Example usage for org.apache.hadoop.mapred JobConf setNumTasksToExecutePerJvm

List of usage examples for org.apache.hadoop.mapred JobConf setNumTasksToExecutePerJvm

Introduction

In this page you can find the example usage for org.apache.hadoop.mapred JobConf setNumTasksToExecutePerJvm.

Prototype

public void setNumTasksToExecutePerJvm(int numTasks) 

Source Link

Document

Sets the number of tasks that a spawned task JVM should run before it exits

Usage

From source file:org.apache.sysml.runtime.controlprogram.parfor.RemoteDPParForMR.java

License:Apache License

public static RemoteParForJobReturn runJob(long pfid, String itervar, String matrixvar, String program,
        String resultFile, MatrixObject input, PartitionFormat dpf, OutputInfo oi, boolean tSparseCol, //config params
        boolean enableCPCaching, int numReducers, int replication) //opt params
        throws DMLRuntimeException {
    RemoteParForJobReturn ret = null;//w  ww . j  a va 2s  .c  o m
    String jobname = "ParFor-DPEMR";
    long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0;

    JobConf job;
    job = new JobConf(RemoteDPParForMR.class);
    job.setJobName(jobname + pfid);

    //maintain dml script counters
    Statistics.incrementNoOfCompiledMRJobs();

    try {
        /////
        //configure the MR job

        //set arbitrary CP program blocks that will perform in the reducers
        MRJobConfiguration.setProgramBlocks(job, program);

        //enable/disable caching
        MRJobConfiguration.setParforCachingConfig(job, enableCPCaching);

        //setup input matrix
        Path path = new Path(input.getFileName());
        long rlen = input.getNumRows();
        long clen = input.getNumColumns();
        int brlen = (int) input.getNumRowsPerBlock();
        int bclen = (int) input.getNumColumnsPerBlock();
        MRJobConfiguration.setPartitioningInfo(job, rlen, clen, brlen, bclen, InputInfo.BinaryBlockInputInfo,
                oi, dpf._dpf, dpf._N, input.getFileName(), itervar, matrixvar, tSparseCol);
        job.setInputFormat(InputInfo.BinaryBlockInputInfo.inputFormatClass);
        FileInputFormat.setInputPaths(job, path);

        //set mapper and reducers classes
        job.setMapperClass(DataPartitionerRemoteMapper.class);
        job.setReducerClass(RemoteDPParWorkerReducer.class);

        //set output format
        job.setOutputFormat(SequenceFileOutputFormat.class);

        //set output path
        MapReduceTool.deleteFileIfExistOnHDFS(resultFile);
        FileOutputFormat.setOutputPath(job, new Path(resultFile));

        //set the output key, value schema

        //parfor partitioning outputs (intermediates)
        job.setMapOutputKeyClass(LongWritable.class);
        if (oi == OutputInfo.BinaryBlockOutputInfo)
            job.setMapOutputValueClass(PairWritableBlock.class);
        else if (oi == OutputInfo.BinaryCellOutputInfo)
            job.setMapOutputValueClass(PairWritableCell.class);
        else
            throw new DMLRuntimeException("Unsupported intermrediate output info: " + oi);
        //parfor exec output
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(Text.class);

        //////
        //set optimization parameters

        //set the number of mappers and reducers 
        job.setNumReduceTasks(numReducers);

        //disable automatic tasks timeouts and speculative task exec
        job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0);
        job.setMapSpeculativeExecution(false);

        //set up preferred custom serialization framework for binary block format
        if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
            MRJobConfiguration.addBinaryBlockSerializationFramework(job);

        //set up map/reduce memory configurations (if in AM context)
        DMLConfig config = ConfigurationManager.getDMLConfig();
        DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

        //set up custom map/reduce configurations 
        MRJobConfiguration.setupCustomMRConfigurations(job, config);

        //disable JVM reuse
        job.setNumTasksToExecutePerJvm(1); //-1 for unlimited 

        //set the replication factor for the results
        job.setInt(MRConfigurationNames.DFS_REPLICATION, replication);

        //set the max number of retries per map task
        //note: currently disabled to use cluster config
        //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, max_retry);

        //set unique working dir
        MRJobConfiguration.setUniqueWorkingDir(job);

        /////
        // execute the MR job         
        RunningJob runjob = JobClient.runJob(job);

        // Process different counters 
        Statistics.incrementNoOfExecutedMRJobs();
        Group pgroup = runjob.getCounters().getGroup(ParForProgramBlock.PARFOR_COUNTER_GROUP_NAME);
        int numTasks = (int) pgroup.getCounter(Stat.PARFOR_NUMTASKS.toString());
        int numIters = (int) pgroup.getCounter(Stat.PARFOR_NUMITERS.toString());
        if (DMLScript.STATISTICS && !InfrastructureAnalyzer.isLocalMode()) {
            Statistics.incrementJITCompileTime(pgroup.getCounter(Stat.PARFOR_JITCOMPILE.toString()));
            Statistics.incrementJVMgcCount(pgroup.getCounter(Stat.PARFOR_JVMGC_COUNT.toString()));
            Statistics.incrementJVMgcTime(pgroup.getCounter(Stat.PARFOR_JVMGC_TIME.toString()));
            Group cgroup = runjob.getCounters().getGroup(CacheableData.CACHING_COUNTER_GROUP_NAME.toString());
            CacheStatistics
                    .incrementMemHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_MEM.toString()));
            CacheStatistics.incrementFSBuffHits(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FSBUFF.toString()));
            CacheStatistics
                    .incrementFSHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FS.toString()));
            CacheStatistics.incrementHDFSHits(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_HDFS.toString()));
            CacheStatistics.incrementFSBuffWrites(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FSBUFF.toString()));
            CacheStatistics.incrementFSWrites(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FS.toString()));
            CacheStatistics.incrementHDFSWrites(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_HDFS.toString()));
            CacheStatistics
                    .incrementAcquireRTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQR.toString()));
            CacheStatistics
                    .incrementAcquireMTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQM.toString()));
            CacheStatistics
                    .incrementReleaseTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_RLS.toString()));
            CacheStatistics
                    .incrementExportTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_EXP.toString()));
        }

        // read all files of result variables and prepare for return
        LocalVariableMap[] results = readResultFile(job, resultFile);

        ret = new RemoteParForJobReturn(runjob.isSuccessful(), numTasks, numIters, results);
    } catch (Exception ex) {
        throw new DMLRuntimeException(ex);
    } finally {
        // remove created files 
        try {
            MapReduceTool.deleteFileIfExistOnHDFS(new Path(resultFile), job);
        } catch (IOException ex) {
            throw new DMLRuntimeException(ex);
        }
    }

    if (DMLScript.STATISTICS) {
        long t1 = System.nanoTime();
        Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0);
    }

    return ret;
}

From source file:org.apache.sysml.runtime.controlprogram.parfor.RemoteParForMR.java

License:Apache License

public static RemoteParForJobReturn runJob(long pfid, String program, String taskFile, String resultFile,
        MatrixObject colocatedDPMatrixObj, //inputs
        boolean enableCPCaching, int numMappers, int replication, int max_retry, long minMem, boolean jvmReuse) //opt params
        throws DMLRuntimeException {
    RemoteParForJobReturn ret = null;//from w ww .j av a2  s. c  o m
    String jobname = "ParFor-EMR";
    long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0;

    JobConf job;
    job = new JobConf(RemoteParForMR.class);
    job.setJobName(jobname + pfid);

    //maintain dml script counters
    Statistics.incrementNoOfCompiledMRJobs();

    try {
        /////
        //configure the MR job

        //set arbitrary CP program blocks that will perform in the mapper
        MRJobConfiguration.setProgramBlocks(job, program);

        //enable/disable caching
        MRJobConfiguration.setParforCachingConfig(job, enableCPCaching);

        //set mappers, reducers, combiners
        job.setMapperClass(RemoteParWorkerMapper.class); //map-only

        //set input format (one split per row, NLineInputFormat default N=1)
        if (ParForProgramBlock.ALLOW_DATA_COLOCATION && colocatedDPMatrixObj != null) {
            job.setInputFormat(RemoteParForColocatedNLineInputFormat.class);
            MRJobConfiguration.setPartitioningFormat(job, colocatedDPMatrixObj.getPartitionFormat());
            MatrixCharacteristics mc = colocatedDPMatrixObj.getMatrixCharacteristics();
            MRJobConfiguration.setPartitioningBlockNumRows(job, mc.getRowsPerBlock());
            MRJobConfiguration.setPartitioningBlockNumCols(job, mc.getColsPerBlock());
            MRJobConfiguration.setPartitioningFilename(job, colocatedDPMatrixObj.getFileName());
        } else //default case 
        {
            job.setInputFormat(NLineInputFormat.class);
        }

        //set the input path and output path 
        FileInputFormat.setInputPaths(job, new Path(taskFile));

        //set output format
        job.setOutputFormat(SequenceFileOutputFormat.class);

        //set output path
        MapReduceTool.deleteFileIfExistOnHDFS(resultFile);
        FileOutputFormat.setOutputPath(job, new Path(resultFile));

        //set the output key, value schema
        job.setMapOutputKeyClass(LongWritable.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(Text.class);

        //////
        //set optimization parameters

        //set the number of mappers and reducers 
        job.setNumMapTasks(numMappers); //numMappers
        job.setNumReduceTasks(0);
        //job.setInt("mapred.map.tasks.maximum", 1); //system property
        //job.setInt("mapred.tasktracker.tasks.maximum",1); //system property
        //job.setInt("mapred.jobtracker.maxtasks.per.job",1); //system property

        //set jvm memory size (if require)
        String memKey = MRConfigurationNames.MR_CHILD_JAVA_OPTS;
        if (minMem > 0 && minMem > InfrastructureAnalyzer.extractMaxMemoryOpt(job.get(memKey))) {
            InfrastructureAnalyzer.setMaxMemoryOpt(job, memKey, minMem);
            LOG.warn("Forcing '" + memKey + "' to -Xmx" + minMem / (1024 * 1024) + "M.");
        }

        //disable automatic tasks timeouts and speculative task exec
        job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0);
        job.setMapSpeculativeExecution(false);

        //set up map/reduce memory configurations (if in AM context)
        DMLConfig config = ConfigurationManager.getDMLConfig();
        DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

        //set up custom map/reduce configurations 
        MRJobConfiguration.setupCustomMRConfigurations(job, config);

        //enables the reuse of JVMs (multiple tasks per MR task)
        if (jvmReuse)
            job.setNumTasksToExecutePerJvm(-1); //unlimited

        //set sort io buffer (reduce unnecessary large io buffer, guaranteed memory consumption)
        job.setInt(MRConfigurationNames.MR_TASK_IO_SORT_MB, 8); //8MB

        //set the replication factor for the results
        job.setInt(MRConfigurationNames.DFS_REPLICATION, replication);

        //set the max number of retries per map task
        //  disabled job-level configuration to respect cluster configuration
        //  note: this refers to hadoop2, hence it never had effect on mr1
        //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, max_retry);

        //set unique working dir
        MRJobConfiguration.setUniqueWorkingDir(job);

        /////
        // execute the MR job         
        RunningJob runjob = JobClient.runJob(job);

        // Process different counters 
        Statistics.incrementNoOfExecutedMRJobs();
        Group pgroup = runjob.getCounters().getGroup(ParForProgramBlock.PARFOR_COUNTER_GROUP_NAME);
        int numTasks = (int) pgroup.getCounter(Stat.PARFOR_NUMTASKS.toString());
        int numIters = (int) pgroup.getCounter(Stat.PARFOR_NUMITERS.toString());
        if (DMLScript.STATISTICS && !InfrastructureAnalyzer.isLocalMode()) {
            Statistics.incrementJITCompileTime(pgroup.getCounter(Stat.PARFOR_JITCOMPILE.toString()));
            Statistics.incrementJVMgcCount(pgroup.getCounter(Stat.PARFOR_JVMGC_COUNT.toString()));
            Statistics.incrementJVMgcTime(pgroup.getCounter(Stat.PARFOR_JVMGC_TIME.toString()));
            Group cgroup = runjob.getCounters().getGroup(CacheableData.CACHING_COUNTER_GROUP_NAME.toString());
            CacheStatistics
                    .incrementMemHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_MEM.toString()));
            CacheStatistics.incrementFSBuffHits(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FSBUFF.toString()));
            CacheStatistics
                    .incrementFSHits((int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_FS.toString()));
            CacheStatistics.incrementHDFSHits(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_HITS_HDFS.toString()));
            CacheStatistics.incrementFSBuffWrites(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FSBUFF.toString()));
            CacheStatistics.incrementFSWrites(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_FS.toString()));
            CacheStatistics.incrementHDFSWrites(
                    (int) cgroup.getCounter(CacheStatistics.Stat.CACHE_WRITES_HDFS.toString()));
            CacheStatistics
                    .incrementAcquireRTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQR.toString()));
            CacheStatistics
                    .incrementAcquireMTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_ACQM.toString()));
            CacheStatistics
                    .incrementReleaseTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_RLS.toString()));
            CacheStatistics
                    .incrementExportTime(cgroup.getCounter(CacheStatistics.Stat.CACHE_TIME_EXP.toString()));
        }

        // read all files of result variables and prepare for return
        LocalVariableMap[] results = readResultFile(job, resultFile);

        ret = new RemoteParForJobReturn(runjob.isSuccessful(), numTasks, numIters, results);
    } catch (Exception ex) {
        throw new DMLRuntimeException(ex);
    } finally {
        // remove created files 
        try {
            MapReduceTool.deleteFileIfExistOnHDFS(new Path(taskFile), job);
            MapReduceTool.deleteFileIfExistOnHDFS(new Path(resultFile), job);
        } catch (IOException ex) {
            throw new DMLRuntimeException(ex);
        }
    }

    if (DMLScript.STATISTICS) {
        long t1 = System.nanoTime();
        Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0);
    }

    return ret;
}

From source file:org.apache.sysml.runtime.controlprogram.parfor.ResultMergeRemoteMR.java

License:Apache License

@SuppressWarnings({ "unused", "deprecation" })
protected void executeMerge(String fname, String fnameNew, String[] srcFnames, InputInfo ii, OutputInfo oi,
        long rlen, long clen, int brlen, int bclen) throws DMLRuntimeException {
    String jobname = "ParFor-RMMR";
    long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0;

    JobConf job = new JobConf(ResultMergeRemoteMR.class);
    job.setJobName(jobname + _pfid);/*from   ww w. j a v  a  2  s.co  m*/

    //maintain dml script counters
    Statistics.incrementNoOfCompiledMRJobs();

    //warning for textcell/binarycell without compare
    boolean withCompare = (fname != null);
    if ((oi == OutputInfo.TextCellOutputInfo || oi == OutputInfo.BinaryCellOutputInfo) && !withCompare
            && ResultMergeLocalFile.ALLOW_COPY_CELLFILES)
        LOG.warn("Result merge for " + OutputInfo.outputInfoToString(oi)
                + " without compare can be realized more efficiently with LOCAL_FILE than REMOTE_MR.");

    try {
        Path pathCompare = null;
        Path pathNew = new Path(fnameNew);

        /////
        //configure the MR job
        if (withCompare) {
            FileSystem fs = IOUtilFunctions.getFileSystem(pathNew, job);
            pathCompare = new Path(fname).makeQualified(fs);
            MRJobConfiguration.setResultMergeInfo(job, pathCompare.toString(), ii,
                    LocalFileUtils.getWorkingDir(LocalFileUtils.CATEGORY_RESULTMERGE), rlen, clen, brlen,
                    bclen);
        } else
            MRJobConfiguration.setResultMergeInfo(job, "null", ii,
                    LocalFileUtils.getWorkingDir(LocalFileUtils.CATEGORY_RESULTMERGE), rlen, clen, bclen,
                    bclen);

        //set mappers, reducers, combiners
        job.setMapperClass(ResultMergeRemoteMapper.class);
        job.setReducerClass(ResultMergeRemoteReducer.class);

        if (oi == OutputInfo.TextCellOutputInfo) {
            job.setMapOutputKeyClass(MatrixIndexes.class);
            job.setMapOutputValueClass(TaggedMatrixCell.class);
            job.setOutputKeyClass(NullWritable.class);
            job.setOutputValueClass(Text.class);
        } else if (oi == OutputInfo.BinaryCellOutputInfo) {
            job.setMapOutputKeyClass(MatrixIndexes.class);
            job.setMapOutputValueClass(TaggedMatrixCell.class);
            job.setOutputKeyClass(MatrixIndexes.class);
            job.setOutputValueClass(MatrixCell.class);
        } else if (oi == OutputInfo.BinaryBlockOutputInfo) {
            //setup partitioning, grouping, sorting for composite key (old API)
            job.setPartitionerClass(ResultMergeRemotePartitioning.class); //partitioning
            job.setOutputValueGroupingComparator(ResultMergeRemoteGrouping.class); //grouping
            job.setOutputKeyComparatorClass(ResultMergeRemoteSorting.class); //sorting

            job.setMapOutputKeyClass(ResultMergeTaggedMatrixIndexes.class);
            job.setMapOutputValueClass(TaggedMatrixBlock.class);
            job.setOutputKeyClass(MatrixIndexes.class);
            job.setOutputValueClass(MatrixBlock.class);
        }

        //set input format 
        job.setInputFormat(ii.inputFormatClass);

        //set the input path 
        Path[] paths = null;
        if (withCompare) {
            paths = new Path[srcFnames.length + 1];
            paths[0] = pathCompare;
            for (int i = 1; i < paths.length; i++)
                paths[i] = new Path(srcFnames[i - 1]);
        } else {
            paths = new Path[srcFnames.length];
            for (int i = 0; i < paths.length; i++)
                paths[i] = new Path(srcFnames[i]);
        }
        FileInputFormat.setInputPaths(job, paths);

        //set output format
        job.setOutputFormat(oi.outputFormatClass);

        //set output path
        MapReduceTool.deleteFileIfExistOnHDFS(fnameNew);
        FileOutputFormat.setOutputPath(job, pathNew);

        //////
        //set optimization parameters

        //set the number of mappers and reducers 
        //job.setNumMapTasks( _numMappers ); //use default num mappers
        long reducerGroups = _numReducers;
        if (oi == OutputInfo.BinaryBlockOutputInfo)
            reducerGroups = Math.max(rlen / brlen, 1) * Math.max(clen / bclen, 1);
        else //textcell/binarycell
            reducerGroups = Math.max((rlen * clen) / StagingFileUtils.CELL_BUFFER_SIZE, 1);
        job.setNumReduceTasks((int) Math.min(_numReducers, reducerGroups));

        //disable automatic tasks timeouts and speculative task exec
        job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0);
        job.setMapSpeculativeExecution(false);

        //set up preferred custom serialization framework for binary block format
        if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
            MRJobConfiguration.addBinaryBlockSerializationFramework(job);

        //set up custom map/reduce configurations 
        DMLConfig config = ConfigurationManager.getDMLConfig();
        MRJobConfiguration.setupCustomMRConfigurations(job, config);

        //enables the reuse of JVMs (multiple tasks per MR task)
        if (_jvmReuse)
            job.setNumTasksToExecutePerJvm(-1); //unlimited

        //enables compression - not conclusive for different codecs (empirically good compression ratio, but significantly slower)
        //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS, "true");
        //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS_CODEC, "org.apache.hadoop.io.compress.GzipCodec");

        //set the replication factor for the results
        job.setInt(MRConfigurationNames.DFS_REPLICATION, _replication);

        //set the max number of retries per map task
        //  disabled job-level configuration to respect cluster configuration
        //  note: this refers to hadoop2, hence it never had effect on mr1
        //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, _max_retry);

        //set unique working dir
        MRJobConfiguration.setUniqueWorkingDir(job);

        /////
        // execute the MR job   

        JobClient.runJob(job);

        //maintain dml script counters
        Statistics.incrementNoOfExecutedMRJobs();
    } catch (Exception ex) {
        throw new DMLRuntimeException(ex);
    }

    if (DMLScript.STATISTICS) {
        long t1 = System.nanoTime();
        Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0);
    }
}

From source file:org.apache.sysml.runtime.matrix.GMR.java

License:Apache License

/**
 * Execute job.//from w  ww .  ja v a 2 s  .c o  m
 * 
 * @param inst MR job instruction
 * @param inputs input matrices, the inputs are indexed by 0, 1, 2, .. based on the position in this string
 * @param inputInfos the input format information for the input matrices
 * @param rlens array of number of rows
 * @param clens array of number of columns
 * @param brlens array of number of rows in block
 * @param bclens array of number of columns in block
 * @param partitioned boolean array of partitioned status
 * @param pformats array of data partition formats
 * @param psizes does nothing
 * @param recordReaderInstruction record reader instruction
 * @param instructionsInMapper in Mapper, the set of unary operations that need to be performed on each input matrix
 * @param aggInstructionsInReducer in Reducer, right after sorting, the set of aggreagte operations
 * that need to be performed on each input matrix
 * @param otherInstructionsInReducer the mixed operations that need to be performed on matrices after the aggregate operations
 * @param numReducers the number of reducers
 * @param replication the replication factor for the output
 * @param jvmReuse if true, reuse JVM
 * @param resultIndexes the indexes of the result matrices that needs to be outputted
 * @param dimsUnknownFilePrefix file path prefix when dimensions unknown
 * @param outputs the names for the output directories, one for each result index
 * @param outputInfos output format information for the output matrices
 * @return job return object
 * @throws Exception if Exception occurs
 */
@SuppressWarnings({ "unchecked", "rawtypes" })
public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, boolean[] partitioned, PDataPartitionFormat[] pformats,
        int[] psizes, String recordReaderInstruction, String instructionsInMapper,
        String aggInstructionsInReducer, String otherInstructionsInReducer, int numReducers, int replication,
        boolean jvmReuse, byte[] resultIndexes, String dimsUnknownFilePrefix, String[] outputs,
        OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(GMR.class);
    job.setJobName("G-MR");

    boolean inBlockRepresentation = MRJobConfiguration.deriveRepresentation(inputInfos);

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, inBlockRepresentation);

    //added for handling recordreader instruction
    String[] realinputs = inputs;
    InputInfo[] realinputInfos = inputInfos;
    long[] realrlens = rlens;
    long[] realclens = clens;
    int[] realbrlens = brlens;
    int[] realbclens = bclens;
    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;

    if (recordReaderInstruction != null && !recordReaderInstruction.isEmpty()) {
        assert (inputs.length <= 2);
        PickByCountInstruction ins = (PickByCountInstruction) PickByCountInstruction
                .parseInstruction(recordReaderInstruction);
        PickFromCompactInputFormat.setKeyValueClasses(job,
                (Class<? extends WritableComparable>) inputInfos[ins.input1].inputKeyClass,
                inputInfos[ins.input1].inputValueClass);
        job.setInputFormat(PickFromCompactInputFormat.class);
        PickFromCompactInputFormat.setZeroValues(job,
                (MetaDataNumItemsByEachReducer) inputInfos[ins.input1].metadata);

        if (ins.isValuePick) {
            double[] probs = MapReduceTool.readColumnVectorFromHDFS(inputs[ins.input2], inputInfos[ins.input2],
                    rlens[ins.input2], clens[ins.input2], brlens[ins.input2], bclens[ins.input2]);
            PickFromCompactInputFormat.setPickRecordsInEachPartFile(job,
                    (MetaDataNumItemsByEachReducer) inputInfos[ins.input1].metadata, probs);

            realinputs = new String[inputs.length - 1];
            realinputInfos = new InputInfo[inputs.length - 1];
            realrlens = new long[inputs.length - 1];
            realclens = new long[inputs.length - 1];
            realbrlens = new int[inputs.length - 1];
            realbclens = new int[inputs.length - 1];
            realIndexes = new byte[inputs.length - 1];
            byte realIndex = 0;
            for (byte i = 0; i < inputs.length; i++) {
                if (i == ins.input2)
                    continue;
                realinputs[realIndex] = inputs[i];
                realinputInfos[realIndex] = inputInfos[i];
                if (i == ins.input1) {
                    realrlens[realIndex] = rlens[ins.input2];
                    realclens[realIndex] = clens[ins.input2];
                    realbrlens[realIndex] = 1;
                    realbclens[realIndex] = 1;
                    realIndexes[realIndex] = ins.output;
                } else {
                    realrlens[realIndex] = rlens[i];
                    realclens[realIndex] = clens[i];
                    realbrlens[realIndex] = brlens[i];
                    realbclens[realIndex] = bclens[i];
                    realIndexes[realIndex] = i;
                }
                realIndex++;
            }

        } else {
            //PickFromCompactInputFormat.setPickRecordsInEachPartFile(job, (NumItemsByEachReducerMetaData) inputInfos[ins.input1].metadata, ins.cst, 1-ins.cst);
            PickFromCompactInputFormat.setRangePickPartFiles(job,
                    (MetaDataNumItemsByEachReducer) inputInfos[ins.input1].metadata, ins.cst, 1 - ins.cst);
            realrlens[ins.input1] = UtilFunctions.getLengthForInterQuantile(
                    (MetaDataNumItemsByEachReducer) inputInfos[ins.input1].metadata, ins.cst);
            realclens[ins.input1] = clens[ins.input1];
            realbrlens[ins.input1] = 1;
            realbclens[ins.input1] = 1;
            realIndexes[ins.input1] = ins.output;
        }
    }

    boolean resetDistCache = setupDistributedCache(job, instructionsInMapper, otherInstructionsInReducer,
            realinputs, realrlens, realclens);

    //set up the input files and their format information
    boolean[] distCacheOnly = getDistCacheOnlyInputs(realIndexes, recordReaderInstruction, instructionsInMapper,
            aggInstructionsInReducer, otherInstructionsInReducer);
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens,
            distCacheOnly, true, inBlockRepresentation ? ConvertTarget.BLOCK : ConvertTarget.CELL);
    MRJobConfiguration.setInputPartitioningInfo(job, pformats);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens);
    MRJobConfiguration.setDimsUnknownFilePrefix(job, dimsUnknownFilePrefix);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer);

    //set up the instructions that will happen in the reducer, after the aggregation instructions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt(MRConfigurationNames.DFS_REPLICATION, replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //set up map/reduce memory configurations (if in AM context)
    DMLConfig config = ConfigurationManager.getDMLConfig();
    DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

    //set up custom map/reduce configurations 
    MRJobConfiguration.setupCustomMRConfigurations(job, config);

    //set up jvm reuse (incl. reuse of loaded dist cache matrices)
    if (jvmReuse)
        job.setNumTasksToExecutePerJvm(-1);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, otherInstructionsInReducer, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, null, otherInstructionsInReducer, resultIndexes,
            mapoutputIndexes, false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    // Update resultDimsUnknown based on computed "stats"
    byte[] dimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            dimsUnknown[i] = (byte) 1;
        } else {
            dimsUnknown[i] = (byte) 0;
        }
    }
    //MRJobConfiguration.updateResultDimsUnknown(job,resultDimsUnknown);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, dimsUnknown, outputs, outputInfos,
            inBlockRepresentation, true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(GMRMapper.class);
    if (numReducers == 0) {
        job.setMapOutputKeyClass(Writable.class);
        job.setMapOutputValueClass(Writable.class);
    } else {
        job.setMapOutputKeyClass(MatrixIndexes.class);
        if (inBlockRepresentation)
            job.setMapOutputValueClass(TaggedMatrixBlock.class);
        else
            job.setMapOutputValueClass(TaggedMatrixPackedCell.class);
    }

    //set up combiner
    if (numReducers != 0 && aggInstructionsInReducer != null && !aggInstructionsInReducer.isEmpty()) {
        job.setCombinerClass(GMRCombiner.class);
    }

    //configure reducer
    job.setReducerClass(GMRReducer.class);
    //job.setReducerClass(PassThroughReducer.class);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++)
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));

    //cleanups
    String dir = dimsUnknownFilePrefix + "/" + runjob.getID().toString() + "_dimsFile";
    stats = MapReduceTool.processDimsFiles(dir, stats);
    MapReduceTool.deleteFileIfExistOnHDFS(dir);
    if (resetDistCache)
        MRBaseForCommonInstructions.resetDistCache();

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:org.apache.sysml.runtime.matrix.ReblockMR.java

License:Apache License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, long[] nnz, String instructionsInMapper,
        String reblockInstructions, String otherInstructionsInReducer, int numReducers, int replication,
        boolean jvmReuse, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(ReblockMR.class);
    job.setJobName("Reblock-MR");

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;/*from  w  w w  .ja v a 2  s.  c om*/

    //set up the input files and their format information
    //(internally used input converters: text2bc for text, identity for binary inputs)
    MRJobConfiguration.setUpMultipleInputsReblock(job, realIndexes, inputs, inputInfos, brlens, bclens);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens, nnz);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setReblockInstructions(job, reblockInstructions);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt(MRConfigurationNames.DFS_REPLICATION, replication);

    //disable automatic tasks timeouts and speculative task exec
    job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0);
    job.setMapSpeculativeExecution(false);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //set up custom map/reduce configurations 
    DMLConfig config = ConfigurationManager.getDMLConfig();
    MRJobConfiguration.setupCustomMRConfigurations(job, config);

    //enable jvm reuse (based on SystemML configuration)
    if (jvmReuse)
        job.setNumTasksToExecutePerJvm(-1);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, reblockInstructions, null, otherInstructionsInReducer, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, reblockInstructions, null, null, otherInstructionsInReducer, resultIndexes,
            mapoutputIndexes, false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers (according to output size)
    int numRed = determineNumReducers(rlens, clens, nnz, config.getIntValue(DMLConfig.NUM_REDUCERS),
            ret.numReducerGroups);
    job.setNumReduceTasks(numRed);

    //setup in-memory reduce buffers budget (reblock reducer dont need much memory)
    //job.set(MRConfigurationNames.MR_REDUCE_INPUT_BUFFER_PERCENT, "0.70");

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    // Update resultDimsUnknown based on computed "stats"
    byte[] resultDimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            resultDimsUnknown[i] = (byte) 1;
        } else {
            resultDimsUnknown[i] = (byte) 0;
        }
    }

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true,
            true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(ReblockMapper.class);
    job.setMapOutputKeyClass(MatrixIndexes.class); //represent key offsets for block
    job.setMapOutputValueClass(TaggedAdaptivePartialBlock.class); //binary cell/block

    //configure reducer
    job.setReducerClass(ReblockReducer.class);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.

    // at this point, both reblock_binary and reblock_text are similar
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
        //   System.out.println("result #"+resultIndexes[i]+" ===>\n"+stats[i]);
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:org.commoncrawl.mapred.segmenter.Segmenter.java

License:Open Source License

public static boolean generateCrawlSegments(long timestamp, String[] crawlerArray, Path bundleInputPath,
        Path finalOutputPath) {/*from   w ww  .ja  va2s .c  om*/
    try {

        FileSystem fs = CrawlEnvironment.getDefaultFileSystem();
        Configuration conf = CrawlEnvironment.getHadoopConfig();

        final Path tempOutputDir = new Path(
                CrawlEnvironment.getHadoopConfig().get("mapred.temp.dir", ".") + System.currentTimeMillis());

        JobConf job = new JobConf(conf);

        // compute crawlers string ... 
        String crawlers = new String();

        for (int i = 0; i < crawlerArray.length; ++i) {
            if (i != 0)
                crawlers += ",";
            crawlers += crawlerArray[i];
        }

        LOG.info("Segment Generator:  crawlers:" + crawlers);

        job.set(CrawlEnvironment.PROPERTY_CRAWLERS, crawlers);
        LOG.info("Crawler Count:" + crawlerArray.length);
        job.setInt(CrawlEnvironment.PROPERTY_NUM_CRAWLERS, crawlerArray.length);
        LOG.info("Num Buckets Per Crawler:" + NUM_BUCKETS_PER_CRAWLER);
        job.setInt(CrawlEnvironment.PROPERTY_NUM_BUCKETS_PER_CRAWLER, NUM_BUCKETS_PER_CRAWLER);
        job.setJobName("Generate Segments");

        for (FileStatus candidate : fs.globStatus(new Path(bundleInputPath, "part-*"))) {
            LOG.info("Adding File:" + candidate.getPath());
            job.addInputPath(candidate.getPath());
        }

        // multi file merger 
        job.setInputFormat(SequenceFileInputFormat.class);
        job.setMapOutputKeyClass(SegmentGeneratorBundleKey.class);
        job.setMapOutputValueClass(SegmentGeneratorItemBundle.class);
        job.setMapperClass(IdentityMapper.class);
        job.setReducerClass(SegmenterReducer.class);
        job.setPartitionerClass(BundleKeyPartitioner.class);
        job.setOutputKeyComparatorClass(BundleKeyComparator.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(NullWritable.class);
        job.setOutputFormat(SequenceFileOutputFormat.class);
        job.setOutputPath(tempOutputDir);
        job.setNumTasksToExecutePerJvm(1000);
        job.setNumReduceTasks(crawlerArray.length * NUM_BUCKETS_PER_CRAWLER);

        LOG.info("Running  Segmenter OutputDir:" + tempOutputDir);
        JobClient.runJob(job);
        LOG.info("Finished Running Segmenter OutputDir:" + tempOutputDir + " Final Output Dir:"
                + finalOutputPath);

        fs.rename(tempOutputDir, finalOutputPath);

        return true;
    } catch (IOException e) {
        LOG.error(CCStringUtils.stringifyException(e));
        return false;
    }
}