List of usage examples for org.apache.hadoop.mapred JobConf getInt
public int getInt(String name, int defaultValue)
name
property as an int
. From source file:cascading.flow.hadoop.HadoopFlow.java
License:Open Source License
static int getMaxConcurrentSteps(JobConf jobConf) { return jobConf.getInt(MAX_CONCURRENT_STEPS, 0); }
From source file:cascading.flow.hadoop.HadoopFlowStep.java
License:Open Source License
public JobConf createInitializedConfig(FlowProcess<JobConf> flowProcess, JobConf parentConfig) { JobConf conf = parentConfig == null ? new JobConf() : HadoopUtil.copyJobConf(parentConfig); // disable warning conf.setBoolean("mapred.used.genericoptionsparser", true); conf.setJobName(getStepDisplayName(conf.getInt("cascading.display.id.truncate", Util.ID_LENGTH))); conf.setOutputKeyClass(Tuple.class); conf.setOutputValueClass(Tuple.class); conf.setMapRunnerClass(FlowMapper.class); conf.setReducerClass(FlowReducer.class); // set for use by the shuffling phase TupleSerialization.setSerializations(conf); initFromSources(flowProcess, conf);/*from www .j a va 2 s.c om*/ initFromSink(flowProcess, conf); initFromTraps(flowProcess, conf); initFromStepConfigDef(conf); int numSinkParts = getSink().getScheme().getNumSinkParts(); if (numSinkParts != 0) { // if no reducer, set num map tasks to control parts if (getGroup() != null) conf.setNumReduceTasks(numSinkParts); else conf.setNumMapTasks(numSinkParts); } else if (getGroup() != null) { int gatherPartitions = conf.getNumReduceTasks(); if (gatherPartitions == 0) gatherPartitions = conf.getInt(FlowRuntimeProps.GATHER_PARTITIONS, 0); if (gatherPartitions == 0) throw new FlowException(getName(), "a default number of gather partitions must be set, see FlowRuntimeProps"); conf.setNumReduceTasks(gatherPartitions); } conf.setOutputKeyComparatorClass(TupleComparator.class); if (getGroup() == null) { conf.setNumReduceTasks(0); // disable reducers } else { // must set map output defaults when performing a reduce conf.setMapOutputKeyClass(Tuple.class); conf.setMapOutputValueClass(Tuple.class); conf.setPartitionerClass(GroupingPartitioner.class); // handles the case the groupby sort should be reversed if (getGroup().isSortReversed()) conf.setOutputKeyComparatorClass(ReverseTupleComparator.class); addComparators(conf, "cascading.group.comparator", getGroup().getKeySelectors(), this, getGroup()); if (getGroup().isGroupBy()) addComparators(conf, "cascading.sort.comparator", getGroup().getSortingSelectors(), this, getGroup()); if (!getGroup().isGroupBy()) { conf.setPartitionerClass(CoGroupingPartitioner.class); conf.setMapOutputKeyClass(IndexTuple.class); // allows groups to be sorted by index conf.setMapOutputValueClass(IndexTuple.class); conf.setOutputKeyComparatorClass(IndexTupleCoGroupingComparator.class); // sorts by group, then by index conf.setOutputValueGroupingComparator(CoGroupingComparator.class); } if (getGroup().isSorted()) { conf.setPartitionerClass(GroupingSortingPartitioner.class); conf.setMapOutputKeyClass(TuplePair.class); if (getGroup().isSortReversed()) conf.setOutputKeyComparatorClass(ReverseGroupingSortingComparator.class); else conf.setOutputKeyComparatorClass(GroupingSortingComparator.class); // no need to supply a reverse comparator, only equality is checked conf.setOutputValueGroupingComparator(GroupingComparator.class); } } // perform last so init above will pass to tasks String versionString = Version.getRelease(); if (versionString != null) conf.set("cascading.version", versionString); conf.set(CASCADING_FLOW_STEP_ID, getID()); conf.set("cascading.flow.step.num", Integer.toString(getOrdinal())); HadoopUtil.setIsInflow(conf); Iterator<FlowNode> iterator = getFlowNodeGraph().getTopologicalIterator(); String mapState = pack(iterator.next(), conf); String reduceState = pack(iterator.hasNext() ? iterator.next() : null, conf); // hadoop 20.2 doesn't like dist cache when using local mode int maxSize = Short.MAX_VALUE; int length = mapState.length() + reduceState.length(); if (isHadoopLocalMode(conf) || length < maxSize) // seems safe { conf.set("cascading.flow.step.node.map", mapState); if (!Util.isEmpty(reduceState)) conf.set("cascading.flow.step.node.reduce", reduceState); } else { conf.set("cascading.flow.step.node.map.path", HadoopMRUtil.writeStateToDistCache(conf, getID(), "map", mapState)); if (!Util.isEmpty(reduceState)) conf.set("cascading.flow.step.node.reduce.path", HadoopMRUtil.writeStateToDistCache(conf, getID(), "reduce", reduceState)); } return conf; }
From source file:cascading.flow.stack.StackElement.java
License:Open Source License
private static TapCollector getTrapCollector(Tap trap, JobConf jobConf) { TapCollector trapCollector = trapCollectors.get(trap); if (trapCollector == null) { try {/*from w w w. j ava2 s .c o m*/ jobConf = new JobConf(jobConf); int id = jobConf.getInt("cascading.flow.step.id", 0); String partname; if (jobConf.getBoolean("mapred.task.is.map", true)) partname = String.format("-m-%05d-", id); else partname = String.format("-r-%05d-", id); jobConf.set("cascading.tapcollector.partname", "%s%spart" + partname + "%05d"); trapCollector = (TapCollector) trap.openForWrite(jobConf); trapCollectors.put(trap, trapCollector); } catch (IOException exception) { throw new StackException(exception); } } return trapCollector; }
From source file:cascading.flow.tez.Hadoop2TezFlowStep.java
License:Open Source License
protected int getParallelism(FlowNode flowNode, JobConf conf) { // only count streamed taps, accumulated taps are always annotated HashSet<Tap> sourceStreamedTaps = new HashSet<>(flowNode.getSourceTaps()); sourceStreamedTaps.removeAll(flowNode.getSourceElements(StreamMode.Accumulated)); if (sourceStreamedTaps.size() != 0) return -1; int parallelism = Integer.MAX_VALUE; for (Tap tap : flowNode.getSinkTaps()) { int numSinkParts = tap.getScheme().getNumSinkParts(); if (numSinkParts == 0) continue; if (parallelism != Integer.MAX_VALUE) LOG.info(/*from w w w . j a v a2 s . co m*/ "multiple sink taps in flow node declaring numSinkParts, choosing lowest value. see cascading.flow.FlowRuntimeProps for broader control."); parallelism = Math.min(parallelism, numSinkParts); } if (parallelism != Integer.MAX_VALUE) return parallelism; return conf.getInt(FlowRuntimeProps.GATHER_PARTITIONS, 0); }
From source file:cascalog.ClojureCombinerBase.java
License:Open Source License
@Override public void prepare(FlowProcess flowProcess, OperationCall operationCall) { JobConf jc = ((HadoopFlowProcess) flowProcess).getJobConf(); this.cacheSize = jc.getInt(this.cacheConfArg, this.defaultCacheSize); combined = new LinkedHashMap<Tuple, Map<Integer, ISeq>>(1000, (float) 0.75, true); init_fns = new ArrayList<IFn>(); combiner_fns = new ArrayList<IFn>(); for (CombinerSpec cs : this.specs) { init_fns.add(Util.bootFn(cs.init_spec)); combiner_fns.add(Util.bootFn(cs.combiner_spec)); }// w w w .j av a 2 s. co m }
From source file:cn.spark.Case.MyMultipleOutputFormat.java
License:Apache License
/** * Generate the outfile name based on a given anme and the input file name. * If the map input file does not exists (i.e. this is not for a map only * job), the given name is returned unchanged. If the config value for * "num.of.trailing.legs.to.use" is not set, or set 0 or negative, the given * name is returned unchanged. Otherwise, return a file name consisting of * the N trailing legs of the input file name where N is the config value * for "num.of.trailing.legs.to.use"./*from w w w .j a v a 2s .com*/ * * @param job * the job config * @param name * the output file name * @return the outfile name based on a given anme and the input file name. */ protected String getInputFileBasedOutputFileName(JobConf job, String name) { String infilepath = job.get("map.input.file"); if (infilepath == null) { // if the map input file does not exists, then return the given name return name; } int numOfTrailingLegsToUse = job.getInt("mapred.outputformat.numOfTrailingLegs", 0); if (numOfTrailingLegsToUse <= 0) { return name; } Path infile = new Path(infilepath); Path parent = infile.getParent(); String midName = infile.getName(); Path outPath = new Path(midName); for (int i = 1; i < numOfTrailingLegsToUse; i++) { if (parent == null) break; midName = parent.getName(); if (midName.length() == 0) break; parent = parent.getParent(); outPath = new Path(midName, outPath); } return outPath.toString(); }
From source file:com.benchmark.mapred.dancing.DistributedPentomino.java
License:Apache License
public int run(String[] args) throws Exception { JobConf conf; int depth = 5; int width = 9; int height = 10; Class<? extends Pentomino> pentClass; if (args.length == 0) { System.out.println("pentomino <output>"); ToolRunner.printGenericCommandUsage(System.out); return -1; }//w ww .j a v a 2s . co m conf = new JobConf(getConf()); width = conf.getInt("pent.width", width); height = conf.getInt("pent.height", height); depth = conf.getInt("pent.depth", depth); pentClass = conf.getClass("pent.class", OneSidedPentomino.class, Pentomino.class); Path output = new Path(args[0]); Path input = new Path(output + "_input"); FileSystem fileSys = FileSystem.get(conf); try { FileInputFormat.setInputPaths(conf, input); FileOutputFormat.setOutputPath(conf, output); conf.setJarByClass(PentMap.class); conf.setJobName("dancingElephant"); Pentomino pent = ReflectionUtils.newInstance(pentClass, conf); pent.initialize(width, height); createInputDirectory(fileSys, input, pent, depth); // the keys are the prefix strings conf.setOutputKeyClass(Text.class); // the values are puzzle solutions conf.setOutputValueClass(Text.class); conf.setMapperClass(PentMap.class); conf.setReducerClass(IdentityReducer.class); conf.setNumMapTasks(2000); conf.setNumReduceTasks(1); JobClient.runJob(conf); } finally { fileSys.delete(input, true); } return 0; }
From source file:com.benchmark.mapred.Join.java
License:Apache License
/** * The main driver for sort program.//from ww w .j a v a 2 s. c o m * Invoke this method to submit the map/reduce job. * @throws IOException When there is communication problems with the * job tracker. */ public int run(String[] args) throws Exception { JobConf jobConf = new JobConf(getConf(), Sort.class); jobConf.setJobName("join"); jobConf.setMapperClass(IdentityMapper.class); jobConf.setReducerClass(IdentityReducer.class); JobClient client = new JobClient(jobConf); ClusterStatus cluster = client.getClusterStatus(); int num_maps = cluster.getTaskTrackers() * jobConf.getInt("test.sort.maps_per_host", 10); int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9); String sort_reduces = jobConf.get("test.sort.reduces_per_host"); if (sort_reduces != null) { num_reduces = cluster.getTaskTrackers() * Integer.parseInt(sort_reduces); } Class<? extends InputFormat> inputFormatClass = SequenceFileInputFormat.class; Class<? extends OutputFormat> outputFormatClass = SequenceFileOutputFormat.class; Class<? extends WritableComparable> outputKeyClass = BytesWritable.class; Class<? extends Writable> outputValueClass = TupleWritable.class; String op = "inner"; List<String> otherArgs = new ArrayList<String>(); for (int i = 0; i < args.length; ++i) { try { if ("-m".equals(args[i])) { num_maps = Integer.parseInt(args[++i]); } else if ("-r".equals(args[i])) { num_reduces = Integer.parseInt(args[++i]); } else if ("-inFormat".equals(args[i])) { inputFormatClass = Class.forName(args[++i]).asSubclass(InputFormat.class); } else if ("-outFormat".equals(args[i])) { outputFormatClass = Class.forName(args[++i]).asSubclass(OutputFormat.class); } else if ("-outKey".equals(args[i])) { outputKeyClass = Class.forName(args[++i]).asSubclass(WritableComparable.class); } else if ("-outValue".equals(args[i])) { outputValueClass = Class.forName(args[++i]).asSubclass(Writable.class); } else if ("-joinOp".equals(args[i])) { op = args[++i]; } else { otherArgs.add(args[i]); } } catch (NumberFormatException except) { System.out.println("ERROR: Integer expected instead of " + args[i]); return printUsage(); } catch (ArrayIndexOutOfBoundsException except) { System.out.println("ERROR: Required parameter missing from " + args[i - 1]); return printUsage(); // exits } } // Set user-supplied (possibly default) job configs jobConf.setNumMapTasks(num_maps); jobConf.setNumReduceTasks(num_reduces); if (otherArgs.size() < 2) { System.out.println("ERROR: Wrong number of parameters: "); return printUsage(); } FileOutputFormat.setOutputPath(jobConf, new Path(otherArgs.remove(otherArgs.size() - 1))); List<Path> plist = new ArrayList<Path>(otherArgs.size()); for (String s : otherArgs) { plist.add(new Path(s)); } jobConf.setInputFormat(CompositeInputFormat.class); jobConf.set("mapred.join.expr", CompositeInputFormat.compose(op, inputFormatClass, plist.toArray(new Path[0]))); jobConf.setOutputFormat(outputFormatClass); jobConf.setOutputKeyClass(outputKeyClass); jobConf.setOutputValueClass(outputValueClass); Date startTime = new Date(); System.out.println("Job started: " + startTime); JobClient.runJob(jobConf); Date end_time = new Date(); System.out.println("Job ended: " + end_time); System.out.println("The job took " + (end_time.getTime() - startTime.getTime()) / 1000 + " seconds."); return 0; }
From source file:com.benchmark.mapred.RandomTextWriter.java
License:Apache License
/** * This is the main routine for launching a distributed random write job. * It runs 10 maps/node and each node writes 1 gig of data to a DFS file. * The reduce doesn't do anything.//w w w .j a va2 s.co m * * @throws IOException */ public int run(String[] args) throws Exception { if (args.length == 0) { return printUsage(); } JobConf job = new JobConf(getConf()); job.setJarByClass(RandomTextWriter.class); job.setJobName("random-text-writer"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setInputFormat(RandomWriter.RandomInputFormat.class); job.setMapperClass(Map.class); JobClient client = new JobClient(job); ClusterStatus cluster = client.getClusterStatus(); int numMapsPerHost = job.getInt("test.randomtextwrite.maps_per_host", 10); long numBytesToWritePerMap = job.getLong("test.randomtextwrite.bytes_per_map", 1 * 1024 * 1024 * 1024); if (numBytesToWritePerMap == 0) { System.err.println("Cannot have test.randomtextwrite.bytes_per_map set to 0"); return -2; } long totalBytesToWrite = job.getLong("test.randomtextwrite.total_bytes", numMapsPerHost * numBytesToWritePerMap * cluster.getTaskTrackers()); int numMaps = (int) (totalBytesToWrite / numBytesToWritePerMap); if (numMaps == 0 && totalBytesToWrite > 0) { numMaps = 1; job.setLong("test.randomtextwrite.bytes_per_map", totalBytesToWrite); } Class<? extends OutputFormat> outputFormatClass = SequenceFileOutputFormat.class; List<String> otherArgs = new ArrayList<String>(); for (int i = 0; i < args.length; ++i) { try { if ("-outFormat".equals(args[i])) { outputFormatClass = Class.forName(args[++i]).asSubclass(OutputFormat.class); } else { otherArgs.add(args[i]); } } catch (ArrayIndexOutOfBoundsException except) { System.out.println("ERROR: Required parameter missing from " + args[i - 1]); return printUsage(); // exits } } job.setOutputFormat(outputFormatClass); FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(0))); job.setNumMapTasks(numMaps); System.out.println("Running " + numMaps + " maps."); // reducer NONE job.setNumReduceTasks(0); Date startTime = new Date(); System.out.println("Job started: " + startTime); JobClient.runJob(job); Date endTime = new Date(); System.out.println("Job ended: " + endTime); System.out.println("The job took " + (endTime.getTime() - startTime.getTime()) / 1000 + " seconds."); return 0; }
From source file:com.benchmark.mapred.RandomWriter.java
License:Apache License
/** * This is the main routine for launching a distributed random write job. * It runs 10 maps/node and each node writes 1 gig of data to a DFS file. * The reduce doesn't do anything./*from w w w . j av a 2 s . com*/ * * @throws IOException */ public int run(String[] args) throws Exception { if (args.length == 0) { System.out.println("Usage: writer <out-dir>"); ToolRunner.printGenericCommandUsage(System.out); return -1; } Path outDir = new Path(args[0]); JobConf job = new JobConf(getConf()); job.setJarByClass(RandomWriter.class); job.setJobName("random-writer"); FileOutputFormat.setOutputPath(job, outDir); job.setOutputKeyClass(BytesWritable.class); job.setOutputValueClass(BytesWritable.class); job.setInputFormat(RandomInputFormat.class); job.setMapperClass(Map.class); job.setReducerClass(IdentityReducer.class); job.setOutputFormat(SequenceFileOutputFormat.class); JobClient client = new JobClient(job); ClusterStatus cluster = client.getClusterStatus(); int numMapsPerHost = job.getInt("test.randomwriter.maps_per_host", 10); long numBytesToWritePerMap = job.getLong("test.randomwrite.bytes_per_map", 1 * 1024 * 1024 * 1024); if (numBytesToWritePerMap == 0) { System.err.println("Cannot have test.randomwrite.bytes_per_map set to 0"); return -2; } long totalBytesToWrite = job.getLong("test.randomwrite.total_bytes", numMapsPerHost * numBytesToWritePerMap * cluster.getTaskTrackers()); int numMaps = (int) (totalBytesToWrite / numBytesToWritePerMap); if (numMaps == 0 && totalBytesToWrite > 0) { numMaps = 1; job.setLong("test.randomwrite.bytes_per_map", totalBytesToWrite); } job.setNumMapTasks(numMaps); System.out.println("Running " + numMaps + " maps."); // reducer NONE job.setNumReduceTasks(0); Date startTime = new Date(); System.out.println("Job started: " + startTime); JobClient.runJob(job); Date endTime = new Date(); System.out.println("Job ended: " + endTime); System.out.println("The job took " + (endTime.getTime() - startTime.getTime()) / 1000 + " seconds."); return 0; }