right-hand side of the system.
 * @param dst output solution.
 * @param flags solution (matrix inversion) method.
 * <ul>
 *   <li> DECOMP_LU Gaussian elimination with optimal pivot element chosen.
 *   <li> DECOMP_CHOLESKY Cholesky <em>LL^T</em> factorization; the matrix
 * <code>src1</code> must be symmetrical and positively defined.
 *   <li> DECOMP_EIG eigenvalue decomposition; the matrix <code>src1</code> must
 * be symmetrical.
 *   <li> DECOMP_SVD singular value decomposition (SVD) method; the system can
 * be over-defined and/or the matrix <code>src1</code> can be singular.
 *   <li> DECOMP_QR QR factorization; the system can be over-defined and/or the
 * matrix <code>src1</code> can be singular.
 *   <li> DECOMP_NORMAL while all the previous flags are mutually exclusive,
 * this flag can be used together with any of the previous; it means that the
 * normal equations <em>src1^T*src1*dst=src1^Tsrc2</em> are solved instead of
 * the original system <em>src1*dst=src2</em>.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#solve">org.opencv.core.Core.solve</a>
 * @see org.opencv.core.Core#invert
 * @see org.opencv.core.Core#eigen
 */
    public static boolean solve(Mat src1, Mat src2, Mat dst, int flags)
    {

        boolean retVal = solve_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, flags);

        return retVal;
    }

/**
 * <p>Solves one or more linear systems or least-squares problems.</p>
 *
 * <p>The function <code>solve</code> solves a linear system or least-squares
 * problem (the latter is possible with SVD or QR methods, or by specifying the
 * flag <code>DECOMP_NORMAL</code>):</p>
 *
 * <p><em>dst = arg min _X|src1 * X - src2|</em></p>
 *
 * <p>If <code>DECOMP_LU</code> or <code>DECOMP_CHOLESKY</code> method is used, the
 * function returns 1 if <code>src1</code> (or <em>src1^Tsrc1</em>) is
 * non-singular. Otherwise, it returns 0. In the latter case, <code>dst</code>
 * is not valid. Other methods find a pseudo-solution in case of a singular
 * left-hand side part.</p>
 *
 * <p>Note: If you want to find a unity-norm solution of an under-defined singular
 * system <em>src1*dst=0</em>, the function <code>solve</code> will not do the
 * work. Use "SVD.solveZ" instead.</p>
 *
 * @param src1 input matrix on the left-hand side of the system.
 * @param src2 input matrix on the right-hand side of the system.
 * @param dst output solution.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#solve">org.opencv.core.Core.solve</a>
 * @see org.opencv.core.Core#invert
 * @see org.opencv.core.Core#eigen
 */
    public static boolean solve(Mat src1, Mat src2, Mat dst)
    {

        boolean retVal = solve_1(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return retVal;
    }


    //
    // C++:  int solveCubic(Mat coeffs, Mat& roots)
    //

/**
 * <p>Finds the real roots of a cubic equation.</p>
 *
 * <p>The function <code>solveCubic</code> finds the real roots of a cubic
 * equation:</p>
 * <ul>
 *   <li> if <code>coeffs</code> is a 4-element vector:
 * </ul>
 *
 * <p><em>coeffs [0] x^3 + coeffs [1] x^2 + coeffs [2] x + coeffs [3] = 0</em></p>
 *
 * <ul>
 *   <li> if <code>coeffs</code> is a 3-element vector:
 * </ul>
 *
 * <p><em>x^3 + coeffs [0] x^2 + coeffs [1] x + coeffs [2] = 0</em></p>
 *
 * <p>The roots are stored in the <code>roots</code> array.</p>
 *
 * @param coeffs equation coefficients, an array of 3 or 4 elements.
 * @param roots output array of real roots that has 1 or 3 elements.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#solvecubic">org.opencv.core.Core.solveCubic</a>
 */
    public static int solveCubic(Mat coeffs, Mat roots)
    {

        int retVal = solveCubic_0(coeffs.nativeObj, roots.nativeObj);

        return retVal;
    }


    //
    // C++:  double solvePoly(Mat coeffs, Mat& roots, int maxIters = 300)
    //

/**
 * <p>Finds the real or complex roots of a polynomial equation.</p>
 *
 * <p>The function <code>solvePoly</code> finds real and complex roots of a
 * polynomial equation:</p>
 *
 * <p><em>coeffs [n] x^(n) + coeffs [n-1] x^(n-1) +... + coeffs [1] x + coeffs [0]
 * = 0</em></p>
 *
 * @param coeffs array of polynomial coefficients.
 * @param roots output (complex) array of roots.
 * @param maxIters maximum number of iterations the algorithm does.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#solvepoly">org.opencv.core.Core.solvePoly</a>
 */
    public static double solvePoly(Mat coeffs, Mat roots, int maxIters)
    {

        double retVal = solvePoly_0(coeffs.nativeObj, roots.nativeObj, maxIters);

        return retVal;
    }

/**
 * <p>Finds the real or complex roots of a polynomial equation.</p>
 *
 * <p>The function <code>solvePoly</code> finds real and complex roots of a
 * polynomial equation:</p>
 *
 * <p><em>coeffs [n] x^(n) + coeffs [n-1] x^(n-1) +... + coeffs [1] x + coeffs [0]
 * = 0</em></p>
 *
 * @param coeffs array of polynomial coefficients.
 * @param roots output (complex) array of roots.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#solvepoly">org.opencv.core.Core.solvePoly</a>
 */
    public static double solvePoly(Mat coeffs, Mat roots)
    {

        double retVal = solvePoly_1(coeffs.nativeObj, roots.nativeObj);

        return retVal;
    }


    //
    // C++:  void sort(Mat src, Mat& dst, int flags)
    //

/**
 * <p>Sorts each row or each column of a matrix.</p>
 *
 * <p>The function <code>sort</code> sorts each matrix row or each matrix column in
 * ascending or descending order. So you should pass two operation flags to get
 * desired behaviour. If you want to sort matrix rows or columns
 * lexicographically, you can use STL <code>std.sort</code> generic function
 * with the proper comparison predicate.</p>
 *
 * @param src input single-channel array.
 * @param dst output array of the same size and type as <code>src</code>.
 * @param flags operation flags, a combination of the following values:
 * <ul>
 *   <li> CV_SORT_EVERY_ROW each matrix row is sorted independently.
 *   <li> CV_SORT_EVERY_COLUMN each matrix column is sorted independently; this
 * flag and the previous one are mutually exclusive.
 *   <li> CV_SORT_ASCENDING each matrix row is sorted in the ascending order.
 *   <li> CV_SORT_DESCENDING each matrix row is sorted in the descending order;
 * this flag and the previous one are also mutually exclusive.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#sort">org.opencv.core.Core.sort</a>
 * @see org.opencv.core.Core#randShuffle
 * @see org.opencv.core.Core#sortIdx
 */
    public static void sort(Mat src, Mat dst, int flags)
    {

        sort_0(src.nativeObj, dst.nativeObj, flags);

        return;
    }


    //
    // C++:  void sortIdx(Mat src, Mat& dst, int flags)
    //

/**
 * <p>Sorts each row or each column of a matrix.</p>
 *
 * <p>The function <code>sortIdx</code> sorts each matrix row or each matrix column
 * in the ascending or descending order. So you should pass two operation flags
 * to get desired behaviour. Instead of reordering the elements themselves, it
 * stores the indices of sorted elements in the output array. For example:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A = Mat.eye(3,3,CV_32F), B;</p>
 *
 * <p>sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);</p>
 *
 * <p>// B will probably contain</p>
 *
 * <p>// (because of equal elements in A some permutations are possible):</p>
 *
 * <p>// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]</p>
 *
 * @param src input single-channel array.
 * @param dst output integer array of the same size as <code>src</code>.
 * @param flags operation flags that could be a combination of the following
 * values:
 * <ul>
 *   <li> CV_SORT_EVERY_ROW each matrix row is sorted independently.
 *   <li> CV_SORT_EVERY_COLUMN each matrix column is sorted independently; this
 * flag and the previous one are mutually exclusive.
 *   <li> CV_SORT_ASCENDING each matrix row is sorted in the ascending order.
 *   <li> CV_SORT_DESCENDING each matrix row is sorted in the descending order;
 * his flag and the previous one are also mutually exclusive.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#sortidx">org.opencv.core.Core.sortIdx</a>
 * @see org.opencv.core.Core#sort
 * @see org.opencv.core.Core#randShuffle
 */
    public static void sortIdx(Mat src, Mat dst, int flags)
    {

        sortIdx_0(src.nativeObj, dst.nativeObj, flags);

        return;
    }


    //
    // C++:  void split(Mat m, vector_Mat& mv)
    //

/**
 * <p>Divides a multi-channel array into several single-channel arrays.</p>
 *
 * <p>The functions <code>split</code> split a multi-channel array into separate
 * single-channel arrays:</p>
 *
 * <p><em>mv [c](I) = src(I)_c</em></p>
 *
 * <p>If you need to extract a single channel or do some other sophisticated
 * channel permutation, use "mixChannels".</p>
 *
 * @param m a m
 * @param mv output array or vector of arrays; in the first variant of the
 * function the number of arrays must match <code>src.channels()</code>; the
 * arrays themselves are reallocated, if needed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#split">org.opencv.core.Core.split</a>
 * @see org.opencv.core.Core#merge
 * @see org.opencv.imgproc.Imgproc#cvtColor
 * @see org.opencv.core.Core#mixChannels
 */
    public static void split(Mat m, List<Mat> mv)
    {
        Mat mv_mat = new Mat();
        split_0(m.nativeObj, mv_mat.nativeObj);
        Converters.Mat_to_vector_Mat(mv_mat, mv);
        return;
    }


    //
    // C++:  void sqrt(Mat src, Mat& dst)
    //

/**
 * <p>Calculates a square root of array elements.</p>
 *
 * <p>The functions <code>sqrt</code> calculate a square root of each input array
 * element. In case of multi-channel arrays, each channel is processed
 * independently. The accuracy is approximately the same as of the built-in
 * <code>std.sqrt</code>.</p>
 *
 * @param src input floating-point array.
 * @param dst output array of the same size and type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#sqrt">org.opencv.core.Core.sqrt</a>
 * @see org.opencv.core.Core#pow
 * @see org.opencv.core.Core#magnitude
 */
    public static void sqrt(Mat src, Mat dst)
    {

        sqrt_0(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void subtract(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    //

/**
 * <p>Calculates the per-element difference between two arrays or array and a
 * scalar.</p>
 *
 * <p>The function <code>subtract</code> calculates:</p>
 * <ul>
 *   <li> Difference between two arrays, when both input arrays have the same
 * size and the same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between an array and a scalar, when <code>src2</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between a scalar and an array, when <code>src1</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> The reverse difference between a scalar and an array in the case of
 * <code>SubRS</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src2 - src1(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 - src2;</p>
 *
 * <p>dst -= src1; // equivalent to subtract(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can subtract to 8-bit unsigned arrays and store the
 * difference in a 16-bit signed array. Depth of the output array is determined
 * by <code>dtype</code> parameter. In the second and third cases above, as well
 * as in the first case, when <code>src1.depth() == src2.depth()</code>,
 * <code>dtype</code> can be set to the default <code>-1</code>. In this case
 * the output array will have the same depth as the input array, be it
 * <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array of the same size and the same number of channels as
 * the input array.
 * @param mask optional operation mask; this is an 8-bit single channel array
 * that specifies elements of the output array to be changed.
 * @param dtype optional depth of the output array (see the details below).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#subtract">org.opencv.core.Core.subtract</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Mat#convertTo
 */
    public static void subtract(Mat src1, Mat src2, Mat dst, Mat mask, int dtype)
    {

        subtract_0(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype);

        return;
    }

/**
 * <p>Calculates the per-element difference between two arrays or array and a
 * scalar.</p>
 *
 * <p>The function <code>subtract</code> calculates:</p>
 * <ul>
 *   <li> Difference between two arrays, when both input arrays have the same
 * size and the same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between an array and a scalar, when <code>src2</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between a scalar and an array, when <code>src1</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> The reverse difference between a scalar and an array in the case of
 * <code>SubRS</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src2 - src1(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 - src2;</p>
 *
 * <p>dst -= src1; // equivalent to subtract(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can subtract to 8-bit unsigned arrays and store the
 * difference in a 16-bit signed array. Depth of the output array is determined
 * by <code>dtype</code> parameter. In the second and third cases above, as well
 * as in the first case, when <code>src1.depth() == src2.depth()</code>,
 * <code>dtype</code> can be set to the default <code>-1</code>. In this case
 * the output array will have the same depth as the input array, be it
 * <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array of the same size and the same number of channels as
 * the input array.
 * @param mask optional operation mask; this is an 8-bit single channel array
 * that specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#subtract">org.opencv.core.Core.subtract</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Mat#convertTo
 */
    public static void subtract(Mat src1, Mat src2, Mat dst, Mat mask)
    {

        subtract_1(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element difference between two arrays or array and a
 * scalar.</p>
 *
 * <p>The function <code>subtract</code> calculates:</p>
 * <ul>
 *   <li> Difference between two arrays, when both input arrays have the same
 * size and the same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between an array and a scalar, when <code>src2</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between a scalar and an array, when <code>src1</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> The reverse difference between a scalar and an array in the case of
 * <code>SubRS</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src2 - src1(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 - src2;</p>
 *
 * <p>dst -= src1; // equivalent to subtract(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can subtract to 8-bit unsigned arrays and store the
 * difference in a 16-bit signed array. Depth of the output array is determined
 * by <code>dtype</code> parameter. In the second and third cases above, as well
 * as in the first case, when <code>src1.depth() == src2.depth()</code>,
 * <code>dtype</code> can be set to the default <code>-1</code>. In this case
 * the output array will have the same depth as the input array, be it
 * <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array of the same size and the same number of channels as
 * the input array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#subtract">org.opencv.core.Core.subtract</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Mat#convertTo
 */
    public static void subtract(Mat src1, Mat src2, Mat dst)
    {

        subtract_2(src1.nativeObj, src2.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void subtract(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    //

/**
 * <p>Calculates the per-element difference between two arrays or array and a
 * scalar.</p>
 *
 * <p>The function <code>subtract</code> calculates:</p>
 * <ul>
 *   <li> Difference between two arrays, when both input arrays have the same
 * size and the same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between an array and a scalar, when <code>src2</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between a scalar and an array, when <code>src1</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> The reverse difference between a scalar and an array in the case of
 * <code>SubRS</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src2 - src1(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 - src2;</p>
 *
 * <p>dst -= src1; // equivalent to subtract(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can subtract to 8-bit unsigned arrays and store the
 * difference in a 16-bit signed array. Depth of the output array is determined
 * by <code>dtype</code> parameter. In the second and third cases above, as well
 * as in the first case, when <code>src1.depth() == src2.depth()</code>,
 * <code>dtype</code> can be set to the default <code>-1</code>. In this case
 * the output array will have the same depth as the input array, be it
 * <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array of the same size and the same number of channels as
 * the input array.
 * @param mask optional operation mask; this is an 8-bit single channel array
 * that specifies elements of the output array to be changed.
 * @param dtype optional depth of the output array (see the details below).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#subtract">org.opencv.core.Core.subtract</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Mat#convertTo
 */
    public static void subtract(Mat src1, Scalar src2, Mat dst, Mat mask, int dtype)
    {

        subtract_3(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj, dtype);

        return;
    }

/**
 * <p>Calculates the per-element difference between two arrays or array and a
 * scalar.</p>
 *
 * <p>The function <code>subtract</code> calculates:</p>
 * <ul>
 *   <li> Difference between two arrays, when both input arrays have the same
 * size and the same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between an array and a scalar, when <code>src2</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between a scalar and an array, when <code>src1</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> The reverse difference between a scalar and an array in the case of
 * <code>SubRS</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src2 - src1(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 - src2;</p>
 *
 * <p>dst -= src1; // equivalent to subtract(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can subtract to 8-bit unsigned arrays and store the
 * difference in a 16-bit signed array. Depth of the output array is determined
 * by <code>dtype</code> parameter. In the second and third cases above, as well
 * as in the first case, when <code>src1.depth() == src2.depth()</code>,
 * <code>dtype</code> can be set to the default <code>-1</code>. In this case
 * the output array will have the same depth as the input array, be it
 * <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array of the same size and the same number of channels as
 * the input array.
 * @param mask optional operation mask; this is an 8-bit single channel array
 * that specifies elements of the output array to be changed.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#subtract">org.opencv.core.Core.subtract</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Mat#convertTo
 */
    public static void subtract(Mat src1, Scalar src2, Mat dst, Mat mask)
    {

        subtract_4(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj, mask.nativeObj);

        return;
    }

/**
 * <p>Calculates the per-element difference between two arrays or array and a
 * scalar.</p>
 *
 * <p>The function <code>subtract</code> calculates:</p>
 * <ul>
 *   <li> Difference between two arrays, when both input arrays have the same
 * size and the same number of channels:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between an array and a scalar, when <code>src2</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src1.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1(I) - src2) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> Difference between a scalar and an array, when <code>src1</code> is
 * constructed from <code>Scalar</code> or has the same number of elements as
 * <code>src2.channels()</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src1 - src2(I)) if mask(I) != 0</em></p>
 *
 * <ul>
 *   <li> The reverse difference between a scalar and an array in the case of
 * <code>SubRS</code>:
 * </ul>
 *
 * <p><em>dst(I) = saturate(src2 - src1(I)) if mask(I) != 0</em></p>
 *
 * <p>where <code>I</code> is a multi-dimensional index of array elements. In case
 * of multi-channel arrays, each channel is processed independently.
 * The first function in the list above can be replaced with matrix expressions:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>dst = src1 - src2;</p>
 *
 * <p>dst -= src1; // equivalent to subtract(dst, src1, dst);</p>
 *
 * <p>The input arrays and the output array can all have the same or different
 * depths. For example, you can subtract to 8-bit unsigned arrays and store the
 * difference in a 16-bit signed array. Depth of the output array is determined
 * by <code>dtype</code> parameter. In the second and third cases above, as well
 * as in the first case, when <code>src1.depth() == src2.depth()</code>,
 * <code>dtype</code> can be set to the default <code>-1</code>. In this case
 * the output array will have the same depth as the input array, be it
 * <code>src1</code>, <code>src2</code> or both.
 * </code></p>
 *
 * <p>Note: Saturation is not applied when the output array has the depth
 * <code>CV_32S</code>. You may even get result of an incorrect sign in the case
 * of overflow.</p>
 *
 * @param src1 first input array or a scalar.
 * @param src2 second input array or a scalar.
 * @param dst output array of the same size and the same number of channels as
 * the input array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#subtract">org.opencv.core.Core.subtract</a>
 * @see org.opencv.core.Core#addWeighted
 * @see org.opencv.core.Core#add
 * @see org.opencv.core.Core#scaleAdd
 * @see org.opencv.core.Mat#convertTo
 */
    public static void subtract(Mat src1, Scalar src2, Mat dst)
    {

        subtract_5(src1.nativeObj, src2.val[0], src2.val[1], src2.val[2], src2.val[3], dst.nativeObj);

        return;
    }


    //
    // C++:  Scalar sum(Mat src)
    //

/**
 * <p>Calculates the sum of array elements.</p>
 *
 * <p>The functions <code>sum</code> calculate and return the sum of array
 * elements, independently for each channel.</p>
 *
 * @param src a src
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#sum">org.opencv.core.Core.sum</a>
 * @see org.opencv.core.Core#meanStdDev
 * @see org.opencv.core.Core#reduce
 * @see org.opencv.core.Core#minMaxLoc
 * @see org.opencv.core.Core#countNonZero
 * @see org.opencv.core.Core#norm
 * @see org.opencv.core.Core#mean
 */
    public static Scalar sumElems(Mat src)
    {

        Scalar retVal = new Scalar(sumElems_0(src.nativeObj));

        return retVal;
    }


    //
    // C++:  Scalar trace(Mat mtx)
    //

/**
 * <p>Returns the trace of a matrix.</p>
 *
 * <p>The function <code>trace</code> returns the sum of the diagonal elements of
 * the matrix <code>mtx</code>.</p>
 *
 * <p><em>tr(mtx) = sum _i mtx(i,i)</em></p>
 *
 * @param mtx a mtx
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#trace">org.opencv.core.Core.trace</a>
 */
    public static Scalar trace(Mat mtx)
    {

        Scalar retVal = new Scalar(trace_0(mtx.nativeObj));

        return retVal;
    }


    //
    // C++:  void transform(Mat src, Mat& dst, Mat m)
    //

/**
 * <p>Performs the matrix transformation of every array element.</p>
 *
 * <p>The function <code>transform</code> performs the matrix transformation of
 * every element of the array <code>src</code> and stores the results in
 * <code>dst</code> :</p>
 *
 * <p><em>dst(I) = m * src(I)</em></p>
 *
 * <p>(when <code>m.cols=src.channels()</code>), or</p>
 *
 * <p><em>dst(I) = m * [ src(I); 1]</em></p>
 *
 * <p>(when <code>m.cols=src.channels()+1</code>)</p>
 *
 * <p>Every element of the <code>N</code> -channel array <code>src</code> is
 * interpreted as <code>N</code> -element vector that is transformed using the
 * <code>M x N</code> or <code>M x (N+1)</code> matrix <code>m</code> to
 * <code>M</code>-element vector - the corresponding element of the output array
 * <code>dst</code>.</p>
 *
 * <p>The function may be used for geometrical transformation of <code>N</code>
 * -dimensional points, arbitrary linear color space transformation (such as
 * various kinds of RGB to YUV transforms), shuffling the image channels, and so
 * forth.</p>
 *
 * @param src input array that must have as many channels (1 to 4) as
 * <code>m.cols</code> or <code>m.cols-1</code>.
 * @param dst output array of the same size and depth as <code>src</code>; it
 * has as many channels as <code>m.rows</code>.
 * @param m transformation <code>2x2</code> or <code>2x3</code> floating-point
 * matrix.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#transform">org.opencv.core.Core.transform</a>
 * @see org.opencv.imgproc.Imgproc#warpAffine
 * @see org.opencv.core.Core#perspectiveTransform
 * @see org.opencv.imgproc.Imgproc#warpPerspective
 * @see org.opencv.imgproc.Imgproc#getAffineTransform
 * @see org.opencv.video.Video#estimateRigidTransform
 */
    public static void transform(Mat src, Mat dst, Mat m)
    {

        transform_0(src.nativeObj, dst.nativeObj, m.nativeObj);

        return;
    }


    //
    // C++:  void transpose(Mat src, Mat& dst)
    //

/**
 * <p>Transposes a matrix.</p>
 *
 * <p>The function "transpose" transposes the matrix <code>src</code> :</p>
 *
 * <p><em>dst(i,j) = src(j,i)</em></p>
 *
 * <p>Note: No complex conjugation is done in case of a complex matrix. It it
 * should be done separately if needed.</p>
 *
 * @param src input array.
 * @param dst output array of the same type as <code>src</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#transpose">org.opencv.core.Core.transpose</a>
 */
    public static void transpose(Mat src, Mat dst)
    {

        transpose_0(src.nativeObj, dst.nativeObj);

        return;
    }


    //
    // C++:  void vconcat(vector_Mat src, Mat& dst)
    //

    public static void vconcat(List<Mat> src, Mat dst)
    {
        Mat src_mat = Converters.vector_Mat_to_Mat(src);
        vconcat_0(src_mat.nativeObj, dst.nativeObj);

        return;
    }


    // manual port
    public static class MinMaxLocResult {
        public double minVal;
        public double maxVal;
        public Point minLoc;
        public Point maxLoc;

        public MinMaxLocResult() {
            minVal=0; maxVal=0;
            minLoc=new Point();
            maxLoc=new Point();
        }
    }

    // C++: minMaxLoc(Mat src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())

/**
 * <p>Finds the global minimum and maximum in an array.</p>
 *
 * <p>The functions <code>minMaxLoc</code> find the minimum and maximum element
 * values and their positions. The extremums are searched across the whole array
 * or, if <code>mask</code> is not an empty array, in the specified array
 * region.</p>
 *
 * <p>The functions do not work with multi-channel arrays. If you need to find
 * minimum or maximum elements across all the channels, use "Mat.reshape" first
 * to reinterpret the array as single-channel. Or you may extract the particular
 * channel using either "extractImageCOI", or "mixChannels", or "split".</p>
 *
 * @param src input single-channel array.
 * @param mask optional mask used to select a sub-array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#minmaxloc">org.opencv.core.Core.minMaxLoc</a>
 * @see org.opencv.core.Core#compare
 * @see org.opencv.core.Core#min
 * @see org.opencv.core.Core#mixChannels
 * @see org.opencv.core.Mat#reshape
 * @see org.opencv.core.Core#split
 * @see org.opencv.core.Core#max
 * @see org.opencv.core.Core#inRange
 */
    public static MinMaxLocResult minMaxLoc(Mat src, Mat mask) {
        MinMaxLocResult res = new MinMaxLocResult();
        long maskNativeObj=0;
        if (mask != null) {
            maskNativeObj=mask.nativeObj;
        }
        double resarr[] = n_minMaxLocManual(src.nativeObj, maskNativeObj);
        res.minVal=resarr[0];
        res.maxVal=resarr[1];
        res.minLoc.x=resarr[2];
        res.minLoc.y=resarr[3];
        res.maxLoc.x=resarr[4];
        res.maxLoc.y=resarr[5];
        return res;
    }

/**
 * <p>Finds the global minimum and maximum in an array.</p>
 *
 * <p>The functions <code>minMaxLoc</code> find the minimum and maximum element
 * values and their positions. The extremums are searched across the whole array
 * or, if <code>mask</code> is not an empty array, in the specified array
 * region.</p>
 *
 * <p>The functions do not work with multi-channel arrays. If you need to find
 * minimum or maximum elements across all the channels, use "Mat.reshape" first
 * to reinterpret the array as single-channel. Or you may extract the particular
 * channel using either "extractImageCOI", or "mixChannels", or "split".</p>
 *
 * @param src input single-channel array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#minmaxloc">org.opencv.core.Core.minMaxLoc</a>
 * @see org.opencv.core.Core#compare
 * @see org.opencv.core.Core#min
 * @see org.opencv.core.Core#mixChannels
 * @see org.opencv.core.Mat#reshape
 * @see org.opencv.core.Core#split
 * @see org.opencv.core.Core#max
 * @see org.opencv.core.Core#inRange
 */
    public static MinMaxLocResult minMaxLoc(Mat src) {
        return minMaxLoc(src, null);
    }


    // C++: Size getTextSize(const string& text, int fontFace, double fontScale, int thickness, int* baseLine);
/**
 * <p>Calculates the width and height of a text string.</p>
 *
 * <p>The function <code>getTextSize</code> calculates and returns the size of a
 * box that contains the specified text.That is, the following code renders some
 * text, the tight box surrounding it, and the baseline: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>string text = "Funny text inside the box";</p>
 *
 * <p>int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;</p>
 *
 * <p>double fontScale = 2;</p>
 *
 * <p>int thickness = 3;</p>
 *
 * <p>Mat img(600, 800, CV_8UC3, Scalar.all(0));</p>
 *
 * <p>int baseline=0;</p>
 *
 * <p>Size textSize = getTextSize(text, fontFace,</p>
 *
 * <p>fontScale, thickness, &baseline);</p>
 *
 * <p>baseline += thickness;</p>
 *
 * <p>// center the text</p>
 *
 * <p>Point textOrg((img.cols - textSize.width)/2,</p>
 *
 * <p>(img.rows + textSize.height)/2);</p>
 *
 * <p>// draw the box</p>
 *
 * <p>rectangle(img, textOrg + Point(0, baseline),</p>
 *
 * <p>textOrg + Point(textSize.width, -textSize.height),</p>
 *
 * <p>Scalar(0,0,255));</p>
 *
 * <p>//... and the baseline first</p>
 *
 * <p>line(img, textOrg + Point(0, thickness),</p>
 *
 * <p>textOrg + Point(textSize.width, thickness),</p>
 *
 * <p>Scalar(0, 0, 255));</p>
 *
 * <p>// then put the text itself</p>
 *
 * <p>putText(img, text, textOrg, fontFace, fontScale,</p>
 *
 * <p>Scalar.all(255), thickness, 8);</p>
 *
 * @param text Input text string.
 * @param fontFace Font to use. See the "putText" for details.
 * @param fontScale Font scale. See the "putText" for details.
 * @param thickness Thickness of lines used to render the text. See "putText"
 * for details.
 * @param baseLine Output parameter - y-coordinate of the baseline relative to
 * the bottom-most text point.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/drawing_functions.html#gettextsize">org.opencv.core.Core.getTextSize</a>
 */
    public static Size getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine) {
        if(baseLine != null && baseLine.length != 1)
            throw new java.lang.IllegalArgumentException("'baseLine' must be 'int[1]' or 'null'.");
        Size retVal = new Size(n_getTextSize(text, fontFace, fontScale, thickness, baseLine));
        return retVal;
    }



    // C++:  void LUT(Mat src, Mat lut, Mat& dst, int interpolation = 0)
    private static native void LUT_0(long src_nativeObj, long lut_nativeObj, long dst_nativeObj, int interpolation);
    private static native void LUT_1(long src_nativeObj, long lut_nativeObj, long dst_nativeObj);

    // C++:  double Mahalanobis(Mat v1, Mat v2, Mat icovar)
    private static native double Mahalanobis_0(long v1_nativeObj, long v2_nativeObj, long icovar_nativeObj);

    // C++:  void PCABackProject(Mat data, Mat mean, Mat eigenvectors, Mat& result)
    private static native void PCABackProject_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long result_nativeObj);

    // C++:  void PCACompute(Mat data, Mat& mean, Mat& eigenvectors, int maxComponents = 0)
    private static native void PCACompute_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, int maxComponents);
    private static native void PCACompute_1(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj);

    // C++:  void PCAComputeVar(Mat data, Mat& mean, Mat& eigenvectors, double retainedVariance)
    private static native void PCAComputeVar_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, double retainedVariance);

    // C++:  void PCAProject(Mat data, Mat mean, Mat eigenvectors, Mat& result)
    private static native void PCAProject_0(long data_nativeObj, long mean_nativeObj, long eigenvectors_nativeObj, long result_nativeObj);

    // C++:  void SVBackSubst(Mat w, Mat u, Mat vt, Mat rhs, Mat& dst)
    private static native void SVBackSubst_0(long w_nativeObj, long u_nativeObj, long vt_nativeObj, long rhs_nativeObj, long dst_nativeObj);

    // C++:  void SVDecomp(Mat src, Mat& w, Mat& u, Mat& vt, int flags = 0)
    private static native void SVDecomp_0(long src_nativeObj, long w_nativeObj, long u_nativeObj, long vt_nativeObj, int flags);
    private static native void SVDecomp_1(long src_nativeObj, long w_nativeObj, long u_nativeObj, long vt_nativeObj);

    // C++:  void absdiff(Mat src1, Mat src2, Mat& dst)
    private static native void absdiff_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void absdiff(Mat src1, Scalar src2, Mat& dst)
    private static native void absdiff_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  void add(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    private static native void add_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj, int dtype);
    private static native void add_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj);
    private static native void add_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void add(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    private static native void add_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj, int dtype);
    private static native void add_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj);
    private static native void add_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  void addWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat& dst, int dtype = -1)
    private static native void addWeighted_0(long src1_nativeObj, double alpha, long src2_nativeObj, double beta, double gamma, long dst_nativeObj, int dtype);
    private static native void addWeighted_1(long src1_nativeObj, double alpha, long src2_nativeObj, double beta, double gamma, long dst_nativeObj);

    // C++:  void arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1)
    private static native void arrowedLine_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift, double tipLength);
    private static native void arrowedLine_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void batchDistance(Mat src1, Mat src2, Mat& dist, int dtype, Mat& nidx, int normType = NORM_L2, int K = 0, Mat mask = Mat(), int update = 0, bool crosscheck = false)
    private static native void batchDistance_0(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K, long mask_nativeObj, int update, boolean crosscheck);
    private static native void batchDistance_1(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj, int normType, int K);
    private static native void batchDistance_2(long src1_nativeObj, long src2_nativeObj, long dist_nativeObj, int dtype, long nidx_nativeObj);

    // C++:  void bitwise_and(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
    private static native void bitwise_and_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj);
    private static native void bitwise_and_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void bitwise_not(Mat src, Mat& dst, Mat mask = Mat())
    private static native void bitwise_not_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj);
    private static native void bitwise_not_1(long src_nativeObj, long dst_nativeObj);

    // C++:  void bitwise_or(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
    private static native void bitwise_or_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj);
    private static native void bitwise_or_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void bitwise_xor(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
    private static native void bitwise_xor_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj);
    private static native void bitwise_xor_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void calcCovarMatrix(Mat samples, Mat& covar, Mat& mean, int flags, int ctype = CV_64F)
    private static native void calcCovarMatrix_0(long samples_nativeObj, long covar_nativeObj, long mean_nativeObj, int flags, int ctype);
    private static native void calcCovarMatrix_1(long samples_nativeObj, long covar_nativeObj, long mean_nativeObj, int flags);

    // C++:  void cartToPolar(Mat x, Mat y, Mat& magnitude, Mat& angle, bool angleInDegrees = false)
    private static native void cartToPolar_0(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj, long angle_nativeObj, boolean angleInDegrees);
    private static native void cartToPolar_1(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj, long angle_nativeObj);

    // C++:  bool checkRange(Mat a, bool quiet = true,  _hidden_ * pos = 0, double minVal = -DBL_MAX, double maxVal = DBL_MAX)
    private static native boolean checkRange_0(long a_nativeObj, boolean quiet, double minVal, double maxVal);
    private static native boolean checkRange_1(long a_nativeObj);

    // C++:  void circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    private static native void circle_0(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
    private static native void circle_1(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void circle_2(long img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  bool clipLine(Rect imgRect, Point& pt1, Point& pt2)
    private static native boolean clipLine_0(int imgRect_x, int imgRect_y, int imgRect_width, int imgRect_height, double pt1_x, double pt1_y, double[] pt1_out, double pt2_x, double pt2_y, double[] pt2_out);

    // C++:  void compare(Mat src1, Mat src2, Mat& dst, int cmpop)
    private static native void compare_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int cmpop);

    // C++:  void compare(Mat src1, Scalar src2, Mat& dst, int cmpop)
    private static native void compare_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, int cmpop);

    // C++:  void completeSymm(Mat& mtx, bool lowerToUpper = false)
    private static native void completeSymm_0(long mtx_nativeObj, boolean lowerToUpper);
    private static native void completeSymm_1(long mtx_nativeObj);

    // C++:  void convertScaleAbs(Mat src, Mat& dst, double alpha = 1, double beta = 0)
    private static native void convertScaleAbs_0(long src_nativeObj, long dst_nativeObj, double alpha, double beta);
    private static native void convertScaleAbs_1(long src_nativeObj, long dst_nativeObj);

    // C++:  int countNonZero(Mat src)
    private static native int countNonZero_0(long src_nativeObj);

    // C++:  float cubeRoot(float val)
    private static native float cubeRoot_0(float val);

    // C++:  void dct(Mat src, Mat& dst, int flags = 0)
    private static native void dct_0(long src_nativeObj, long dst_nativeObj, int flags);
    private static native void dct_1(long src_nativeObj, long dst_nativeObj);

    // C++:  double determinant(Mat mtx)
    private static native double determinant_0(long mtx_nativeObj);

    // C++:  void dft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0)
    private static native void dft_0(long src_nativeObj, long dst_nativeObj, int flags, int nonzeroRows);
    private static native void dft_1(long src_nativeObj, long dst_nativeObj);

    // C++:  void divide(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1)
    private static native void divide_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale, int dtype);
    private static native void divide_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale);
    private static native void divide_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void divide(double scale, Mat src2, Mat& dst, int dtype = -1)
    private static native void divide_3(double scale, long src2_nativeObj, long dst_nativeObj, int dtype);
    private static native void divide_4(double scale, long src2_nativeObj, long dst_nativeObj);

    // C++:  void divide(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1)
    private static native void divide_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale, int dtype);
    private static native void divide_6(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale);
    private static native void divide_7(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  bool eigen(Mat src, bool computeEigenvectors, Mat& eigenvalues, Mat& eigenvectors)
    private static native boolean eigen_0(long src_nativeObj, boolean computeEigenvectors, long eigenvalues_nativeObj, long eigenvectors_nativeObj);

    // C++:  void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    private static native void ellipse_0(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
    private static native void ellipse_1(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void ellipse_2(long img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = 8)
    private static native void ellipse_3(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType);
    private static native void ellipse_4(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void ellipse_5(long img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts)
    private static native void ellipse2Poly_0(double center_x, double center_y, double axes_width, double axes_height, int angle, int arcStart, int arcEnd, int delta, long pts_mat_nativeObj);

    // C++:  void exp(Mat src, Mat& dst)
    private static native void exp_0(long src_nativeObj, long dst_nativeObj);

    // C++:  void extractChannel(Mat src, Mat& dst, int coi)
    private static native void extractChannel_0(long src_nativeObj, long dst_nativeObj, int coi);

    // C++:  float fastAtan2(float y, float x)
    private static native float fastAtan2_0(float y, float x);

    // C++:  void fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = 8, int shift = 0)
    private static native void fillConvexPoly_0(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift);
    private static native void fillConvexPoly_1(long img_nativeObj, long points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = 8, int shift = 0, Point offset = Point())
    private static native void fillPoly_0(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift, double offset_x, double offset_y);
    private static native void fillPoly_1(long img_nativeObj, long pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void findNonZero(Mat src, Mat& idx)
    private static native void findNonZero_0(long src_nativeObj, long idx_nativeObj);

    // C++:  void flip(Mat src, Mat& dst, int flipCode)
    private static native void flip_0(long src_nativeObj, long dst_nativeObj, int flipCode);

    // C++:  void gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat& dst, int flags = 0)
    private static native void gemm_0(long src1_nativeObj, long src2_nativeObj, double alpha, long src3_nativeObj, double beta, long dst_nativeObj, int flags);
    private static native void gemm_1(long src1_nativeObj, long src2_nativeObj, double alpha, long src3_nativeObj, double beta, long dst_nativeObj);

    // C++:  string getBuildInformation()
    private static native String getBuildInformation_0();

    // C++:  int64 getCPUTickCount()
    private static native long getCPUTickCount_0();

    // C++:  int getNumberOfCPUs()
    private static native int getNumberOfCPUs_0();

    // C++:  int getOptimalDFTSize(int vecsize)
    private static native int getOptimalDFTSize_0(int vecsize);

    // C++:  int64 getTickCount()
    private static native long getTickCount_0();

    // C++:  double getTickFrequency()
    private static native double getTickFrequency_0();

    // C++:  void hconcat(vector_Mat src, Mat& dst)
    private static native void hconcat_0(long src_mat_nativeObj, long dst_nativeObj);

    // C++:  void idct(Mat src, Mat& dst, int flags = 0)
    private static native void idct_0(long src_nativeObj, long dst_nativeObj, int flags);
    private static native void idct_1(long src_nativeObj, long dst_nativeObj);

    // C++:  void idft(Mat src, Mat& dst, int flags = 0, int nonzeroRows = 0)
    private static native void idft_0(long src_nativeObj, long dst_nativeObj, int flags, int nonzeroRows);
    private static native void idft_1(long src_nativeObj, long dst_nativeObj);

    // C++:  void inRange(Mat src, Scalar lowerb, Scalar upperb, Mat& dst)
    private static native void inRange_0(long src_nativeObj, double lowerb_val0, double lowerb_val1, double lowerb_val2, double lowerb_val3, double upperb_val0, double upperb_val1, double upperb_val2, double upperb_val3, long dst_nativeObj);

    // C++:  void insertChannel(Mat src, Mat& dst, int coi)
    private static native void insertChannel_0(long src_nativeObj, long dst_nativeObj, int coi);

    // C++:  double invert(Mat src, Mat& dst, int flags = DECOMP_LU)
    private static native double invert_0(long src_nativeObj, long dst_nativeObj, int flags);
    private static native double invert_1(long src_nativeObj, long dst_nativeObj);

    // C++:  double kmeans(Mat data, int K, Mat& bestLabels, TermCriteria criteria, int attempts, int flags, Mat& centers = Mat())
    private static native double kmeans_0(long data_nativeObj, int K, long bestLabels_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon, int attempts, int flags, long centers_nativeObj);
    private static native double kmeans_1(long data_nativeObj, int K, long bestLabels_nativeObj, int criteria_type, int criteria_maxCount, double criteria_epsilon, int attempts, int flags);

    // C++:  void line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    private static native void line_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
    private static native void line_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void line_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void log(Mat src, Mat& dst)
    private static native void log_0(long src_nativeObj, long dst_nativeObj);

    // C++:  void magnitude(Mat x, Mat y, Mat& magnitude)
    private static native void magnitude_0(long x_nativeObj, long y_nativeObj, long magnitude_nativeObj);

    // C++:  void max(Mat src1, Mat src2, Mat& dst)
    private static native void max_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void max(Mat src1, Scalar src2, Mat& dst)
    private static native void max_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  Scalar mean(Mat src, Mat mask = Mat())
    private static native double[] mean_0(long src_nativeObj, long mask_nativeObj);
    private static native double[] mean_1(long src_nativeObj);

    // C++:  void meanStdDev(Mat src, vector_double& mean, vector_double& stddev, Mat mask = Mat())
    private static native void meanStdDev_0(long src_nativeObj, long mean_mat_nativeObj, long stddev_mat_nativeObj, long mask_nativeObj);
    private static native void meanStdDev_1(long src_nativeObj, long mean_mat_nativeObj, long stddev_mat_nativeObj);

    // C++:  void merge(vector_Mat mv, Mat& dst)
    private static native void merge_0(long mv_mat_nativeObj, long dst_nativeObj);

    // C++:  void min(Mat src1, Mat src2, Mat& dst)
    private static native void min_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void min(Mat src1, Scalar src2, Mat& dst)
    private static native void min_1(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  void mixChannels(vector_Mat src, vector_Mat dst, vector_int fromTo)
    private static native void mixChannels_0(long src_mat_nativeObj, long dst_mat_nativeObj, long fromTo_mat_nativeObj);

    // C++:  void mulSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false)
    private static native void mulSpectrums_0(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags, boolean conjB);
    private static native void mulSpectrums_1(long a_nativeObj, long b_nativeObj, long c_nativeObj, int flags);

    // C++:  void mulTransposed(Mat src, Mat& dst, bool aTa, Mat delta = Mat(), double scale = 1, int dtype = -1)
    private static native void mulTransposed_0(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj, double scale, int dtype);
    private static native void mulTransposed_1(long src_nativeObj, long dst_nativeObj, boolean aTa, long delta_nativeObj, double scale);
    private static native void mulTransposed_2(long src_nativeObj, long dst_nativeObj, boolean aTa);

    // C++:  void multiply(Mat src1, Mat src2, Mat& dst, double scale = 1, int dtype = -1)
    private static native void multiply_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale, int dtype);
    private static native void multiply_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, double scale);
    private static native void multiply_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void multiply(Mat src1, Scalar src2, Mat& dst, double scale = 1, int dtype = -1)
    private static native void multiply_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale, int dtype);
    private static native void multiply_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, double scale);
    private static native void multiply_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  double norm(Mat src1, int normType = NORM_L2, Mat mask = Mat())
    private static native double norm_0(long src1_nativeObj, int normType, long mask_nativeObj);
    private static native double norm_1(long src1_nativeObj, int normType);
    private static native double norm_2(long src1_nativeObj);

    // C++:  double norm(Mat src1, Mat src2, int normType = NORM_L2, Mat mask = Mat())
    private static native double norm_3(long src1_nativeObj, long src2_nativeObj, int normType, long mask_nativeObj);
    private static native double norm_4(long src1_nativeObj, long src2_nativeObj, int normType);
    private static native double norm_5(long src1_nativeObj, long src2_nativeObj);

    // C++:  void normalize(Mat src, Mat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, Mat mask = Mat())
    private static native void normalize_0(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type, int dtype, long mask_nativeObj);
    private static native void normalize_1(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type, int dtype);
    private static native void normalize_2(long src_nativeObj, long dst_nativeObj, double alpha, double beta, int norm_type);
    private static native void normalize_3(long src_nativeObj, long dst_nativeObj);

    // C++:  void patchNaNs(Mat& a, double val = 0)
    private static native void patchNaNs_0(long a_nativeObj, double val);
    private static native void patchNaNs_1(long a_nativeObj);

    // C++:  void perspectiveTransform(Mat src, Mat& dst, Mat m)
    private static native void perspectiveTransform_0(long src_nativeObj, long dst_nativeObj, long m_nativeObj);

    // C++:  void phase(Mat x, Mat y, Mat& angle, bool angleInDegrees = false)
    private static native void phase_0(long x_nativeObj, long y_nativeObj, long angle_nativeObj, boolean angleInDegrees);
    private static native void phase_1(long x_nativeObj, long y_nativeObj, long angle_nativeObj);

    // C++:  void polarToCart(Mat magnitude, Mat angle, Mat& x, Mat& y, bool angleInDegrees = false)
    private static native void polarToCart_0(long magnitude_nativeObj, long angle_nativeObj, long x_nativeObj, long y_nativeObj, boolean angleInDegrees);
    private static native void polarToCart_1(long magnitude_nativeObj, long angle_nativeObj, long x_nativeObj, long y_nativeObj);

    // C++:  void polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    private static native void polylines_0(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
    private static native void polylines_1(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void polylines_2(long img_nativeObj, long pts_mat_nativeObj, boolean isClosed, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void pow(Mat src, double power, Mat& dst)
    private static native void pow_0(long src_nativeObj, double power, long dst_nativeObj);

    // C++:  void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = 8, bool bottomLeftOrigin = false)
    private static native void putText_0(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, boolean bottomLeftOrigin);
    private static native void putText_1(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void putText_2(long img_nativeObj, String text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void randShuffle_(Mat& dst, double iterFactor = 1.)
    private static native void randShuffle_0(long dst_nativeObj, double iterFactor);
    private static native void randShuffle_1(long dst_nativeObj);

    // C++:  void randn(Mat& dst, double mean, double stddev)
    private static native void randn_0(long dst_nativeObj, double mean, double stddev);

    // C++:  void randu(Mat& dst, double low, double high)
    private static native void randu_0(long dst_nativeObj, double low, double high);

    // C++:  void rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = 8, int shift = 0)
    private static native void rectangle_0(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift);
    private static native void rectangle_1(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness);
    private static native void rectangle_2(long img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3);

    // C++:  void reduce(Mat src, Mat& dst, int dim, int rtype, int dtype = -1)
    private static native void reduce_0(long src_nativeObj, long dst_nativeObj, int dim, int rtype, int dtype);
    private static native void reduce_1(long src_nativeObj, long dst_nativeObj, int dim, int rtype);

    // C++:  void repeat(Mat src, int ny, int nx, Mat& dst)
    private static native void repeat_0(long src_nativeObj, int ny, int nx, long dst_nativeObj);

    // C++:  void scaleAdd(Mat src1, double alpha, Mat src2, Mat& dst)
    private static native void scaleAdd_0(long src1_nativeObj, double alpha, long src2_nativeObj, long dst_nativeObj);

    // C++:  void setErrorVerbosity(bool verbose)
    private static native void setErrorVerbosity_0(boolean verbose);

    // C++:  void setIdentity(Mat& mtx, Scalar s = Scalar(1))
    private static native void setIdentity_0(long mtx_nativeObj, double s_val0, double s_val1, double s_val2, double s_val3);
    private static native void setIdentity_1(long mtx_nativeObj);

    // C++:  bool solve(Mat src1, Mat src2, Mat& dst, int flags = DECOMP_LU)
    private static native boolean solve_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, int flags);
    private static native boolean solve_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  int solveCubic(Mat coeffs, Mat& roots)
    private static native int solveCubic_0(long coeffs_nativeObj, long roots_nativeObj);

    // C++:  double solvePoly(Mat coeffs, Mat& roots, int maxIters = 300)
    private static native double solvePoly_0(long coeffs_nativeObj, long roots_nativeObj, int maxIters);
    private static native double solvePoly_1(long coeffs_nativeObj, long roots_nativeObj);

    // C++:  void sort(Mat src, Mat& dst, int flags)
    private static native void sort_0(long src_nativeObj, long dst_nativeObj, int flags);

    // C++:  void sortIdx(Mat src, Mat& dst, int flags)
    private static native void sortIdx_0(long src_nativeObj, long dst_nativeObj, int flags);

    // C++:  void split(Mat m, vector_Mat& mv)
    private static native void split_0(long m_nativeObj, long mv_mat_nativeObj);

    // C++:  void sqrt(Mat src, Mat& dst)
    private static native void sqrt_0(long src_nativeObj, long dst_nativeObj);

    // C++:  void subtract(Mat src1, Mat src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    private static native void subtract_0(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj, int dtype);
    private static native void subtract_1(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj, long mask_nativeObj);
    private static native void subtract_2(long src1_nativeObj, long src2_nativeObj, long dst_nativeObj);

    // C++:  void subtract(Mat src1, Scalar src2, Mat& dst, Mat mask = Mat(), int dtype = -1)
    private static native void subtract_3(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj, int dtype);
    private static native void subtract_4(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj, long mask_nativeObj);
    private static native void subtract_5(long src1_nativeObj, double src2_val0, double src2_val1, double src2_val2, double src2_val3, long dst_nativeObj);

    // C++:  Scalar sum(Mat src)
    private static native double[] sumElems_0(long src_nativeObj);

    // C++:  Scalar trace(Mat mtx)
    private static native double[] trace_0(long mtx_nativeObj);

    // C++:  void transform(Mat src, Mat& dst, Mat m)
    private static native void transform_0(long src_nativeObj, long dst_nativeObj, long m_nativeObj);

    // C++:  void transpose(Mat src, Mat& dst)
    private static native void transpose_0(long src_nativeObj, long dst_nativeObj);

    // C++:  void vconcat(vector_Mat src, Mat& dst)
    private static native void vconcat_0(long src_mat_nativeObj, long dst_nativeObj);
    private static native double[] n_minMaxLocManual(long src_nativeObj, long mask_nativeObj);
    private static native double[] n_getTextSize(String text, int fontFace, double fontScale, int thickness, int[] baseLine);

}




Java Source Code List

com.floatlearning.android_opencv_template.MainActivity.java
org.opencv.android.AsyncServiceHelper.java
org.opencv.android.BaseLoaderCallback.java
org.opencv.android.CameraBridgeViewBase.java
org.opencv.android.FpsMeter.java
org.opencv.android.InstallCallbackInterface.java
org.opencv.android.JavaCameraView.java
org.opencv.android.LoaderCallbackInterface.java
org.opencv.android.NativeCameraView.java
org.opencv.android.OpenCVLoader.java
org.opencv.android.StaticHelper.java
org.opencv.android.Utils.java
org.opencv.calib3d.Calib3d.java
org.opencv.calib3d.StereoBM.java
org.opencv.calib3d.StereoSGBM.java
org.opencv.contrib.Contrib.java
org.opencv.contrib.FaceRecognizer.java
org.opencv.contrib.StereoVar.java
org.opencv.core.Algorithm.java
org.opencv.core.Core.java
org.opencv.core.CvException.java
org.opencv.core.CvType.java
org.opencv.core.MatOfByte.java
org.opencv.core.MatOfDMatch.java
org.opencv.core.MatOfDouble.java
org.opencv.core.MatOfFloat4.java
org.opencv.core.MatOfFloat6.java
org.opencv.core.MatOfFloat.java
org.opencv.core.MatOfInt4.java
org.opencv.core.MatOfInt.java
org.opencv.core.MatOfKeyPoint.java
org.opencv.core.MatOfPoint2f.java
org.opencv.core.MatOfPoint3.java
org.opencv.core.MatOfPoint3f.java
org.opencv.core.MatOfPoint.java
org.opencv.core.MatOfRect.java
org.opencv.core.Mat.java
org.opencv.core.Point3.java
org.opencv.core.Point.java
org.opencv.core.Range.java
org.opencv.core.Rect.java
org.opencv.core.RotatedRect.java
org.opencv.core.Scalar.java
org.opencv.core.Size.java
org.opencv.core.TermCriteria.java
org.opencv.features2d.DMatch.java
org.opencv.features2d.DescriptorExtractor.java
org.opencv.features2d.DescriptorMatcher.java
org.opencv.features2d.FeatureDetector.java
org.opencv.features2d.Features2d.java
org.opencv.features2d.GenericDescriptorMatcher.java
org.opencv.features2d.KeyPoint.java
org.opencv.gpu.DeviceInfo.java
org.opencv.gpu.Gpu.java
org.opencv.gpu.TargetArchs.java
org.opencv.highgui.Highgui.java
org.opencv.highgui.VideoCapture.java
org.opencv.imgproc.CLAHE.java
org.opencv.imgproc.Imgproc.java
org.opencv.imgproc.Moments.java
org.opencv.imgproc.Subdiv2D.java
org.opencv.ml.CvANN_MLP_TrainParams.java
org.opencv.ml.CvANN_MLP.java
org.opencv.ml.CvBoostParams.java
org.opencv.ml.CvBoost.java
org.opencv.ml.CvDTreeParams.java
org.opencv.ml.CvDTree.java
org.opencv.ml.CvERTrees.java
org.opencv.ml.CvGBTreesParams.java
org.opencv.ml.CvGBTrees.java
org.opencv.ml.CvKNearest.java
org.opencv.ml.CvNormalBayesClassifier.java
org.opencv.ml.CvParamGrid.java
org.opencv.ml.CvRTParams.java
org.opencv.ml.CvRTrees.java
org.opencv.ml.CvSVMParams.java
org.opencv.ml.CvSVM.java
org.opencv.ml.CvStatModel.java
org.opencv.ml.EM.java
org.opencv.ml.Ml.java
org.opencv.objdetect.CascadeClassifier.java
org.opencv.objdetect.HOGDescriptor.java
org.opencv.objdetect.Objdetect.java
org.opencv.photo.Photo.java
org.opencv.utils.Converters.java
org.opencv.video.BackgroundSubtractorMOG2.java
org.opencv.video.BackgroundSubtractorMOG.java
org.opencv.video.BackgroundSubtractor.java
org.opencv.video.KalmanFilter.java
org.opencv.video.Video.java