Example usage for org.apache.commons.math.complex Complex multiply

List of usage examples for org.apache.commons.math.complex Complex multiply

Introduction

In this page you can find the example usage for org.apache.commons.math.complex Complex multiply.

Prototype

public Complex multiply(double rhs) 

Source Link

Document

Return the product of this complex number and the given scalar number.

Usage

From source file:com.discursive.jccook.math.ComplexNumbers.java

public static void main(String[] args) {
    Complex a = new Complex(2, 3);
    Complex b = new Complex(4, 5);
    Complex c = new Complex(0.3, 2);
    Complex e = new Complex(4, 4);

    Complex sum = a.add(b);//from   w  w  w.  j a v  a  2 s. co  m
    Complex d = c.divide(sum);
    Complex f = e.multiply(d.conjugate());

    System.out.println("D is: " + ComplexFormat.formatComplex(d));
    System.out.println("F is: " + ComplexFormat.formatComplex(f));

    double realF = f.getReal();
    double imD = d.getImaginary();
    double answer = realF / imD;

    System.out.println("Answer: " + NumberFormat.getInstance().format(answer));

}

From source file:geogebra.common.geogebra3D.kernel3D.geos.Geo3DVec.java

final public static void complexMultiply(GeoVecInterface a, GeoVecInterface b, GeoVec2D c) {

    if (!Kernel.isZero(a.getZ()) || !Kernel.isZero(b.getZ())) {
        c.setX(Double.NaN);/*from  w ww  .j ava  2s .  c o  m*/
        c.setY(Double.NaN);
        c.setMode(Kernel.COORD_COMPLEX);
        return;
    }

    Complex out = new Complex(a.getX(), a.getY());
    out = out.multiply(new Complex(b.getX(), b.getY()));
    c.setX(out.getReal());
    c.setY(out.getImaginary());

    c.setMode(Kernel.COORD_COMPLEX);
}

From source file:geogebra.kernel.GeoVec2D.java

/** c = a * b Michael Borcherds 2007-12-09 */
final public static void complexMultiply(GeoVec2D a, NumberValue b, GeoVec2D c) {
    // NB temporary variables *crucial*: a and c can be the same variable
    //double x1=a.x,y1=a.y,x2=b.getDouble();
    //  do multiply
    //c.x = (x1 * x2);
    //c.y = (x2 * y1);
    Complex out = new Complex(a.x, a.y);
    out = out.multiply(new Complex(b.getDouble(), 0));
    c.x = out.getReal();/*from  ww w  .  j  a v  a2 s  . com*/
    c.y = out.getImaginary();

    c.setMode(Kernel.COORD_COMPLEX);
}

From source file:geogebra.kernel.GeoVec2D.java

/** c = a * b Michael Borcherds 2007-12-09 */
final public static void complexMultiply(GeoVec2D a, GeoVec2D b, GeoVec2D c) {
    // NB temporary variables *crucial*: a and c can be the same variable
    //double x1=a.x,y1=a.y,x2=b.x,y2=b.y;
    //  do multiply
    //c.x = (x1 * x2 - y1 * y2);
    //c.y = (y2 * x1 + x2 * y1);

    Complex out = new Complex(a.x, a.y);
    out = out.multiply(new Complex(b.x, b.y));
    c.x = out.getReal();/*  ww  w.  j  a  v  a 2 s. com*/
    c.y = out.getImaginary();

    c.setMode(Kernel.COORD_COMPLEX);
}

From source file:com.QMTunnelling.GaussianPotential.java

public Complex getA() {//finds A coef
    Complex psi1 = this.psi[0];
    Complex psi2 = this.psi[1];
    double x1 = this.xvals[0];
    double x2 = this.xvals[1];

    Complex A = (psi2.multiply(Exp(Complex.I.multiply(Math.sqrt(kappa) * x2))));
    A = A.subtract(psi1.multiply(Exp(Complex.I.multiply(Math.sqrt(kappa) * x1))));
    Complex divisor = Exp(Complex.I.multiply(2 * Math.sqrt(kappa) * x2))
            .subtract(Exp(Complex.I.multiply(2 * Math.sqrt(kappa) * x1)));
    A = A.divide(divisor);//from  www . ja  v a 2s  .  c  o m
    return A;
}

From source file:geogebra.common.kernel.geos.GeoVec2D.java

/**
 * c = a * b Michael Borcherds 2007-12-09
 * //www  .ja v  a2 s.c o  m
 * @param a
 *            factor
 * @param b
 *            factor
 * @param c
 *            result
 */
final public static void complexMultiply(GeoVec2D a, GeoVec2D b, GeoVec2D c) {
    Complex out = new Complex(a.x, a.y);
    out = out.multiply(new Complex(b.x, b.y));
    c.x = out.getReal();
    c.y = out.getImaginary();

    c.setMode(Kernel.COORD_COMPLEX);
}

From source file:geogebra.common.kernel.geos.GeoVec2D.java

/**
 * c = a * b Michael Borcherds 2007-12-09
 * // w ww  .  ja  v a 2s .c om
 * @param a
 *            factor
 * @param b
 *            factor
 * @param c
 *            result
 */
final public static void complexMultiply(GeoVec2D a, NumberValue b, GeoVec2D c) {
    // NB temporary variables *crucial*: a and c can be the same variable
    // double x1=a.x,y1=a.y,x2=b.getDouble();
    // do multiply
    // c.x = (x1 * x2);
    // c.y = (x2 * y1);
    Complex out = new Complex(a.x, a.y);
    out = out.multiply(new Complex(b.getDouble(), 0));
    c.x = out.getReal();
    c.y = out.getImaginary();

    c.setMode(Kernel.COORD_COMPLEX);
}

From source file:org.eclipse.ice.reflectivity.ReflectivityCalculator.java

/**
 * This operation returns the value of the squared modulus of the specular
 * reflectivity for a single wave vector Q.
 *
 * @param waveVectorQ/*from w  w  w.j ava 2 s .c  o m*/
 *            the value of the wave vector
 * @param wavelength
 *            the wavelength of the incident neutrons
 * @param tiles
 *            the list of Tiles that contains the physical parameters needed
 *            for the calculation, including the scattering densities,
 *            absorption parameters and thicknesses.
 * @return the squared modulus of the specular reflectivity
 */
public double getModSqrdSpecRef(double waveVectorQ, double wavelength, Tile[] tiles) {

    double modSqrdSpecRef = 0.0;

    if (wavelength > 0.0) {
        // Variables only needed if we are going to do the work, i.e. -
        // wavelength > 0.0.
        Tile tile;
        Complex aNm1Sq, fNm1N, rNm1N = new Complex(0.0, 0.0), one = new Complex(1.0, 0.0),
                qN = new Complex(0.0, 0.0), rNNp1 = new Complex(0.0, 0.0);
        // Get the bottom tile
        int nLayers = tiles.length;
        tile = tiles[nLayers - 1];
        // Starting point--no reflected beam in bottom-most (bulk) layer
        double qCSq = 16.0 * Math.PI * tile.scatteringLength;
        double muLAbs = tile.trueAbsLength;
        double mulInc = tile.incAbsLength;
        double thickness = tile.thickness;
        // Setup other values for the problem
        double betaNm1 = 4.0 * Math.PI * (muLAbs + mulInc / wavelength);
        Complex qNm1 = new Complex(waveVectorQ * waveVectorQ - qCSq, -2.0 * betaNm1);
        qNm1 = qNm1.sqrt();
        // Loop through to calculate recursion formula described in Parratt.
        // Start at the bottom and work up.
        for (int i = nLayers - 1; i > 0; i--) {
            // Get the tile above tile[i] (started at the bottom
            tile = tiles[i - 1];
            // Calculate the normal component of Q for layer and layer-1
            qN = qNm1;
            qCSq = 16.0 * Math.PI * tile.scatteringLength;
            muLAbs = tile.trueAbsLength;
            mulInc = tile.incAbsLength;
            thickness = tile.thickness;
            betaNm1 = 4.0 * Math.PI * (muLAbs + mulInc / wavelength);
            qNm1 = new Complex(waveVectorQ * waveVectorQ - qCSq, -2.0 * betaNm1);
            qNm1 = qNm1.sqrt();
            // Calculate phase factor, e^(-0.5*d*qNm1)
            aNm1Sq = (new Complex(qNm1.getImaginary(), qNm1.getReal()).multiply(-0.5 * thickness)).exp();
            // CDiv(qNm1-qN,qNm1+qN)
            fNm1N = qNm1.subtract(qN).divide(qNm1.add(qN));
            // Calculate the reflectivity amplitude.
            // CMult(aNm1Sq, CMult(aNm1Sq, CDiv(CAdd(rNNp1, fNm1N),
            // CAdd(CMult(rNNp1, fNm1N), CReal(1)))))
            Complex y = rNNp1.multiply(fNm1N).add(one);
            Complex z = rNNp1.add(fNm1N);
            rNm1N = aNm1Sq.multiply(aNm1Sq).multiply(z.divide((y)));
            // Carry over to the next iteration
            rNNp1 = rNm1N;
        }
        modSqrdSpecRef = rNm1N.getReal() * rNm1N.getReal() + rNm1N.getImaginary() * rNm1N.getImaginary();
    }

    return modSqrdSpecRef;
}

From source file:org.renjin.primitives.MathGroup.java

@Builtin
public static ComplexVector cumprod(ComplexVector source) {
    ComplexArrayVector.Builder result = new ComplexArrayVector.Builder();
    result.setAttribute(Symbols.NAMES, source.getNames());

    if (source.length() > 0) {
        Complex prod = source.getElementAsComplex(0);
        result.add(prod);/*ww w .  j  a va 2  s.co  m*/
        for (int i = 1; i < source.length(); i++) {
            if (ComplexVector.isNA(prod)) {
                result.add(ComplexVector.NA);
            } else {
                prod = prod.multiply(source.getElementAsComplex(i));
                result.add(prod);
            }
        }
    }
    return result.build();
}

From source file:pl.dp.bz.poid.fouriertest.FourierProc.java

private Complex[] computeDIFForOneDimension(Complex[] pixelTable) {
    int bits = 9;
    double N = pixelTable.length;

    Complex[] transformedSignal = new Complex[(int) N];

    for (int i = 0; i < transformedSignal.length; i++) {
        transformedSignal[i] = new Complex(0.0, 0.0);
    }//from w  w w. java2s .c o m

    Complex signalTab[] = new Complex[(int) N];
    Complex[] localTR = new Complex[(int) N];
    int index = 0;
    for (int i = 0; i < pixelTable.length; i++) {
        signalTab[index] = new Complex(pixelTable[i].getReal(), pixelTable[i].getImaginary());
        index++;
    }

    index = 0;
    for (Complex cv : signalTab) {
        //            System.out.println("x(" + index + ") = " + cv.getReal() + " IM: i" + cv.getImaginary());
        index++;
    }
    //Zmienna okrelajca na jakiej wielkoci ma operowa na tablicy
    int part = 2;
    //Ptla okrelajca cykl przechodzenia, przez kolejne kolumny 
    for (int iteration = 1; iteration <= bits; iteration++) {
        //            System.out.println("PART "+part);
        //Ile razy ma si wykona
        for (int i = 0; i < part; i += 2) {

            int r = 0;
            for (int actualIndex = (signalTab.length / part) * i, counter = 0; counter < signalTab.length
                    / part; counter++, actualIndex++) {
                int secondIndex = (actualIndex + (signalTab.length / part));
                Complex a = signalTab[actualIndex].add(signalTab[secondIndex]);
                Complex b = signalTab[actualIndex].subtract(signalTab[secondIndex]);
                Complex W = new Complex(Math.cos((2.0 * Math.PI * r) / N), -Math.sin((2.0 * Math.PI * r) / N));
                b = b.multiply(W);
                signalTab[actualIndex] = a;
                signalTab[secondIndex] = b;
                r += part - (part / 2);
            }
        }
        part += part;
    }

    localTR[0] = signalTab[0];
    localTR[localTR.length - 1] = signalTab[signalTab.length - 1];
    for (int i = 1; i < signalTab.length - 1; i++) {
        String bitIndex = Integer.toBinaryString(i);
        if (bitIndex.length() < bits) {
            while (bitIndex.length() < bits) {
                bitIndex = "0" + bitIndex;
            }
        }
        char[] tab = bitIndex.toCharArray();

        for (int j = 0; j < tab.length / 2; j++) {
            char temp = tab[j];
            tab[j] = tab[tab.length - j - 1];
            tab[tab.length - j - 1] = temp;
        }
        bitIndex = new String(tab);
        localTR[Integer.parseInt(bitIndex, 2)] = signalTab[i];
    }
    for (int i = 0; i < localTR.length; i++) {
        transformedSignal[i] = new Complex(localTR[i].getReal(), localTR[i].getImaginary());
    }
    return transformedSignal;
}