A fixed size map implementation. : Customized Map « Collections « Java Tutorial






/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.Serializable;
import java.util.AbstractList;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

/**
 * A fixed size map implementation. Holds an array of keys and array of values which correspond by
 * index. Null key entries are available for use. This means that null is not a valid key.
 * 
 * @author Jonathan Locke
 * @param <K>
 *            Key type
 * @param <V>
 *            Value type
 */
public class MiniMap<K, V> implements Map<K, V>, Serializable
{
  private static final long serialVersionUID = 1L;

  /** The array of keys. Keys that are null are not used. */
  private final K[] keys;

  /** The array of values which correspond by index with the keys array. */
  private final V[] values;

  /** The number of valid entries */
  private int size;

  /** The last search index. This makes putting and getting more efficient. */
  private int lastSearchIndex;

  /**
   * Constructor
   * 
   * @param maxEntries
   *            The maximum number of entries this map can hold
   */
  @SuppressWarnings("unchecked")
  public MiniMap(final int maxEntries)
  {
    keys = (K[])new Object[maxEntries];
    values = (V[])new Object[maxEntries];
  }

  /**
   * Constructor
   * 
   * @param map
   *            The map
   * @param maxEntries
   *            The maximum number of entries this map can hold
   */
  public MiniMap(final Map<? extends K, ? extends V> map, final int maxEntries)
  {
    this(maxEntries);
    putAll(map);
  }

  /**
   * @return True if this MicroMap is full
   */
  public boolean isFull()
  {
    return size == keys.length;
  }

  /**
   * @see java.util.Map#size()
   */
  public int size()
  {
    return size;
  }

  /**
   * @see java.util.Map#isEmpty()
   */
  public boolean isEmpty()
  {
    return size == 0;
  }

  /**
   * @see java.util.Map#containsKey(java.lang.Object)
   */
  public boolean containsKey(final Object key)
  {
    return findKey(0, key) != -1;
  }

  /**
   * @see java.util.Map#containsValue(java.lang.Object)
   */
  public boolean containsValue(final Object value)
  {
    return findValue(0, value) != -1;
  }

  /**
   * @see java.util.Map#get(java.lang.Object)
   */
  public V get(final Object key)
  {
    // Search for key
    final int index = findKey(key);

    if (index != -1)
    {
      // Return value
      return values[index];
    }

    // Failed to find key
    return null;
  }

  /**
   * @see java.util.Map#put(java.lang.Object, java.lang.Object)
   */
  public V put(final K key, final V value)
  {
    // Search for key
    final int index = findKey(key);

    if (index != -1)
    {
      // Replace existing value
      final V oldValue = values[index];
      values[index] = value;
      return oldValue;
    }

    // Is there room for a new entry?
    if (size < keys.length)
    {
      // Store at first null index and continue searching after null index
      // next time
      final int nullIndex = nextNullKey(lastSearchIndex);
      lastSearchIndex = nextIndex(nullIndex);
      keys[nullIndex] = key;
      values[nullIndex] = value;
      size++;

      return null;
    }
    else
    {
      throw new IllegalStateException("Map full");
    }
  }

  /**
   * @see java.util.Map#remove(java.lang.Object)
   */
  public V remove(final Object key)
  {
    // Search for key
    final int index = findKey(key);

    if (index != -1)
    {
      // Store value
      final V oldValue = values[index];

      keys[index] = null;
      values[index] = null;
      size--;

      return oldValue;
    }

    return null;
  }

  /**
   * @see java.util.Map#putAll(java.util.Map)
   */
  public void putAll(Map<? extends K, ? extends V> map)
  {
    for (final Iterator<? extends Entry<? extends K, ? extends V>> iterator = map.entrySet()
      .iterator(); iterator.hasNext();)
    {
      final Map.Entry<? extends K, ? extends V> e = iterator.next();
      put(e.getKey(), e.getValue());
    }
  }

  /**
   * @see java.util.Map#clear()
   */
  public void clear()
  {
    for (int i = 0; i < keys.length; i++)
    {
      keys[i] = null;
      values[i] = null;
    }

    size = 0;
  }

  /**
   * @see java.util.Map#keySet()
   */
  public Set<K> keySet()
  {
    return new AbstractSet<K>()
    {
      @Override
      public Iterator<K> iterator()
      {
        return new Iterator<K>()
        {
          public boolean hasNext()
          {
            return i < size - 1;
          }

          public K next()
          {
            // Just in case... (WICKET-428)
            if (!hasNext())
            {
              throw new NoSuchElementException();
            }

            // Find next key
            i = nextKey(nextIndex(i));

            // Get key
            return keys[i];
          }

          public void remove()
          {
            keys[i] = null;
            values[i] = null;
            size--;
          }

          int i = -1;
        };
      }

      @Override
      public int size()
      {
        return size;
      }
    };
  }

  /**
   * @see java.util.Map#values()
   */
  public Collection<V> values()
  {
    return new AbstractList<V>()
    {
      @Override
      public V get(final int index)
      {
        if (index > size - 1)
        {
          throw new IndexOutOfBoundsException();
        }
        int keyIndex = nextKey(0);

        for (int i = 0; i < index; i++)
        {
          keyIndex = nextKey(keyIndex + 1);
        }

        return values[keyIndex];
      }

      @Override
      public int size()
      {
        return size;
      }
    };
  }

  /**
   * @see java.util.Map#entrySet()
   */
  public Set<Entry<K, V>> entrySet()
  {
    return new AbstractSet<Entry<K, V>>()
    {
      @Override
      public Iterator<Entry<K, V>> iterator()
      {
        return new Iterator<Entry<K, V>>()
        {
          public boolean hasNext()
          {
            return index < size;
          }

          public Entry<K, V> next()
          {
            if (!hasNext())
            {
              throw new NoSuchElementException();
            }

            keyIndex = nextKey(nextIndex(keyIndex));

            index++;

            return new Map.Entry<K, V>()
            {
              public K getKey()
              {
                return keys[keyIndex];
              }

              public V getValue()
              {
                return values[keyIndex];
              }

              public V setValue(final V value)
              {
                final V oldValue = values[keyIndex];

                values[keyIndex] = value;

                return oldValue;
              }
            };
          }

          public void remove()
          {
            keys[keyIndex] = null;
            values[keyIndex] = null;
          }

          int keyIndex = -1;

          int index = 0;
        };
      }

      @Override
      public int size()
      {
        return size;
      }
    };
  }

  /**
   * Computes the next index in the key or value array (both are the same length)
   * 
   * @param index
   *            The index
   * @return The next index, taking into account wraparound
   */
  private int nextIndex(final int index)
  {
    return (index + 1) % keys.length;
  }

  /**
   * Finds the index of the next non-null key. If the map is empty, -1 will be returned.
   * 
   * @param start
   *            Index to start at
   * @return Index of next non-null key
   */
  private int nextKey(final int start)
  {
    int i = start;

    do
    {
      if (keys[i] != null)
      {
        return i;
      }

      i = nextIndex(i);
    }
    while (i != start);

    return -1;
  }

  /**
   * Finds the index of the next null key. If no null key can be found, the map is full and -1
   * will be returned.
   * 
   * @param start
   *            Index to start at
   * @return Index of next null key
   */
  private int nextNullKey(final int start)
  {
    int i = start;

    do
    {
      if (keys[i] == null)
      {
        return i;
      }

      i = nextIndex(i);
    }
    while (i != start);

    return -1;
  }

  /**
   * Finds a key by starting at lastSearchIndex and searching from there. If the key is found,
   * lastSearchIndex is advanced so the next key search can find the next key in the array, which
   * is the most likely to be retrieved.
   * 
   * @param key
   *            Key to find in map
   * @return Index of matching key or -1 if not found
   */
  private int findKey(final Object key)
  {
    if (size > 0)
    {
      // Find key starting at search index
      final int index = findKey(lastSearchIndex, key);

      // Found match?
      if (index != -1)
      {
        // Start search at the next index next time
        lastSearchIndex = nextIndex(index);

        // Return index of key
        return index;
      }
    }

    return -1;
  }

  /**
   * Searches for a key from a given starting index.
   * 
   * @param key
   *            The key to find in this map
   * @param start
   *            Index to start at
   * @return Index of matching key or -1 if not found
   */
  private int findKey(final int start, final Object key)
  {
    int i = start;

    do
    {
      if (key.equals(keys[i]))
      {
        return i;
      }

      i = nextIndex(i);
    }
    while (i != start);

    return -1;
  }

  /**
   * Searches for a value from a given starting index.
   * 
   * @param start
   *            Index to start at
   * @param value
   *            The value to find in this map
   * @return Index of matching value or -1 if not found
   */
  private int findValue(final int start, final Object value)
  {
    int i = start;

    do
    {
      if (value.equals(values[i]))
      {
        return i;
      }

      i = nextIndex(i);
    }
    while (i != start);

    return -1;
  }
}








9.33.Customized Map
9.33.1.Implementation of a bit map of any size, together with static methods to manipulate int, byte and byte[] values as bit maps
9.33.2.A fixed size map implementation.
9.33.3.A memory-efficient hash map.
9.33.4.CaseBlindHashMap - a HashMap extension, using Strings as key values.
9.33.5.Clones a map and prefixes the keys in the clone
9.33.6.Converts array into a java.util.Map.
9.33.7.Ordered Map
9.33.8.A hash map that uses primitive ints for the key rather than objects.
9.33.9.HashNMap stores multiple values by a single key value. Values can be retrieved using a direct query or by creating an enumeration over the stored elements.
9.33.10.A Map where keys are compared by object identity, rather than equals()
9.33.11.A java.util.Map implementation using reference values
9.33.12.A simple hashmap from keys to integers
9.33.13.An IdentityMap that uses reference-equality instead of object-equality
9.33.14.Creates a mutable map from two arrays with keys and values
9.33.15.Fixed size hash map using String values as keys mapped to primitive int values.
9.33.16.Hash map for counting references to Object keys.
9.33.17.Hash map using String values as keys mapped to primitive int values.
9.33.18.IntMap provides a simple hashmap from keys to integers
9.33.19.List ordered map
9.33.20.Lookup table that stores a list of strings
9.33.21.Map implementation Optimized for Strings keys
9.33.22.Map with keys iterated in insertion order