List of usage examples for org.apache.hadoop.mapred JobConf setMapOutputKeyClass
public void setMapOutputKeyClass(Class<?> theClass)
From source file:org.apache.nutch.scoring.webgraph.NodeDumper.java
License:Apache License
/** * Runs the process to dump the top urls out to a text file. * * @param webGraphDb The WebGraph from which to pull values. * * @param topN// w ww .j ava 2s . com * @param output * * @throws IOException If an error occurs while dumping the top values. */ public void dumpNodes(Path webGraphDb, DumpType type, long topN, Path output, boolean asEff, NameType nameType, AggrType aggrType, boolean asSequenceFile) throws Exception { SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); long start = System.currentTimeMillis(); LOG.info("NodeDumper: starting at " + sdf.format(start)); Path nodeDb = new Path(webGraphDb, WebGraph.NODE_DIR); Configuration conf = getConf(); JobConf dumper = new NutchJob(conf); dumper.setJobName("NodeDumper: " + webGraphDb); FileInputFormat.addInputPath(dumper, nodeDb); dumper.setInputFormat(SequenceFileInputFormat.class); if (nameType == null) { dumper.setMapperClass(Sorter.class); dumper.setReducerClass(Sorter.class); dumper.setMapOutputKeyClass(FloatWritable.class); dumper.setMapOutputValueClass(Text.class); } else { dumper.setMapperClass(Dumper.class); dumper.setReducerClass(Dumper.class); dumper.setMapOutputKeyClass(Text.class); dumper.setMapOutputValueClass(FloatWritable.class); } dumper.setOutputKeyClass(Text.class); dumper.setOutputValueClass(FloatWritable.class); FileOutputFormat.setOutputPath(dumper, output); if (asSequenceFile) { dumper.setOutputFormat(SequenceFileOutputFormat.class); } else { dumper.setOutputFormat(TextOutputFormat.class); } dumper.setNumReduceTasks(1); dumper.setBoolean("inlinks", type == DumpType.INLINKS); dumper.setBoolean("outlinks", type == DumpType.OUTLINKS); dumper.setBoolean("scores", type == DumpType.SCORES); dumper.setBoolean("host", nameType == NameType.HOST); dumper.setBoolean("domain", nameType == NameType.DOMAIN); dumper.setBoolean("sum", aggrType == AggrType.SUM); dumper.setBoolean("max", aggrType == AggrType.MAX); dumper.setLong("topn", topN); // Set equals-sign as separator for Solr's ExternalFileField if (asEff) { dumper.set("mapred.textoutputformat.separator", "="); } try { LOG.info("NodeDumper: running"); JobClient.runJob(dumper); } catch (IOException e) { LOG.error(StringUtils.stringifyException(e)); throw e; } long end = System.currentTimeMillis(); LOG.info("NodeDumper: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end)); }
From source file:org.apache.nutch.scoring.webgraph.ScoreUpdater.java
License:Apache License
/** * Updates the inlink score in the web graph node databsae into the crawl * database./*from w ww. j av a 2 s. com*/ * * @param crawlDb The crawl database to update * @param webGraphDb The webgraph database to use. * * @throws IOException If an error occurs while updating the scores. */ public void update(Path crawlDb, Path webGraphDb) throws IOException { SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); long start = System.currentTimeMillis(); LOG.info("ScoreUpdater: starting at " + sdf.format(start)); Configuration conf = getConf(); FileSystem fs = FileSystem.get(conf); // create a temporary crawldb with the new scores LOG.info("Running crawldb update " + crawlDb); Path nodeDb = new Path(webGraphDb, WebGraph.NODE_DIR); Path crawlDbCurrent = new Path(crawlDb, CrawlDb.CURRENT_NAME); Path newCrawlDb = new Path(crawlDb, Integer.toString(new Random().nextInt(Integer.MAX_VALUE))); // run the updater job outputting to the temp crawl database JobConf updater = new NutchJob(conf); updater.setJobName("Update CrawlDb from WebGraph"); FileInputFormat.addInputPath(updater, crawlDbCurrent); FileInputFormat.addInputPath(updater, nodeDb); FileOutputFormat.setOutputPath(updater, newCrawlDb); updater.setInputFormat(SequenceFileInputFormat.class); updater.setMapperClass(ScoreUpdater.class); updater.setReducerClass(ScoreUpdater.class); updater.setMapOutputKeyClass(Text.class); updater.setMapOutputValueClass(ObjectWritable.class); updater.setOutputKeyClass(Text.class); updater.setOutputValueClass(CrawlDatum.class); updater.setOutputFormat(MapFileOutputFormat.class); try { JobClient.runJob(updater); } catch (IOException e) { LOG.error(StringUtils.stringifyException(e)); // remove the temp crawldb on error if (fs.exists(newCrawlDb)) { fs.delete(newCrawlDb, true); } throw e; } // install the temp crawl database LOG.info("ScoreUpdater: installing new crawldb " + crawlDb); CrawlDb.install(updater, crawlDb); long end = System.currentTimeMillis(); LOG.info("ScoreUpdater: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end)); }
From source file:org.apache.nutch.scoring.webgraph.WebGraph.java
License:Apache License
/** * Creates the three different WebGraph databases, Outlinks, Inlinks, and * Node. If a current WebGraph exists then it is updated, if it doesn't exist * then a new WebGraph database is created. * /*from ww w . j a v a2s . c o m*/ * @param webGraphDb The WebGraph to create or update. * @param segments The array of segments used to update the WebGraph. Newer * segments and fetch times will overwrite older segments. * @param normalize whether to use URLNormalizers on URL's in the segment * @param filter whether to use URLFilters on URL's in the segment * * @throws IOException If an error occurs while processing the WebGraph. */ public void createWebGraph(Path webGraphDb, Path[] segments, boolean normalize, boolean filter) throws IOException { SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); long start = System.currentTimeMillis(); if (LOG.isInfoEnabled()) { LOG.info("WebGraphDb: starting at " + sdf.format(start)); LOG.info("WebGraphDb: webgraphdb: " + webGraphDb); LOG.info("WebGraphDb: URL normalize: " + normalize); LOG.info("WebGraphDb: URL filter: " + filter); } Configuration conf = getConf(); FileSystem fs = FileSystem.get(conf); // lock an existing webgraphdb to prevent multiple simultaneous updates Path lock = new Path(webGraphDb, LOCK_NAME); if (!fs.exists(webGraphDb)) { fs.mkdirs(webGraphDb); } LockUtil.createLockFile(fs, lock, false); // outlink and temp outlink database paths Path outlinkDb = new Path(webGraphDb, OUTLINK_DIR); Path oldOutlinkDb = new Path(webGraphDb, OLD_OUTLINK_DIR); if (!fs.exists(outlinkDb)) { fs.mkdirs(outlinkDb); } Path tempOutlinkDb = new Path(outlinkDb + "-" + Integer.toString(new Random().nextInt(Integer.MAX_VALUE))); JobConf outlinkJob = new NutchJob(conf); outlinkJob.setJobName("Outlinkdb: " + outlinkDb); boolean deleteGone = conf.getBoolean("link.delete.gone", false); boolean preserveBackup = conf.getBoolean("db.preserve.backup", true); if (deleteGone) { LOG.info("OutlinkDb: deleting gone links"); } // get the parse data and crawl fetch data for all segments if (segments != null) { for (int i = 0; i < segments.length; i++) { Path parseData = new Path(segments[i], ParseData.DIR_NAME); if (fs.exists(parseData)) { LOG.info("OutlinkDb: adding input: " + parseData); FileInputFormat.addInputPath(outlinkJob, parseData); } if (deleteGone) { Path crawlFetch = new Path(segments[i], CrawlDatum.FETCH_DIR_NAME); if (fs.exists(crawlFetch)) { LOG.info("OutlinkDb: adding input: " + crawlFetch); FileInputFormat.addInputPath(outlinkJob, crawlFetch); } } } } // add the existing webgraph LOG.info("OutlinkDb: adding input: " + outlinkDb); FileInputFormat.addInputPath(outlinkJob, outlinkDb); outlinkJob.setBoolean(OutlinkDb.URL_NORMALIZING, normalize); outlinkJob.setBoolean(OutlinkDb.URL_FILTERING, filter); outlinkJob.setInputFormat(SequenceFileInputFormat.class); outlinkJob.setMapperClass(OutlinkDb.class); outlinkJob.setReducerClass(OutlinkDb.class); outlinkJob.setMapOutputKeyClass(Text.class); outlinkJob.setMapOutputValueClass(NutchWritable.class); outlinkJob.setOutputKeyClass(Text.class); outlinkJob.setOutputValueClass(LinkDatum.class); FileOutputFormat.setOutputPath(outlinkJob, tempOutlinkDb); outlinkJob.setOutputFormat(MapFileOutputFormat.class); outlinkJob.setBoolean("mapreduce.fileoutputcommitter.marksuccessfuljobs", false); // run the outlinkdb job and replace any old outlinkdb with the new one try { LOG.info("OutlinkDb: running"); JobClient.runJob(outlinkJob); LOG.info("OutlinkDb: installing " + outlinkDb); FSUtils.replace(fs, oldOutlinkDb, outlinkDb, true); FSUtils.replace(fs, outlinkDb, tempOutlinkDb, true); if (!preserveBackup && fs.exists(oldOutlinkDb)) fs.delete(oldOutlinkDb, true); LOG.info("OutlinkDb: finished"); } catch (IOException e) { // remove lock file and and temporary directory if an error occurs LockUtil.removeLockFile(fs, lock); if (fs.exists(tempOutlinkDb)) { fs.delete(tempOutlinkDb, true); } LOG.error(StringUtils.stringifyException(e)); throw e; } // inlink and temp link database paths Path inlinkDb = new Path(webGraphDb, INLINK_DIR); Path tempInlinkDb = new Path(inlinkDb + "-" + Integer.toString(new Random().nextInt(Integer.MAX_VALUE))); JobConf inlinkJob = new NutchJob(conf); inlinkJob.setJobName("Inlinkdb " + inlinkDb); LOG.info("InlinkDb: adding input: " + outlinkDb); FileInputFormat.addInputPath(inlinkJob, outlinkDb); inlinkJob.setInputFormat(SequenceFileInputFormat.class); inlinkJob.setMapperClass(InlinkDb.class); inlinkJob.setMapOutputKeyClass(Text.class); inlinkJob.setMapOutputValueClass(LinkDatum.class); inlinkJob.setOutputKeyClass(Text.class); inlinkJob.setOutputValueClass(LinkDatum.class); FileOutputFormat.setOutputPath(inlinkJob, tempInlinkDb); inlinkJob.setOutputFormat(MapFileOutputFormat.class); inlinkJob.setBoolean("mapreduce.fileoutputcommitter.marksuccessfuljobs", false); try { // run the inlink and replace any old with new LOG.info("InlinkDb: running"); JobClient.runJob(inlinkJob); LOG.info("InlinkDb: installing " + inlinkDb); FSUtils.replace(fs, inlinkDb, tempInlinkDb, true); LOG.info("InlinkDb: finished"); } catch (IOException e) { // remove lock file and and temporary directory if an error occurs LockUtil.removeLockFile(fs, lock); if (fs.exists(tempInlinkDb)) { fs.delete(tempInlinkDb, true); } LOG.error(StringUtils.stringifyException(e)); throw e; } // node and temp node database paths Path nodeDb = new Path(webGraphDb, NODE_DIR); Path tempNodeDb = new Path(nodeDb + "-" + Integer.toString(new Random().nextInt(Integer.MAX_VALUE))); JobConf nodeJob = new NutchJob(conf); nodeJob.setJobName("NodeDb " + nodeDb); LOG.info("NodeDb: adding input: " + outlinkDb); LOG.info("NodeDb: adding input: " + inlinkDb); FileInputFormat.addInputPath(nodeJob, outlinkDb); FileInputFormat.addInputPath(nodeJob, inlinkDb); nodeJob.setInputFormat(SequenceFileInputFormat.class); nodeJob.setReducerClass(NodeDb.class); nodeJob.setMapOutputKeyClass(Text.class); nodeJob.setMapOutputValueClass(LinkDatum.class); nodeJob.setOutputKeyClass(Text.class); nodeJob.setOutputValueClass(Node.class); FileOutputFormat.setOutputPath(nodeJob, tempNodeDb); nodeJob.setOutputFormat(MapFileOutputFormat.class); nodeJob.setBoolean("mapreduce.fileoutputcommitter.marksuccessfuljobs", false); try { // run the node job and replace old nodedb with new LOG.info("NodeDb: running"); JobClient.runJob(nodeJob); LOG.info("NodeDb: installing " + nodeDb); FSUtils.replace(fs, nodeDb, tempNodeDb, true); LOG.info("NodeDb: finished"); } catch (IOException e) { // remove lock file and and temporary directory if an error occurs LockUtil.removeLockFile(fs, lock); if (fs.exists(tempNodeDb)) { fs.delete(tempNodeDb, true); } LOG.error(StringUtils.stringifyException(e)); throw e; } // remove the lock file for the webgraph LockUtil.removeLockFile(fs, lock); long end = System.currentTimeMillis(); LOG.info("WebGraphDb: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end)); }
From source file:org.apache.nutch.tools.CrawlDBScanner.java
License:Apache License
private void scan(Path crawlDb, Path outputPath, String regex, String status, boolean text) throws IOException { SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); long start = System.currentTimeMillis(); LOG.info("CrawlDB scanner: starting at " + sdf.format(start)); JobConf job = new NutchJob(getConf()); job.setJobName("Scan : " + crawlDb + " for URLS matching : " + regex); job.set("CrawlDBScanner.regex", regex); if (status != null) job.set("CrawlDBScanner.status", status); FileInputFormat.addInputPath(job, new Path(crawlDb, CrawlDb.CURRENT_NAME)); job.setInputFormat(SequenceFileInputFormat.class); job.setMapperClass(CrawlDBScanner.class); job.setReducerClass(CrawlDBScanner.class); FileOutputFormat.setOutputPath(job, outputPath); // if we want a text dump of the entries // in order to check something - better to use the text format and avoid // compression if (text) {/*from w ww . j av a 2 s . c o m*/ job.set("mapred.output.compress", "false"); job.setOutputFormat(TextOutputFormat.class); } // otherwise what we will actually create is a mini-crawlDB which can be // then used // for debugging else { job.setOutputFormat(MapFileOutputFormat.class); } job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(CrawlDatum.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(CrawlDatum.class); try { JobClient.runJob(job); } catch (IOException e) { throw e; } long end = System.currentTimeMillis(); LOG.info("CrawlDb scanner: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end)); }
From source file:org.apache.nutch.tools.FreeGenerator.java
License:Apache License
public int run(String[] args) throws Exception { if (args.length < 2) { System.err.println("Usage: FreeGenerator <inputDir> <segmentsDir> [-filter] [-normalize]"); System.err.println("\tinputDir\tinput directory containing one or more input files."); System.err.println("\t\tEach text file contains a list of URLs, one URL per line"); System.err.println("\tsegmentsDir\toutput directory, where new segment will be created"); System.err.println("\t-filter\trun current URLFilters on input URLs"); System.err.println("\t-normalize\trun current URLNormalizers on input URLs"); return -1; }//from w ww . j ava 2s.c o m boolean filter = false; boolean normalize = false; if (args.length > 2) { for (int i = 2; i < args.length; i++) { if (args[i].equals("-filter")) { filter = true; } else if (args[i].equals("-normalize")) { normalize = true; } else { LOG.error("Unknown argument: " + args[i] + ", exiting ..."); return -1; } } } SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); long start = System.currentTimeMillis(); LOG.info("FreeGenerator: starting at " + sdf.format(start)); JobConf job = new NutchJob(getConf()); job.setBoolean(FILTER_KEY, filter); job.setBoolean(NORMALIZE_KEY, normalize); FileInputFormat.addInputPath(job, new Path(args[0])); job.setInputFormat(TextInputFormat.class); job.setMapperClass(FG.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Generator.SelectorEntry.class); job.setPartitionerClass(URLPartitioner.class); job.setReducerClass(FG.class); String segName = Generator.generateSegmentName(); job.setNumReduceTasks(job.getNumMapTasks()); job.setOutputFormat(SequenceFileOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(CrawlDatum.class); job.setOutputKeyComparatorClass(Generator.HashComparator.class); FileOutputFormat.setOutputPath(job, new Path(args[1], new Path(segName, CrawlDatum.GENERATE_DIR_NAME))); try { JobClient.runJob(job); } catch (Exception e) { LOG.error("FAILED: " + StringUtils.stringifyException(e)); return -1; } long end = System.currentTimeMillis(); LOG.info("FreeGenerator: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end)); return 0; }
From source file:org.apache.sysml.runtime.controlprogram.parfor.DataPartitionerRemoteMR.java
License:Apache License
@Override protected void partitionMatrix(MatrixObject in, String fnameNew, InputInfo ii, OutputInfo oi, long rlen, long clen, int brlen, int bclen) throws DMLRuntimeException { String jobname = "ParFor-DPMR"; long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; JobConf job; job = new JobConf(DataPartitionerRemoteMR.class); if (_pfid >= 0) //use in parfor job.setJobName(jobname + _pfid); else //use for partition instruction job.setJobName("Partition-MR"); //maintain dml script counters Statistics.incrementNoOfCompiledMRJobs(); try {/*from ww w . j a va 2 s .c o m*/ //force writing to disk (typically not required since partitioning only applied if dataset exceeds CP size) in.exportData(); //written to disk iff dirty Path path = new Path(in.getFileName()); ///// //configure the MR job MRJobConfiguration.setPartitioningInfo(job, rlen, clen, brlen, bclen, ii, oi, _format, _n, fnameNew, _keepIndexes); //set mappers, reducers, combiners job.setMapperClass(DataPartitionerRemoteMapper.class); job.setReducerClass(DataPartitionerRemoteReducer.class); if (oi == OutputInfo.TextCellOutputInfo) { //binary cell intermediates for reduced IO job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(PairWritableCell.class); } else if (oi == OutputInfo.BinaryCellOutputInfo) { job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(PairWritableCell.class); } else if (oi == OutputInfo.BinaryBlockOutputInfo) { job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(PairWritableBlock.class); //check Alignment if ((_format == PDataPartitionFormat.ROW_BLOCK_WISE_N && rlen > _n && _n % brlen != 0) || (_format == PDataPartitionFormat.COLUMN_BLOCK_WISE_N && clen > _n && _n % bclen != 0)) { throw new DMLRuntimeException( "Data partitioning format " + _format + " requires aligned blocks."); } } //set input format job.setInputFormat(ii.inputFormatClass); //set the input path and output path FileInputFormat.setInputPaths(job, path); //set output path MapReduceTool.deleteFileIfExistOnHDFS(fnameNew); //FileOutputFormat.setOutputPath(job, pathNew); job.setOutputFormat(NullOutputFormat.class); ////// //set optimization parameters //set the number of mappers and reducers //job.setNumMapTasks( _numMappers ); //use default num mappers long reducerGroups = -1; switch (_format) { case ROW_WISE: reducerGroups = rlen; break; case COLUMN_WISE: reducerGroups = clen; break; case ROW_BLOCK_WISE: reducerGroups = (rlen / brlen) + ((rlen % brlen == 0) ? 0 : 1); break; case COLUMN_BLOCK_WISE: reducerGroups = (clen / bclen) + ((clen % bclen == 0) ? 0 : 1); break; case ROW_BLOCK_WISE_N: reducerGroups = (rlen / _n) + ((rlen % _n == 0) ? 0 : 1); break; case COLUMN_BLOCK_WISE_N: reducerGroups = (clen / _n) + ((clen % _n == 0) ? 0 : 1); break; default: //do nothing } job.setNumReduceTasks((int) Math.min(_numReducers, reducerGroups)); //disable automatic tasks timeouts and speculative task exec job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0); job.setMapSpeculativeExecution(false); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //enables the reuse of JVMs (multiple tasks per MR task) if (_jvmReuse) job.setNumTasksToExecutePerJvm(-1); //unlimited //enables compression - not conclusive for different codecs (empirically good compression ratio, but significantly slower) //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS, "true"); //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS_CODEC, "org.apache.hadoop.io.compress.GzipCodec"); //set the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, _replication); //set up map/reduce memory configurations (if in AM context) DMLConfig config = ConfigurationManager.getDMLConfig(); DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config); //set up custom map/reduce configurations MRJobConfiguration.setupCustomMRConfigurations(job, config); //set the max number of retries per map task // disabled job-level configuration to respect cluster configuration // note: this refers to hadoop2, hence it never had effect on mr1 //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, _max_retry); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); ///// // execute the MR job JobClient.runJob(job); //maintain dml script counters Statistics.incrementNoOfExecutedMRJobs(); } catch (Exception ex) { throw new DMLRuntimeException(ex); } if (DMLScript.STATISTICS && _pfid >= 0) { long t1 = System.nanoTime(); //only for parfor Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0); } }
From source file:org.apache.sysml.runtime.controlprogram.parfor.RemoteDPParForMR.java
License:Apache License
public static RemoteParForJobReturn runJob(long pfid, String itervar, String matrixvar, String program, String resultFile, MatrixObject input, PartitionFormat dpf, OutputInfo oi, boolean tSparseCol, //config params boolean enableCPCaching, int numReducers, int replication) //opt params throws DMLRuntimeException { RemoteParForJobReturn ret = null;/*from w ww .j ava 2 s. c o m*/ String jobname = "ParFor-DPEMR"; long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; JobConf job; job = new JobConf(RemoteDPParForMR.class); job.setJobName(jobname + pfid); //maintain dml script counters Statistics.incrementNoOfCompiledMRJobs(); try { ///// //configure the MR job //set arbitrary CP program blocks that will perform in the reducers MRJobConfiguration.setProgramBlocks(job, program); //enable/disable caching MRJobConfiguration.setParforCachingConfig(job, enableCPCaching); //setup input matrix Path path = new Path(input.getFileName()); long rlen = input.getNumRows(); long clen = input.getNumColumns(); int brlen = (int) input.getNumRowsPerBlock(); int bclen = (int) input.getNumColumnsPerBlock(); MRJobConfiguration.setPartitioningInfo(job, rlen, clen, brlen, bclen, InputInfo.BinaryBlockInputInfo, oi, dpf._dpf, dpf._N, input.getFileName(), itervar, matrixvar, tSparseCol); job.setInputFormat(InputInfo.BinaryBlockInputInfo.inputFormatClass); FileInputFormat.setInputPaths(job, path); //set mapper and reducers classes job.setMapperClass(DataPartitionerRemoteMapper.class); job.setReducerClass(RemoteDPParWorkerReducer.class); //set output format job.setOutputFormat(SequenceFileOutputFormat.class); //set output path MapReduceTool.deleteFileIfExistOnHDFS(resultFile); FileOutputFormat.setOutputPath(job, new Path(resultFile)); //set the output key, value schema //parfor partitioning outputs (intermediates) job.setMapOutputKeyClass(LongWritable.class); if (oi == OutputInfo.BinaryBlockOutputInfo) job.setMapOutputValueClass(PairWritableBlock.class); else if (oi == OutputInfo.BinaryCellOutputInfo) job.setMapOutputValueClass(PairWritableCell.class); else throw new DMLRuntimeException("Unsupported intermrediate output info: " + oi); //parfor exec output job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(Text.class); ////// //set optimization parameters //set the number of mappers and reducers job.setNumReduceTasks(numReducers); //disable automatic tasks timeouts and speculative task exec job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0); job.setMapSpeculativeExecution(false); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //set up map/reduce memory configurations (if in AM context) DMLConfig config = ConfigurationManager.getDMLConfig(); DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config); //set up custom map/reduce configurations MRJobConfiguration.setupCustomMRConfigurations(job, config); //disable JVM reuse job.setNumTasksToExecutePerJvm(1); //-1 for unlimited //set the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set the max number of retries per map task //note: currently disabled to use cluster config //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, max_retry); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); ///// // execute the MR job RunningJob runjob = JobClient.runJob(job); // Process different counters Statistics.incrementNoOfExecutedMRJobs(); Group pgroup = runjob.getCounters().getGroup(ParForProgramBlock.PARFOR_COUNTER_GROUP_NAME); int numTasks = (int) pgroup.getCounter(Stat.PARFOR_NUMTASKS.toString()); int numIters = (int) pgroup.getCounter(Stat.PARFOR_NUMITERS.toString()); if (DMLScript.STATISTICS && !InfrastructureAnalyzer.isLocalMode()) { Statistics.incrementJITCompileTime(pgroup.getCounter(Stat.PARFOR_JITCOMPILE.toString())); Statistics.incrementJVMgcCount(pgroup.getCounter(Stat.PARFOR_JVMGC_COUNT.toString())); Statistics.incrementJVMgcTime(pgroup.getCounter(Stat.PARFOR_JVMGC_TIME.toString())); Group cgroup = runjob.getCounters().getGroup(CacheableData.CACHING_COUNTER_GROUP_NAME.toString()); CacheStatistics .incrementMemHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_MEM.toString())); CacheStatistics.incrementFSBuffHits( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FSBUFF.toString())); CacheStatistics .incrementFSHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FS.toString())); CacheStatistics.incrementHDFSHits( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_HDFS.toString())); CacheStatistics.incrementFSBuffWrites( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FSBUFF.toString())); CacheStatistics.incrementFSWrites( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FS.toString())); CacheStatistics.incrementHDFSWrites( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_HDFS.toString())); CacheStatistics .incrementAcquireRTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQR.toString())); CacheStatistics .incrementAcquireMTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQM.toString())); CacheStatistics .incrementReleaseTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_RLS.toString())); CacheStatistics .incrementExportTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_EXP.toString())); } // read all files of result variables and prepare for return LocalVariableMap[] results = readResultFile(job, resultFile); ret = new RemoteParForJobReturn(runjob.isSuccessful(), numTasks, numIters, results); } catch (Exception ex) { throw new DMLRuntimeException(ex); } finally { // remove created files try { MapReduceTool.deleteFileIfExistOnHDFS(new Path(resultFile), job); } catch (IOException ex) { throw new DMLRuntimeException(ex); } } if (DMLScript.STATISTICS) { long t1 = System.nanoTime(); Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0); } return ret; }
From source file:org.apache.sysml.runtime.controlprogram.parfor.RemoteParForMR.java
License:Apache License
public static RemoteParForJobReturn runJob(long pfid, String program, String taskFile, String resultFile, MatrixObject colocatedDPMatrixObj, //inputs boolean enableCPCaching, int numMappers, int replication, int max_retry, long minMem, boolean jvmReuse) //opt params throws DMLRuntimeException { RemoteParForJobReturn ret = null;//from w w w .ja v a 2 s . co m String jobname = "ParFor-EMR"; long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; JobConf job; job = new JobConf(RemoteParForMR.class); job.setJobName(jobname + pfid); //maintain dml script counters Statistics.incrementNoOfCompiledMRJobs(); try { ///// //configure the MR job //set arbitrary CP program blocks that will perform in the mapper MRJobConfiguration.setProgramBlocks(job, program); //enable/disable caching MRJobConfiguration.setParforCachingConfig(job, enableCPCaching); //set mappers, reducers, combiners job.setMapperClass(RemoteParWorkerMapper.class); //map-only //set input format (one split per row, NLineInputFormat default N=1) if (ParForProgramBlock.ALLOW_DATA_COLOCATION && colocatedDPMatrixObj != null) { job.setInputFormat(RemoteParForColocatedNLineInputFormat.class); MRJobConfiguration.setPartitioningFormat(job, colocatedDPMatrixObj.getPartitionFormat()); MatrixCharacteristics mc = colocatedDPMatrixObj.getMatrixCharacteristics(); MRJobConfiguration.setPartitioningBlockNumRows(job, mc.getRowsPerBlock()); MRJobConfiguration.setPartitioningBlockNumCols(job, mc.getColsPerBlock()); MRJobConfiguration.setPartitioningFilename(job, colocatedDPMatrixObj.getFileName()); } else //default case { job.setInputFormat(NLineInputFormat.class); } //set the input path and output path FileInputFormat.setInputPaths(job, new Path(taskFile)); //set output format job.setOutputFormat(SequenceFileOutputFormat.class); //set output path MapReduceTool.deleteFileIfExistOnHDFS(resultFile); FileOutputFormat.setOutputPath(job, new Path(resultFile)); //set the output key, value schema job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(Text.class); ////// //set optimization parameters //set the number of mappers and reducers job.setNumMapTasks(numMappers); //numMappers job.setNumReduceTasks(0); //job.setInt("mapred.map.tasks.maximum", 1); //system property //job.setInt("mapred.tasktracker.tasks.maximum",1); //system property //job.setInt("mapred.jobtracker.maxtasks.per.job",1); //system property //set jvm memory size (if require) String memKey = MRConfigurationNames.MR_CHILD_JAVA_OPTS; if (minMem > 0 && minMem > InfrastructureAnalyzer.extractMaxMemoryOpt(job.get(memKey))) { InfrastructureAnalyzer.setMaxMemoryOpt(job, memKey, minMem); LOG.warn("Forcing '" + memKey + "' to -Xmx" + minMem / (1024 * 1024) + "M."); } //disable automatic tasks timeouts and speculative task exec job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0); job.setMapSpeculativeExecution(false); //set up map/reduce memory configurations (if in AM context) DMLConfig config = ConfigurationManager.getDMLConfig(); DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config); //set up custom map/reduce configurations MRJobConfiguration.setupCustomMRConfigurations(job, config); //enables the reuse of JVMs (multiple tasks per MR task) if (jvmReuse) job.setNumTasksToExecutePerJvm(-1); //unlimited //set sort io buffer (reduce unnecessary large io buffer, guaranteed memory consumption) job.setInt(MRConfigurationNames.MR_TASK_IO_SORT_MB, 8); //8MB //set the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set the max number of retries per map task // disabled job-level configuration to respect cluster configuration // note: this refers to hadoop2, hence it never had effect on mr1 //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, max_retry); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); ///// // execute the MR job RunningJob runjob = JobClient.runJob(job); // Process different counters Statistics.incrementNoOfExecutedMRJobs(); Group pgroup = runjob.getCounters().getGroup(ParForProgramBlock.PARFOR_COUNTER_GROUP_NAME); int numTasks = (int) pgroup.getCounter(Stat.PARFOR_NUMTASKS.toString()); int numIters = (int) pgroup.getCounter(Stat.PARFOR_NUMITERS.toString()); if (DMLScript.STATISTICS && !InfrastructureAnalyzer.isLocalMode()) { Statistics.incrementJITCompileTime(pgroup.getCounter(Stat.PARFOR_JITCOMPILE.toString())); Statistics.incrementJVMgcCount(pgroup.getCounter(Stat.PARFOR_JVMGC_COUNT.toString())); Statistics.incrementJVMgcTime(pgroup.getCounter(Stat.PARFOR_JVMGC_TIME.toString())); Group cgroup = runjob.getCounters().getGroup(CacheableData.CACHING_COUNTER_GROUP_NAME.toString()); CacheStatistics .incrementMemHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_MEM.toString())); CacheStatistics.incrementFSBuffHits( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FSBUFF.toString())); CacheStatistics .incrementFSHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FS.toString())); CacheStatistics.incrementHDFSHits( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_HDFS.toString())); CacheStatistics.incrementFSBuffWrites( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FSBUFF.toString())); CacheStatistics.incrementFSWrites( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FS.toString())); CacheStatistics.incrementHDFSWrites( (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_HDFS.toString())); CacheStatistics .incrementAcquireRTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQR.toString())); CacheStatistics .incrementAcquireMTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQM.toString())); CacheStatistics .incrementReleaseTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_RLS.toString())); CacheStatistics .incrementExportTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_EXP.toString())); } // read all files of result variables and prepare for return LocalVariableMap[] results = readResultFile(job, resultFile); ret = new RemoteParForJobReturn(runjob.isSuccessful(), numTasks, numIters, results); } catch (Exception ex) { throw new DMLRuntimeException(ex); } finally { // remove created files try { MapReduceTool.deleteFileIfExistOnHDFS(new Path(taskFile), job); MapReduceTool.deleteFileIfExistOnHDFS(new Path(resultFile), job); } catch (IOException ex) { throw new DMLRuntimeException(ex); } } if (DMLScript.STATISTICS) { long t1 = System.nanoTime(); Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0); } return ret; }
From source file:org.apache.sysml.runtime.controlprogram.parfor.ResultMergeRemoteMR.java
License:Apache License
@SuppressWarnings({ "unused", "deprecation" }) protected void executeMerge(String fname, String fnameNew, String[] srcFnames, InputInfo ii, OutputInfo oi, long rlen, long clen, int brlen, int bclen) throws DMLRuntimeException { String jobname = "ParFor-RMMR"; long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; JobConf job = new JobConf(ResultMergeRemoteMR.class); job.setJobName(jobname + _pfid);/*from www . j a v a2s . c o m*/ //maintain dml script counters Statistics.incrementNoOfCompiledMRJobs(); //warning for textcell/binarycell without compare boolean withCompare = (fname != null); if ((oi == OutputInfo.TextCellOutputInfo || oi == OutputInfo.BinaryCellOutputInfo) && !withCompare && ResultMergeLocalFile.ALLOW_COPY_CELLFILES) LOG.warn("Result merge for " + OutputInfo.outputInfoToString(oi) + " without compare can be realized more efficiently with LOCAL_FILE than REMOTE_MR."); try { Path pathCompare = null; Path pathNew = new Path(fnameNew); ///// //configure the MR job if (withCompare) { FileSystem fs = IOUtilFunctions.getFileSystem(pathNew, job); pathCompare = new Path(fname).makeQualified(fs); MRJobConfiguration.setResultMergeInfo(job, pathCompare.toString(), ii, LocalFileUtils.getWorkingDir(LocalFileUtils.CATEGORY_RESULTMERGE), rlen, clen, brlen, bclen); } else MRJobConfiguration.setResultMergeInfo(job, "null", ii, LocalFileUtils.getWorkingDir(LocalFileUtils.CATEGORY_RESULTMERGE), rlen, clen, bclen, bclen); //set mappers, reducers, combiners job.setMapperClass(ResultMergeRemoteMapper.class); job.setReducerClass(ResultMergeRemoteReducer.class); if (oi == OutputInfo.TextCellOutputInfo) { job.setMapOutputKeyClass(MatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixCell.class); job.setOutputKeyClass(NullWritable.class); job.setOutputValueClass(Text.class); } else if (oi == OutputInfo.BinaryCellOutputInfo) { job.setMapOutputKeyClass(MatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixCell.class); job.setOutputKeyClass(MatrixIndexes.class); job.setOutputValueClass(MatrixCell.class); } else if (oi == OutputInfo.BinaryBlockOutputInfo) { //setup partitioning, grouping, sorting for composite key (old API) job.setPartitionerClass(ResultMergeRemotePartitioning.class); //partitioning job.setOutputValueGroupingComparator(ResultMergeRemoteGrouping.class); //grouping job.setOutputKeyComparatorClass(ResultMergeRemoteSorting.class); //sorting job.setMapOutputKeyClass(ResultMergeTaggedMatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixBlock.class); job.setOutputKeyClass(MatrixIndexes.class); job.setOutputValueClass(MatrixBlock.class); } //set input format job.setInputFormat(ii.inputFormatClass); //set the input path Path[] paths = null; if (withCompare) { paths = new Path[srcFnames.length + 1]; paths[0] = pathCompare; for (int i = 1; i < paths.length; i++) paths[i] = new Path(srcFnames[i - 1]); } else { paths = new Path[srcFnames.length]; for (int i = 0; i < paths.length; i++) paths[i] = new Path(srcFnames[i]); } FileInputFormat.setInputPaths(job, paths); //set output format job.setOutputFormat(oi.outputFormatClass); //set output path MapReduceTool.deleteFileIfExistOnHDFS(fnameNew); FileOutputFormat.setOutputPath(job, pathNew); ////// //set optimization parameters //set the number of mappers and reducers //job.setNumMapTasks( _numMappers ); //use default num mappers long reducerGroups = _numReducers; if (oi == OutputInfo.BinaryBlockOutputInfo) reducerGroups = Math.max(rlen / brlen, 1) * Math.max(clen / bclen, 1); else //textcell/binarycell reducerGroups = Math.max((rlen * clen) / StagingFileUtils.CELL_BUFFER_SIZE, 1); job.setNumReduceTasks((int) Math.min(_numReducers, reducerGroups)); //disable automatic tasks timeouts and speculative task exec job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0); job.setMapSpeculativeExecution(false); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); //enables the reuse of JVMs (multiple tasks per MR task) if (_jvmReuse) job.setNumTasksToExecutePerJvm(-1); //unlimited //enables compression - not conclusive for different codecs (empirically good compression ratio, but significantly slower) //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS, "true"); //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS_CODEC, "org.apache.hadoop.io.compress.GzipCodec"); //set the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, _replication); //set the max number of retries per map task // disabled job-level configuration to respect cluster configuration // note: this refers to hadoop2, hence it never had effect on mr1 //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, _max_retry); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); ///// // execute the MR job JobClient.runJob(job); //maintain dml script counters Statistics.incrementNoOfExecutedMRJobs(); } catch (Exception ex) { throw new DMLRuntimeException(ex); } if (DMLScript.STATISTICS) { long t1 = System.nanoTime(); Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0); } }
From source file:org.apache.sysml.runtime.matrix.CMCOVMR.java
License:Apache License
public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens, long[] clens, int[] brlens, int[] bclens, String instructionsInMapper, String cmNcomInstructions, int numReducers, int replication, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos) throws Exception { JobConf job = new JobConf(CMCOVMR.class); job.setJobName("CM-COV-MR"); //whether use block representation or cell representation MRJobConfiguration.setMatrixValueClassForCM_N_COM(job, true); //added for handling recordreader instruction String[] realinputs = inputs; InputInfo[] realinputInfos = inputInfos; long[] realrlens = rlens; long[] realclens = clens; int[] realbrlens = brlens; int[] realbclens = bclens; byte[] realIndexes = new byte[inputs.length]; for (byte b = 0; b < realIndexes.length; b++) realIndexes[b] = b;// w w w . jav a 2 s .c o m //set up the input files and their format information MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens, true, ConvertTarget.WEIGHTEDCELL); //set up the dimensions of input matrices MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens); //set up the block size MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens); //set up unary instructions that will perform in the mapper MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper); //set up the aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setCM_N_COMInstructions(job, cmNcomInstructions); //set up the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); //set up what matrices are needed to pass from the mapper to reducer HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, instructionsInMapper, null, cmNcomInstructions, resultIndexes); //set up the multiple output files, and their format information MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, new byte[resultIndexes.length], outputs, outputInfos, false); // configure mapper and the mapper output key value pairs job.setMapperClass(CMCOVMRMapper.class); job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class); job.setMapOutputValueClass(CM_N_COVCell.class); job.setOutputKeyComparatorClass(TaggedFirstSecondIndexes.Comparator.class); job.setPartitionerClass(TaggedFirstSecondIndexes.TagPartitioner.class); //configure reducer job.setReducerClass(CMCOVMRReducer.class); //job.setReducerClass(PassThroughReducer.class); MatrixCharacteristics[] stats = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes, instructionsInMapper, null, null, cmNcomInstructions, resultIndexes, mapoutputIndexes, false).stats; //set up the number of reducers MRJobConfiguration.setNumReducers(job, mapoutputIndexes.size(), numReducers);//each output tag is a group // Print the complete instruction if (LOG.isTraceEnabled()) inst.printCompleteMRJobInstruction(stats); // By default, the job executes in "cluster" mode. // Determine if we can optimize and run it in "local" mode. MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length]; for (int i = 0; i < inputs.length; i++) { inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]); } //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); RunningJob runjob = JobClient.runJob(job); return new JobReturn(stats, outputInfos, runjob.isSuccessful()); }