Example usage for org.apache.hadoop.mapred JobConf setJobName

List of usage examples for org.apache.hadoop.mapred JobConf setJobName

Introduction

In this page you can find the example usage for org.apache.hadoop.mapred JobConf setJobName.

Prototype

public void setJobName(String name) 

Source Link

Document

Set the user-specified job name.

Usage

From source file:com.ibm.bi.dml.runtime.matrix.CMCOVMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String instructionsInMapper, String cmNcomInstructions,
        int numReducers, int replication, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos)
        throws Exception {
    JobConf job = new JobConf(CMCOVMR.class);
    job.setJobName("CM-COV-MR");

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClassForCM_N_COM(job, true);

    //added for handling recordreader instruction
    String[] realinputs = inputs;
    InputInfo[] realinputInfos = inputInfos;
    long[] realrlens = rlens;
    long[] realclens = clens;
    int[] realbrlens = brlens;
    int[] realbclens = bclens;
    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;/*from w ww.j  a  v  a  2 s  . c  o  m*/

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens,
            true, ConvertTarget.WEIGHTEDCELL);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setCM_N_COMInstructions(job, cmNcomInstructions);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, null, cmNcomInstructions, resultIndexes);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, new byte[resultIndexes.length], outputs,
            outputInfos, false);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(CMCOVMRMapper.class);

    job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
    job.setMapOutputValueClass(CM_N_COVCell.class);
    job.setOutputKeyComparatorClass(TaggedFirstSecondIndexes.Comparator.class);
    job.setPartitionerClass(TaggedFirstSecondIndexes.TagPartitioner.class);

    //configure reducer
    job.setReducerClass(CMCOVMRReducer.class);
    //job.setReducerClass(PassThroughReducer.class);

    MatrixCharacteristics[] stats = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, null, null, cmNcomInstructions, resultIndexes, mapoutputIndexes, false).stats;

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, mapoutputIndexes.size(), numReducers);//each output tag is a group

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.CombineMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String combineInstructions, int numReducers, int replication,
        byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos) throws Exception {
    JobConf job;
    job = new JobConf(CombineMR.class);
    job.setJobName("Standalone-MR");

    boolean inBlockRepresentation = MRJobConfiguration.deriveRepresentation(inputInfos);

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, inBlockRepresentation);

    byte[] inputIndexes = new byte[inputs.length];
    for (byte b = 0; b < inputs.length; b++)
        inputIndexes[b] = b;//from w  w  w  . j  a v  a2 s  .c  o m

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, inputIndexes, inputs, inputInfos, brlens, bclens, true,
            inBlockRepresentation ? ConvertTarget.BLOCK : ConvertTarget.CELL);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, inputIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, inputIndexes, brlens, bclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, "");

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setAggregateInstructions(job, "");

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, "");

    MRJobConfiguration.setCombineInstructions(job, combineInstructions);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, inputIndexes, null,
            null, combineInstructions, resultIndexes);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, null, outputs, outputInfos,
            inBlockRepresentation);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(GMRMapper.class);

    job.setMapOutputKeyClass(MatrixIndexes.class);
    if (inBlockRepresentation)
        job.setMapOutputValueClass(TaggedMatrixBlock.class);
    else
        job.setMapOutputValueClass(TaggedMatrixCell.class);

    //configure reducer
    job.setReducerClass(InnerReducer.class);
    //job.setReducerClass(PassThroughReducer.class);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, inputIndexes, null,
            null, null, combineInstructions, resultIndexes, mapoutputIndexes, false);
    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    return new JobReturn(stats, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.CSVReblockMR.java

License:Open Source License

public static AssignRowIDMRReturn runAssignRowIDMRJob(String[] inputs, InputInfo[] inputInfos, int[] brlens,
        int[] bclens, String reblockInstructions, int replication, String[] smallestFiles, boolean transform,
        String naStrings, String specFile) throws Exception {
    AssignRowIDMRReturn ret = new AssignRowIDMRReturn();
    JobConf job;
    job = new JobConf(CSVReblockMR.class);
    job.setJobName("Assign-RowID-MR");

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;/*  w  ww  . ja v  a 2 s . c  o m*/

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false,
            ConvertTarget.CELL);

    job.setStrings(SMALLEST_FILE_NAME_PER_INPUT, smallestFiles);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setCSVReblockInstructions(job, reblockInstructions);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up the number of reducers
    job.setNumReduceTasks(1);

    // Print the complete instruction
    //if (LOG.isTraceEnabled())
    //inst.printCompelteMRJobInstruction();

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(CSVAssignRowIDMapper.class);
    job.setMapOutputKeyClass(ByteWritable.class);
    job.setMapOutputValueClass(OffsetCount.class);

    //configure reducer
    job.setReducerClass(CSVAssignRowIDReducer.class);

    //turn off adaptivemr
    job.setBoolean("adaptivemr.map.enable", false);

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    //set up the output file
    ret.counterFile = new Path(MRJobConfiguration.constructTempOutputFilename());
    job.setOutputFormat(SequenceFileOutputFormat.class);
    FileOutputFormat.setOutputPath(job, ret.counterFile);
    job.setOutputKeyClass(ByteWritable.class);
    job.setOutputValueClass(OffsetCount.class);

    // setup properties relevant to transform
    job.setBoolean(MRJobConfiguration.TF_TRANSFORM, transform);
    if (transform) {
        if (naStrings != null)
            // Adding "dummy" string to handle the case of na_strings = ""
            job.set(MRJobConfiguration.TF_NA_STRINGS, TfUtils.prepNAStrings(naStrings));
        job.set(MRJobConfiguration.TF_SPEC_FILE, specFile);
    }

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group rgroup = runjob.getCounters().getGroup(NUM_ROWS_IN_MATRIX);
    Group cgroup = runjob.getCounters().getGroup(NUM_COLS_IN_MATRIX);
    ret.rlens = new long[inputs.length];
    ret.clens = new long[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        // number of non-zeros
        ret.rlens[i] = rgroup.getCounter(Integer.toString(i));
        ret.clens[i] = cgroup.getCounter(Integer.toString(i));
    }
    return ret;
}

From source file:com.ibm.bi.dml.runtime.matrix.CSVReblockMR.java

License:Open Source License

private static JobReturn runCSVReblockJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos,
        long[] rlens, long[] clens, int[] brlens, int[] bclens, String reblockInstructions,
        String otherInstructionsInReducer, int numReducers, int replication, byte[] resultIndexes,
        String[] outputs, OutputInfo[] outputInfos, Path counterFile, String[] smallestFiles) throws Exception {
    JobConf job;
    job = new JobConf(ReblockMR.class);
    job.setJobName("CSV-Reblock-MR");

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;/*from   ww w .  j  a v  a 2s. c o m*/

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false,
            ConvertTarget.CELL);

    job.setStrings(SMALLEST_FILE_NAME_PER_INPUT, smallestFiles);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setCSVReblockInstructions(job, reblockInstructions);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null,
            reblockInstructions, null, otherInstructionsInReducer, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes, null,
            reblockInstructions, null, null, otherInstructionsInReducer, resultIndexes, mapoutputIndexes,
            false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers
    int numRed = WriteCSVMR.determineNumReducers(rlens, clens,
            ConfigurationManager.getConfig().getIntValue(DMLConfig.NUM_REDUCERS), ret.numReducerGroups);
    job.setNumReduceTasks(numRed);

    // Print the complete instruction
    //if (LOG.isTraceEnabled())
    //   inst.printCompelteMRJobInstruction(stats);

    // Update resultDimsUnknown based on computed "stats"
    byte[] resultDimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            resultDimsUnknown[i] = (byte) 1;
        } else {
            resultDimsUnknown[i] = (byte) 0;
        }
    }

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true,
            true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(CSVReblockMapper.class);
    job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
    job.setMapOutputValueClass(BlockRow.class);

    //configure reducer
    job.setReducerClass(CSVReblockReducer.class);

    //turn off adaptivemr
    job.setBoolean("adaptivemr.map.enable", false);

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);
    Path cachefile = new Path(counterFile, "part-00000");
    DistributedCache.addCacheFile(cachefile.toUri(), job);
    DistributedCache.createSymlink(job);
    job.set(ROWID_FILE_NAME, cachefile.toString());

    RunningJob runjob = JobClient.runJob(job);

    MapReduceTool.deleteFileIfExistOnHDFS(counterFile, job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
        //   System.out.println("result #"+resultIndexes[i]+" ===>\n"+stats[i]);
    }
    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.DataGenMR.java

License:Open Source License

/**
 * <p>Starts a Rand MapReduce job which will produce one or more random objects.</p>
 * //from  w w w.  j  a  va  2s .  co  m
 * @param numRows number of rows for each random object
 * @param numCols number of columns for each random object
 * @param blockRowSize number of rows in a block for each random object
 * @param blockColSize number of columns in a block for each random object
 * @param minValue minimum of the random values for each random object
 * @param maxValue maximum of the random values for each random object
 * @param sparsity sparsity for each random object
 * @param pdf probability density function for each random object
 * @param replication file replication
 * @param inputs input file for each random object
 * @param outputs output file for each random object
 * @param outputInfos output information for each random object
 * @param instructionsInMapper instruction for each random object
 * @param resultIndexes result indexes for each random object
 * @return matrix characteristics for each random object
 * @throws Exception if an error occurred in the MapReduce phase
 */

public static JobReturn runJob(MRJobInstruction inst, String[] dataGenInstructions, String instructionsInMapper,
        String aggInstructionsInReducer, String otherInstructionsInReducer, int numReducers, int replication,
        byte[] resultIndexes, String dimsUnknownFilePrefix, String[] outputs, OutputInfo[] outputInfos)
        throws Exception {
    JobConf job = new JobConf(DataGenMR.class);
    job.setJobName("DataGen-MR");

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, true);

    byte[] realIndexes = new byte[dataGenInstructions.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;

    String[] inputs = new String[dataGenInstructions.length];
    InputInfo[] inputInfos = new InputInfo[dataGenInstructions.length];
    long[] rlens = new long[dataGenInstructions.length];
    long[] clens = new long[dataGenInstructions.length];
    int[] brlens = new int[dataGenInstructions.length];
    int[] bclens = new int[dataGenInstructions.length];

    FileSystem fs = FileSystem.get(job);
    String dataGenInsStr = "";
    int numblocks = 0;
    int maxbrlen = -1, maxbclen = -1;
    double maxsparsity = -1;

    for (int i = 0; i < dataGenInstructions.length; i++) {
        dataGenInsStr = dataGenInsStr + Lop.INSTRUCTION_DELIMITOR + dataGenInstructions[i];

        MRInstruction mrins = MRInstructionParser.parseSingleInstruction(dataGenInstructions[i]);
        MRINSTRUCTION_TYPE mrtype = mrins.getMRInstructionType();
        DataGenMRInstruction genInst = (DataGenMRInstruction) mrins;

        rlens[i] = genInst.getRows();
        clens[i] = genInst.getCols();
        brlens[i] = genInst.getRowsInBlock();
        bclens[i] = genInst.getColsInBlock();

        maxbrlen = Math.max(maxbrlen, brlens[i]);
        maxbclen = Math.max(maxbclen, bclens[i]);

        if (mrtype == MRINSTRUCTION_TYPE.Rand) {
            RandInstruction randInst = (RandInstruction) mrins;
            inputs[i] = genInst.getBaseDir() + "tmp" + _seqRandInput.getNextID() + ".randinput";
            maxsparsity = Math.max(maxsparsity, randInst.getSparsity());

            FSDataOutputStream fsOut = fs.create(new Path(inputs[i]));
            PrintWriter pw = new PrintWriter(fsOut);

            //for obj reuse and preventing repeated buffer re-allocations
            StringBuilder sb = new StringBuilder();

            //seed generation
            Well1024a bigrand = LibMatrixDatagen.setupSeedsForRand(randInst.getSeed());
            long[] nnz = LibMatrixDatagen.computeNNZperBlock(rlens[i], clens[i], brlens[i], bclens[i],
                    randInst.getSparsity());
            int nnzIx = 0;
            for (long r = 0; r < rlens[i]; r += brlens[i]) {
                long curBlockRowSize = Math.min(brlens[i], (rlens[i] - r));
                for (long c = 0; c < clens[i]; c += bclens[i]) {
                    long curBlockColSize = Math.min(bclens[i], (clens[i] - c));

                    sb.append((r / brlens[i]) + 1);
                    sb.append(',');
                    sb.append((c / bclens[i]) + 1);
                    sb.append(',');
                    sb.append(curBlockRowSize);
                    sb.append(',');
                    sb.append(curBlockColSize);
                    sb.append(',');
                    sb.append(nnz[nnzIx++]);
                    sb.append(',');
                    sb.append(bigrand.nextLong());
                    pw.println(sb.toString());
                    sb.setLength(0);
                    numblocks++;
                }
            }
            pw.close();
            fsOut.close();
            inputInfos[i] = InputInfo.TextCellInputInfo;
        } else if (mrtype == MRINSTRUCTION_TYPE.Seq) {
            SeqInstruction seqInst = (SeqInstruction) mrins;
            inputs[i] = genInst.getBaseDir() + System.currentTimeMillis() + ".seqinput";
            maxsparsity = 1.0; //always dense

            double from = seqInst.fromValue;
            double to = seqInst.toValue;
            double incr = seqInst.incrValue;

            // Correctness checks on (from, to, incr)
            boolean neg = (from > to);
            if (incr == 0)
                throw new DMLRuntimeException("Invalid value for \"increment\" in seq().");

            if (neg != (incr < 0))
                throw new DMLRuntimeException("Wrong sign for the increment in a call to seq()");

            // Compute the number of rows in the sequence
            long numrows = 1 + (long) Math.floor((to - from) / incr);
            if (rlens[i] > 0) {
                if (numrows != rlens[i])
                    throw new DMLRuntimeException(
                            "Unexpected error while processing sequence instruction. Expected number of rows does not match given number: "
                                    + rlens[i] + " != " + numrows);
            } else {
                rlens[i] = numrows;
            }

            if (clens[i] > 0 && clens[i] != 1)
                throw new DMLRuntimeException(
                        "Unexpected error while processing sequence instruction. Number of columns (" + clens[i]
                                + ") must be equal to 1.");
            else
                clens[i] = 1;

            FSDataOutputStream fsOut = fs.create(new Path(inputs[i]));
            PrintWriter pw = new PrintWriter(fsOut);
            StringBuilder sb = new StringBuilder();

            double temp = from;
            double block_from, block_to;
            for (long r = 0; r < rlens[i]; r += brlens[i]) {
                long curBlockRowSize = Math.min(brlens[i], (rlens[i] - r));

                // block (bid_i,bid_j) generates a sequence from the interval [block_from, block_to] (inclusive of both end points of the interval) 
                long bid_i = ((r / brlens[i]) + 1);
                long bid_j = 1;
                block_from = temp;
                block_to = temp + (curBlockRowSize - 1) * incr;
                temp = block_to + incr; // next block starts from here

                sb.append(bid_i);
                sb.append(',');
                sb.append(bid_j);
                sb.append(',');
                /*
                // Need not include block size while generating seq()
                sb.append(curBlockRowSize);
                sb.append(',');
                sb.append(1);
                sb.append(',');*/
                sb.append(block_from);
                sb.append(',');
                sb.append(block_to);
                sb.append(',');
                sb.append(incr);

                pw.println(sb.toString());
                //System.out.println("MapTask " + r + ": " + sb.toString());
                sb.setLength(0);
                numblocks++;
            }

            pw.close();
            fsOut.close();
            inputInfos[i] = InputInfo.TextCellInputInfo;
        } else {
            throw new DMLRuntimeException("Unexpected Data Generation Instruction Type: " + mrtype);
        }
    }
    dataGenInsStr = dataGenInsStr.substring(1);//remove the first ","
    RunningJob runjob;
    MatrixCharacteristics[] stats;
    try {
        //set up the block size
        MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

        //set up the input files and their format information
        MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false,
                ConvertTarget.BLOCK);

        //set up the dimensions of input matrices
        MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);
        MRJobConfiguration.setDimsUnknownFilePrefix(job, dimsUnknownFilePrefix);

        //set up the block size
        MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

        //set up the rand Instructions
        MRJobConfiguration.setRandInstructions(job, dataGenInsStr);

        //set up unary instructions that will perform in the mapper
        MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

        //set up the aggregate instructions that will happen in the combiner and reducer
        MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer);

        //set up the instructions that will happen in the reducer, after the aggregation instrucions
        MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

        //set up the replication factor for the results
        job.setInt("dfs.replication", replication);

        //set up map/reduce memory configurations (if in AM context)
        DMLConfig config = ConfigurationManager.getConfig();
        DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

        //determine degree of parallelism (nmappers: 1<=n<=capacity)
        //TODO use maxsparsity whenever we have a way of generating sparse rand data
        int capacity = InfrastructureAnalyzer.getRemoteParallelMapTasks();
        long dfsblocksize = InfrastructureAnalyzer.getHDFSBlockSize();
        //correction max number of mappers on yarn clusters
        if (InfrastructureAnalyzer.isYarnEnabled())
            capacity = (int) Math.max(capacity, YarnClusterAnalyzer.getNumCores());
        int nmapers = Math
                .max(Math.min((int) (8 * maxbrlen * maxbclen * (long) numblocks / dfsblocksize), capacity), 1);
        job.setNumMapTasks(nmapers);

        //set up what matrices are needed to pass from the mapper to reducer
        HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
                dataGenInsStr, instructionsInMapper, null, aggInstructionsInReducer, otherInstructionsInReducer,
                resultIndexes);

        MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
                dataGenInsStr, instructionsInMapper, null, aggInstructionsInReducer, null,
                otherInstructionsInReducer, resultIndexes, mapoutputIndexes, false);
        stats = ret.stats;

        //set up the number of reducers
        MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

        // print the complete MRJob instruction
        if (LOG.isTraceEnabled())
            inst.printCompleteMRJobInstruction(stats);

        // Update resultDimsUnknown based on computed "stats"
        byte[] resultDimsUnknown = new byte[resultIndexes.length];
        for (int i = 0; i < resultIndexes.length; i++) {
            if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
                resultDimsUnknown[i] = (byte) 1;
            } else {
                resultDimsUnknown[i] = (byte) 0;
            }
        }

        boolean mayContainCtable = instructionsInMapper.contains("ctabletransform")
                || instructionsInMapper.contains("groupedagg");

        //set up the multiple output files, and their format information
        MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos,
                true, mayContainCtable);

        // configure mapper and the mapper output key value pairs
        job.setMapperClass(DataGenMapper.class);
        if (numReducers == 0) {
            job.setMapOutputKeyClass(Writable.class);
            job.setMapOutputValueClass(Writable.class);
        } else {
            job.setMapOutputKeyClass(MatrixIndexes.class);
            job.setMapOutputValueClass(TaggedMatrixBlock.class);
        }

        //set up combiner
        if (numReducers != 0 && aggInstructionsInReducer != null && !aggInstructionsInReducer.isEmpty())
            job.setCombinerClass(GMRCombiner.class);

        //configure reducer
        job.setReducerClass(GMRReducer.class);
        //job.setReducerClass(PassThroughReducer.class);

        // By default, the job executes in "cluster" mode.
        // Determine if we can optimize and run it in "local" mode.
        MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
        for (int i = 0; i < inputs.length; i++) {
            inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
        }

        //set unique working dir
        MRJobConfiguration.setUniqueWorkingDir(job);

        runjob = JobClient.runJob(job);

        /* Process different counters */

        Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
        for (int i = 0; i < resultIndexes.length; i++) {
            // number of non-zeros
            stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
        }

        String dir = dimsUnknownFilePrefix + "/" + runjob.getID().toString() + "_dimsFile";
        stats = MapReduceTool.processDimsFiles(dir, stats);
        MapReduceTool.deleteFileIfExistOnHDFS(dir);

    } finally {
        for (String input : inputs)
            MapReduceTool.deleteFileIfExistOnHDFS(new Path(input), job);
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.GMR.java

License:Open Source License

/**
 * inBlockRepresentation: indicate whether to use block representation or cell representation
 * inputs: input matrices, the inputs are indexed by 0, 1, 2, .. based on the position in this string
 * inputInfos: the input format information for the input matrices
 * rlen: the number of rows for each matrix
 * clen: the number of columns for each matrix
 * brlen: the number of rows per block/*from  w w  w.  ja v a 2s  . c  om*/
 * bclen: the number of columns per block
 * instructionsInMapper: in Mapper, the set of unary operations that need to be performed on each input matrix
 * aggInstructionsInReducer: in Reducer, right after sorting, the set of aggreagte operations that need 
 *                      to be performed on each input matrix, 
 * otherInstructionsInReducer: the mixed operations that need to be performed on matrices after the aggregate operations
 * numReducers: the number of reducers
 * replication: the replication factor for the output
 * resulltIndexes: the indexes of the result matrices that needs to be outputted.
 * outputs: the names for the output directories, one for each result index
 * outputInfos: output format information for the output matrices
 */

@SuppressWarnings({ "unchecked", "rawtypes" })
public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, boolean[] partitioned, PDataPartitionFormat[] pformats,
        int[] psizes, String recordReaderInstruction, String instructionsInMapper,
        String aggInstructionsInReducer, String otherInstructionsInReducer, int numReducers, int replication,
        boolean jvmReuse, byte[] resultIndexes, String dimsUnknownFilePrefix, String[] outputs,
        OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(GMR.class);
    job.setJobName("G-MR");

    boolean inBlockRepresentation = MRJobConfiguration.deriveRepresentation(inputInfos);

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, inBlockRepresentation);

    //added for handling recordreader instruction
    String[] realinputs = inputs;
    InputInfo[] realinputInfos = inputInfos;
    long[] realrlens = rlens;
    long[] realclens = clens;
    int[] realbrlens = brlens;
    int[] realbclens = bclens;
    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;

    if (recordReaderInstruction != null && !recordReaderInstruction.isEmpty()) {
        assert (inputs.length <= 2);
        PickByCountInstruction ins = (PickByCountInstruction) PickByCountInstruction
                .parseInstruction(recordReaderInstruction);
        PickFromCompactInputFormat.setKeyValueClasses(job,
                (Class<? extends WritableComparable>) inputInfos[ins.input1].inputKeyClass,
                inputInfos[ins.input1].inputValueClass);
        job.setInputFormat(PickFromCompactInputFormat.class);
        PickFromCompactInputFormat.setZeroValues(job,
                (NumItemsByEachReducerMetaData) inputInfos[ins.input1].metadata);

        if (ins.isValuePick) {
            double[] probs = MapReduceTool.readColumnVectorFromHDFS(inputs[ins.input2], inputInfos[ins.input2],
                    rlens[ins.input2], clens[ins.input2], brlens[ins.input2], bclens[ins.input2]);
            PickFromCompactInputFormat.setPickRecordsInEachPartFile(job,
                    (NumItemsByEachReducerMetaData) inputInfos[ins.input1].metadata, probs);

            realinputs = new String[inputs.length - 1];
            realinputInfos = new InputInfo[inputs.length - 1];
            realrlens = new long[inputs.length - 1];
            realclens = new long[inputs.length - 1];
            realbrlens = new int[inputs.length - 1];
            realbclens = new int[inputs.length - 1];
            realIndexes = new byte[inputs.length - 1];
            byte realIndex = 0;
            for (byte i = 0; i < inputs.length; i++) {
                if (i == ins.input2)
                    continue;
                realinputs[realIndex] = inputs[i];
                realinputInfos[realIndex] = inputInfos[i];
                if (i == ins.input1) {
                    realrlens[realIndex] = rlens[ins.input2];
                    realclens[realIndex] = clens[ins.input2];
                    realbrlens[realIndex] = 1;
                    realbclens[realIndex] = 1;
                    realIndexes[realIndex] = ins.output;
                } else {
                    realrlens[realIndex] = rlens[i];
                    realclens[realIndex] = clens[i];
                    realbrlens[realIndex] = brlens[i];
                    realbclens[realIndex] = bclens[i];
                    realIndexes[realIndex] = i;
                }
                realIndex++;
            }

        } else {
            //PickFromCompactInputFormat.setPickRecordsInEachPartFile(job, (NumItemsByEachReducerMetaData) inputInfos[ins.input1].metadata, ins.cst, 1-ins.cst);
            PickFromCompactInputFormat.setRangePickPartFiles(job,
                    (NumItemsByEachReducerMetaData) inputInfos[ins.input1].metadata, ins.cst, 1 - ins.cst);
            realrlens[ins.input1] = UtilFunctions.getLengthForInterQuantile(
                    (NumItemsByEachReducerMetaData) inputInfos[ins.input1].metadata, ins.cst);
            realclens[ins.input1] = clens[ins.input1];
            realbrlens[ins.input1] = 1;
            realbclens[ins.input1] = 1;
            realIndexes[ins.input1] = ins.output;
        }
    }

    setupDistributedCache(job, instructionsInMapper, otherInstructionsInReducer, realinputs, realrlens,
            realclens);

    //set up the input files and their format information
    boolean[] distCacheOnly = getDistCacheOnlyInputs(realIndexes, recordReaderInstruction, instructionsInMapper,
            aggInstructionsInReducer, otherInstructionsInReducer);
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens,
            distCacheOnly, true, inBlockRepresentation ? ConvertTarget.BLOCK : ConvertTarget.CELL);
    MRJobConfiguration.setInputPartitioningInfo(job, pformats);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens);
    MRJobConfiguration.setDimsUnknownFilePrefix(job, dimsUnknownFilePrefix);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer);

    //set up the instructions that will happen in the reducer, after the aggregation instructions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //set up map/reduce memory configurations (if in AM context)
    DMLConfig config = ConfigurationManager.getConfig();
    DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

    //set up jvm reuse (incl. reuse of loaded dist cache matrices)
    if (jvmReuse)
        job.setNumTasksToExecutePerJvm(-1);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, otherInstructionsInReducer, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, null, otherInstructionsInReducer, resultIndexes,
            mapoutputIndexes, false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    // Update resultDimsUnknown based on computed "stats"
    byte[] dimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            dimsUnknown[i] = (byte) 1;
        } else {
            dimsUnknown[i] = (byte) 0;
        }
    }
    //MRJobConfiguration.updateResultDimsUnknown(job,resultDimsUnknown);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, dimsUnknown, outputs, outputInfos,
            inBlockRepresentation, true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(GMRMapper.class);
    if (numReducers == 0) {
        job.setMapOutputKeyClass(Writable.class);
        job.setMapOutputValueClass(Writable.class);
    } else {
        job.setMapOutputKeyClass(MatrixIndexes.class);
        if (inBlockRepresentation)
            job.setMapOutputValueClass(TaggedMatrixBlock.class);
        else
            job.setMapOutputValueClass(TaggedMatrixPackedCell.class);
    }

    //set up combiner
    if (numReducers != 0 && aggInstructionsInReducer != null && !aggInstructionsInReducer.isEmpty()) {
        job.setCombinerClass(GMRCombiner.class);
    }

    //configure reducer
    job.setReducerClass(GMRReducer.class);
    //job.setReducerClass(PassThroughReducer.class);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    //MatrixCharacteristics[] stats=new MatrixCharacteristics[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }

    String dir = dimsUnknownFilePrefix + "/" + runjob.getID().toString() + "_dimsFile";
    stats = MapReduceTool.processDimsFiles(dir, stats);
    MapReduceTool.deleteFileIfExistOnHDFS(dir);

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.GroupedAggMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String grpAggInstructions,
        String simpleReduceInstructions/*only scalar or reorg instructions allowed*/, int numReducers,
        int replication, byte[] resultIndexes, String dimsUnknownFilePrefix, String[] outputs,
        OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(GroupedAggMR.class);
    job.setJobName("GroupedAgg-MR");

    //whether use block representation or cell representation
    //MRJobConfiguration.setMatrixValueClassForCM_N_COM(job, true);
    MRJobConfiguration.setMatrixValueClass(job, false);

    //added for handling recordreader instruction
    String[] realinputs = inputs;
    InputInfo[] realinputInfos = inputInfos;
    long[] realrlens = rlens;
    long[] realclens = clens;
    int[] realbrlens = brlens;
    int[] realbclens = bclens;
    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;// w ww.ja v  a 2s  .  c om

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens,
            true, ConvertTarget.WEIGHTEDCELL);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens);
    MRJobConfiguration.setDimsUnknownFilePrefix(job, dimsUnknownFilePrefix);
    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens);

    //set up the grouped aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setGroupedAggInstructions(job, grpAggInstructions);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, simpleReduceInstructions);

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, numReducers, numReducers);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up what matrices are needed to pass from the mapper to reducer
    MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null, null, grpAggInstructions,
            resultIndexes);

    MatrixCharacteristics[] stats = new MatrixCharacteristics[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++)
        stats[i] = new MatrixCharacteristics();

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    byte[] resultDimsUnknown = new byte[resultIndexes.length];
    // Update resultDimsUnknown based on computed "stats"
    for (int i = 0; i < resultIndexes.length; i++)
        resultDimsUnknown[i] = (byte) 2;

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, false);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(GroupedAggMRMapper.class);
    job.setCombinerClass(GroupedAggMRCombiner.class);
    job.setMapOutputKeyClass(TaggedInt.class);
    job.setMapOutputValueClass(WeightedCell.class);

    //configure reducer
    job.setReducerClass(GroupedAggMRReducer.class);

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    //execute job
    RunningJob runjob = JobClient.runJob(job);

    //get important output statistics 
    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i] = new MatrixCharacteristics();
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }

    String dir = dimsUnknownFilePrefix + "/" + runjob.getID().toString() + "_dimsFile";
    stats = MapReduceTool.processDimsFiles(dir, stats);
    MapReduceTool.deleteFileIfExistOnHDFS(dir);

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.MMCJMR.java

License:Open Source License

private static MatrixCharacteristics[] commonSetup(JobConf job, boolean inBlockRepresentation, String[] inputs,
        InputInfo[] inputInfos, long[] rlens, long[] clens, int[] brlens, int[] bclens,
        String instructionsInMapper, String aggInstructionsInReducer, String aggBinInstrction, int numReducers,
        int replication, byte resultDimsUnknown, String output, OutputInfo outputinfo) throws Exception {
    job.setJobName("MMCJ-MR");

    if (numReducers <= 0)
        throw new Exception("MMCJ-MR has to have at least one reduce task!");

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, inBlockRepresentation);

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;// ww  w  .  ja va2  s. c o  m

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, true,
            inBlockRepresentation ? ConvertTarget.BLOCK : ConvertTarget.CELL);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer);

    //set up the aggregate binary operation for the mmcj job
    MRJobConfiguration.setAggregateBinaryInstructions(job, aggBinInstrction);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //set up map/reduce memory configurations (if in AM context)
    DMLConfig config = ConfigurationManager.getConfig();
    DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

    byte[] resultIndexes = new byte[] { MRInstructionParser.parseSingleInstruction(aggBinInstrction).output };
    byte[] resultDimsUnknown_Array = new byte[] { resultDimsUnknown };
    // byte[] resultIndexes=new byte[]{AggregateBinaryInstruction.parseMRInstruction(aggBinInstrction).output};

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, aggBinInstrction, resultIndexes);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown_Array,
            new String[] { output }, new OutputInfo[] { outputinfo }, inBlockRepresentation);

    // configure mapper
    job.setMapperClass(MMCJMRMapper.class);
    job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
    if (inBlockRepresentation)
        job.setMapOutputValueClass(MatrixBlock.class);
    else
        job.setMapOutputValueClass(MatrixCell.class);
    job.setOutputKeyComparatorClass(TaggedFirstSecondIndexes.Comparator.class);
    job.setPartitionerClass(TaggedFirstSecondIndexes.FirstIndexPartitioner.class);

    //configure combiner
    //TODO: cannot set up combiner, because it will destroy the stable numerical algorithms 
    // for sum or for central moments 

    //if(aggInstructionsInReducer!=null && !aggInstructionsInReducer.isEmpty())
    //   job.setCombinerClass(MMCJMRCombiner.class);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, aggBinInstrction, null, resultIndexes,
            mapoutputIndexes, true);

    //set up the number of reducers
    if (AUTOMATIC_CONFIG_NUM_REDUCERS) {
        int numRed = determineNumReducers(rlens, clens, numReducers, ret.numReducerGroups);
        job.setNumReduceTasks(numRed);
    } else
        MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

    //configure reducer
    // note: the alternative MMCJMRReducer is not maintained
    job.setReducerClass(MMCJMRReducerWithAggregator.class);

    return ret.stats;
}

From source file:com.ibm.bi.dml.runtime.matrix.MMRJMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String instructionsInMapper, String aggInstructionsInReducer,
        String aggBinInstrctions, String otherInstructionsInReducer, int numReducers, int replication,
        byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(MMRJMR.class);
    job.setJobName("MMRJ-MR");

    if (numReducers <= 0)
        throw new Exception("MMRJ-MR has to have at least one reduce task!");

    // TODO: check w/ yuanyuan. This job always runs in blocked mode, and hence derivation is not necessary.
    boolean inBlockRepresentation = MRJobConfiguration.deriveRepresentation(inputInfos);

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, inBlockRepresentation);

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;// w  w  w .j a  va 2s.co m

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, true,
            inBlockRepresentation ? ConvertTarget.BLOCK : ConvertTarget.CELL);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer);

    //set up the aggregate binary operation for the mmcj job
    MRJobConfiguration.setAggregateBinaryInstructions(job, aggBinInstrctions);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up map/reduce memory configurations (if in AM context)
    DMLConfig config = ConfigurationManager.getConfig();
    DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

    // byte[] resultIndexes=new byte[]{AggregateBinaryInstruction.parseMRInstruction(aggBinInstrction).output};

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, aggBinInstrctions, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, aggBinInstrctions, otherInstructionsInReducer,
            resultIndexes, mapoutputIndexes, false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    byte[] dimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            dimsUnknown[i] = (byte) 1;
        } else {
            dimsUnknown[i] = (byte) 0;
        }
    }

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, dimsUnknown, outputs, outputInfos,
            inBlockRepresentation);

    // configure mapper
    job.setMapperClass(MMRJMRMapper.class);
    job.setMapOutputKeyClass(TripleIndexes.class);
    if (inBlockRepresentation)
        job.setMapOutputValueClass(TaggedMatrixBlock.class);
    else
        job.setMapOutputValueClass(TaggedMatrixCell.class);
    job.setOutputKeyComparatorClass(TripleIndexes.Comparator.class);
    job.setPartitionerClass(TripleIndexes.FirstTwoIndexesPartitioner.class);

    //configure combiner
    //TODO: cannot set up combiner, because it will destroy the stable numerical algorithms 
    // for sum or for central moments 

    //   if(aggInstructionsInReducer!=null && !aggInstructionsInReducer.isEmpty())
    //      job.setCombinerClass(MMCJMRCombiner.class);

    //configure reducer
    job.setReducerClass(MMRJMRReducer.class);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.ReblockMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, long[] nnz, String instructionsInMapper,
        String reblockInstructions, String otherInstructionsInReducer, int numReducers, int replication,
        boolean jvmReuse, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(ReblockMR.class);
    job.setJobName("Reblock-MR");

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;//  ww  w. j a  v  a 2 s.c o m

    //set up the input files and their format information
    //(internally used input converters: text2bc for text, identity for binary inputs)
    MRJobConfiguration.setUpMultipleInputsReblock(job, realIndexes, inputs, inputInfos, brlens, bclens);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens, nnz);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setReblockInstructions(job, reblockInstructions);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //disable automatic tasks timeouts and speculative task exec
    job.setInt("mapred.task.timeout", 0);
    job.setMapSpeculativeExecution(false);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //enable jvm reuse (based on SystemML configuration)
    if (jvmReuse)
        job.setNumTasksToExecutePerJvm(-1);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, reblockInstructions, null, otherInstructionsInReducer, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, reblockInstructions, null, null, otherInstructionsInReducer, resultIndexes,
            mapoutputIndexes, false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers (according to output size)
    int numRed = determineNumReducers(rlens, clens, nnz,
            ConfigurationManager.getConfig().getIntValue(DMLConfig.NUM_REDUCERS), ret.numReducerGroups);
    job.setNumReduceTasks(numRed);

    //setup in-memory reduce buffers budget (reblock reducer dont need much memory)
    //job.set("mapred.job.reduce.input.buffer.percent", "0.70");

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    // Update resultDimsUnknown based on computed "stats"
    byte[] resultDimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            resultDimsUnknown[i] = (byte) 1;
        } else {
            resultDimsUnknown[i] = (byte) 0;
        }
    }

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true,
            true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(ReblockMapper.class);
    job.setMapOutputKeyClass(MatrixIndexes.class); //represent key offsets for block
    job.setMapOutputValueClass(TaggedAdaptivePartialBlock.class); //binary cell/block

    //configure reducer
    job.setReducerClass(ReblockReducer.class);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.

    // at this point, both reblock_binary and reblock_text are similar
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
        //   System.out.println("result #"+resultIndexes[i]+" ===>\n"+stats[i]);
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}