List of usage examples for org.apache.commons.lang3 ArrayUtils toPrimitive
public static boolean[] toPrimitive(final Boolean[] array)
Converts an array of object Booleans to primitives.
This method returns null for a null input array.
From source file:de.hsheilbronn.mi.process.AbstractSvmTool.java
public static svm_parameter unwrap(SvmConfiguration configuration) { svm_parameter param = new svm_parameter(); param.svm_type = configuration.getSvmType().getNumericType(); param.kernel_type = configuration.getKernelType().getNumericType(); param.degree = configuration.getDegree(); param.gamma = configuration.getGamma(); param.coef0 = configuration.getCoef0(); param.nu = configuration.getNu();//w ww. ja v a 2 s. c o m param.cache_size = configuration.getCacheSize(); param.C = configuration.getCost(); param.eps = configuration.getEps(); param.p = configuration.getP(); param.shrinking = configuration.getShrinking(); param.probability = configuration.getProbability(); param.nr_weight = configuration.getNrWeight(); List<Integer> weightLabel = configuration.getWeightLabel(); param.weight_label = ArrayUtils.toPrimitive(weightLabel.toArray(new Integer[weightLabel.size()])); List<Double> weight = configuration.getWeight(); param.weight = ArrayUtils.toPrimitive(weight.toArray(new Double[weight.size()])); if (configuration.isQuietMode()) { svm.svm_set_print_string_function(new svm_print_interface() { @Override public void print(String s) { //nothing to do here... } }); } return param; }
From source file:ml.dmlc.xgboost4j.java.example.util.DataLoader.java
public static DenseData loadCSVFile(String filePath) throws IOException { DenseData denseData = new DenseData(); File f = new File(filePath); FileInputStream in = new FileInputStream(f); BufferedReader reader = new BufferedReader(new InputStreamReader(in, "UTF-8")); denseData.nrow = 0;// www . j av a 2 s . c o m denseData.ncol = -1; String line; List<Float> tlabels = new ArrayList<>(); List<Float> tdata = new ArrayList<>(); while ((line = reader.readLine()) != null) { String[] items = line.trim().split(","); if (items.length == 0) { continue; } denseData.nrow++; if (denseData.ncol == -1) { denseData.ncol = items.length - 1; } tlabels.add(Float.valueOf(items[items.length - 1])); for (int i = 0; i < items.length - 1; i++) { tdata.add(Float.valueOf(items[i])); } } reader.close(); in.close(); denseData.labels = ArrayUtils.toPrimitive(tlabels.toArray(new Float[tlabels.size()])); denseData.data = ArrayUtils.toPrimitive(tdata.toArray(new Float[tdata.size()])); return denseData; }
From source file:net.larry1123.elec.util.config.fieldhanders.floats.FloatArrayWrapFieldHandler.java
/** * {@inheritDoc}//from w ww .ja va 2 s. com */ @Override public void setToFile(Float[] value) { if (ArrayUtils.isNotEmpty(value)) { float[] temp = ArrayUtils.toPrimitive(value); getPropertiesFile().setFloatArray(getPropertyKey(), temp, getSpacer()); } }
From source file:net.larry1123.elec.util.config.fieldhanders.longs.LongArrayWrapFieldHandler.java
/** * {@inheritDoc}// w w w . j a v a 2 s. co m */ @Override public void setToFile(Long[] value) { if (ArrayUtils.isNotEmpty(value)) { getPropertiesFile().setLongArray(getPropertyKey(), ArrayUtils.toPrimitive(value), getSpacer()); } }
From source file:net.larry1123.elec.util.config.fieldhanders.shorts.ShortArrayWrapFieldHandler.java
/** * {@inheritDoc}//from w w w.j a v a2 s .c om */ @Override public void setToFile(Short[] value) { if (ArrayUtils.isNotEmpty(value)) { getPropertiesFile().setShortArray(getPropertyKey(), ArrayUtils.toPrimitive(value), getSpacer()); } }
From source file:net.larry1123.elec.util.config.fieldhanders.doubles.DoubleArrayWrapFieldHandler.java
/** * {@inheritDoc}/*from ww w. j a v a2 s .com*/ */ @Override public void setToFile(Double[] value) { if (ArrayUtils.isNotEmpty(value)) { getPropertiesFile().setDoubleArray(getPropertyKey(), ArrayUtils.toPrimitive(value), getSpacer()); } }
From source file:net.larry1123.elec.util.config.fieldhanders.intergers.IntegerArrayWrapFieldHandler.java
/** * {@inheritDoc}//from ww w . j av a2s. c o m */ @Override public void setToFile(Integer[] value) { if (ArrayUtils.isNotEmpty(value)) { getPropertiesFile().setIntArray(getPropertyKey(), ArrayUtils.toPrimitive(value), getSpacer()); } }
From source file:main.java.edu.isistan.genCom.evolutive.ag.functions.FitnessIndependence.java
@Override public double getFitness(List<Investigador> comission) { double result = 0; double diametro = red.getDiameter(); double minDistancia = Double.valueOf(diametro); double sumDistancias = 0; List<Double> distancias = red.getDistancesIn(comission); DataSet distanciasStat = new DataSet(ArrayUtils.toPrimitive(distancias.toArray(new Double[0]))); minDistancia = distanciasStat.getMinimum(); sumDistancias = distanciasStat.getAggregate(); if (!distancias.isEmpty()) result = sumDistancias / distancias.size(); // Normaliza el resultado result = (result + minDistancia) / (2 * diametro); return result; }
From source file:io.cortical.retina.model.TestDataHarness.java
/** * Create dummy {@link Fingerprint}./* w ww . j a va 2 s . c o m*/ * @param sparsity percentage of on bits * @return dummy fingerprint. */ public static Fingerprint createFingerprint(double sparsity) { Random random = new Random(SEED); Set<Integer> positionSet = new LinkedHashSet<>(); while (positionSet.size() <= ((double) (MAX_POSITION)) * sparsity) { positionSet.add(random.nextInt(MAX_POSITION)); } Integer[] positionsInteger = new Integer[FINGERPRINT_LENGTH]; positionsInteger = positionSet.toArray(positionsInteger); sort(positionsInteger); return new Fingerprint(ArrayUtils.toPrimitive(positionsInteger)); }
From source file:de.hsheilbronn.mi.process.AbstractSvmClassifier.java
private svm_model unwrap(SvmModel svmModel) { svm_model model = new svm_model(); SvmMetaInformation metaInformation = svmModel.getMetaInformation(); model.param = (unwrap(metaInformation.getSvmConfiguration())); model.l = (metaInformation.getAmountOfSupportVectors()); model.nr_class = (metaInformation.getNumberOfClasses()); List<Double> rhoConstants = metaInformation.getRhoConstants(); model.rho = (ArrayUtils.toPrimitive(rhoConstants.toArray(new Double[rhoConstants.size()]))); List<Double> probabilityA = metaInformation.getProbabilityA(); model.probA = (ArrayUtils.toPrimitive(probabilityA.toArray(new Double[probabilityA.size()]))); List<Double> probabilityB = metaInformation.getProbabilityB(); model.probB = (ArrayUtils.toPrimitive(probabilityB.toArray(new Double[probabilityB.size()]))); List<Integer> labelForEachClass = metaInformation.getLabelForEachClass(); model.label = ((ArrayUtils.toPrimitive(labelForEachClass.toArray(new Integer[labelForEachClass.size()])))); List<Integer> numberOfSupportVectorsForEachClass = metaInformation.getNumberOfSupportVectorsForEachClass(); model.nSV = (ArrayUtils.toPrimitive(numberOfSupportVectorsForEachClass .toArray(new Integer[numberOfSupportVectorsForEachClass.size()]))); model.sv_coef = (PrimitiveHelper.doubleMapTo2dArray(svmModel.getSvCoefficients())); model.SV = PrimitiveHelper.svmFeatureMapTo2dArray(svmModel.getSupportVectors()); return model; }