Example usage for org.apache.hadoop.mapred JobConf setOutputKeyComparatorClass

List of usage examples for org.apache.hadoop.mapred JobConf setOutputKeyComparatorClass

Introduction

In this page you can find the example usage for org.apache.hadoop.mapred JobConf setOutputKeyComparatorClass.

Prototype

public void setOutputKeyComparatorClass(Class<? extends RawComparator> theClass) 

Source Link

Document

Set the RawComparator comparator used to compare keys.

Usage

From source file:com.ibm.bi.dml.runtime.matrix.MMRJMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String instructionsInMapper, String aggInstructionsInReducer,
        String aggBinInstrctions, String otherInstructionsInReducer, int numReducers, int replication,
        byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos) throws Exception {
    JobConf job = new JobConf(MMRJMR.class);
    job.setJobName("MMRJ-MR");

    if (numReducers <= 0)
        throw new Exception("MMRJ-MR has to have at least one reduce task!");

    // TODO: check w/ yuanyuan. This job always runs in blocked mode, and hence derivation is not necessary.
    boolean inBlockRepresentation = MRJobConfiguration.deriveRepresentation(inputInfos);

    //whether use block representation or cell representation
    MRJobConfiguration.setMatrixValueClass(job, inBlockRepresentation);

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;/*from  w  w w.  j a  v a 2 s . c  o  m*/

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, true,
            inBlockRepresentation ? ConvertTarget.BLOCK : ConvertTarget.CELL);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    //set up unary instructions that will perform in the mapper
    MRJobConfiguration.setInstructionsInMapper(job, instructionsInMapper);

    //set up the aggregate instructions that will happen in the combiner and reducer
    MRJobConfiguration.setAggregateInstructions(job, aggInstructionsInReducer);

    //set up the aggregate binary operation for the mmcj job
    MRJobConfiguration.setAggregateBinaryInstructions(job, aggBinInstrctions);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up map/reduce memory configurations (if in AM context)
    DMLConfig config = ConfigurationManager.getConfig();
    DMLAppMasterUtils.setupMRJobRemoteMaxMemory(job, config);

    // byte[] resultIndexes=new byte[]{AggregateBinaryInstruction.parseMRInstruction(aggBinInstrction).output};

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, aggBinInstrctions, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes,
            instructionsInMapper, aggInstructionsInReducer, aggBinInstrctions, otherInstructionsInReducer,
            resultIndexes, mapoutputIndexes, false);

    MatrixCharacteristics[] stats = ret.stats;

    //set up the number of reducers
    MRJobConfiguration.setNumReducers(job, ret.numReducerGroups, numReducers);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    byte[] dimsUnknown = new byte[resultIndexes.length];
    for (int i = 0; i < resultIndexes.length; i++) {
        if (stats[i].getRows() == -1 || stats[i].getCols() == -1) {
            dimsUnknown[i] = (byte) 1;
        } else {
            dimsUnknown[i] = (byte) 0;
        }
    }

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, dimsUnknown, outputs, outputInfos,
            inBlockRepresentation);

    // configure mapper
    job.setMapperClass(MMRJMRMapper.class);
    job.setMapOutputKeyClass(TripleIndexes.class);
    if (inBlockRepresentation)
        job.setMapOutputValueClass(TaggedMatrixBlock.class);
    else
        job.setMapOutputValueClass(TaggedMatrixCell.class);
    job.setOutputKeyComparatorClass(TripleIndexes.Comparator.class);
    job.setPartitionerClass(TripleIndexes.FirstTwoIndexesPartitioner.class);

    //configure combiner
    //TODO: cannot set up combiner, because it will destroy the stable numerical algorithms 
    // for sum or for central moments 

    //   if(aggInstructionsInReducer!=null && !aggInstructionsInReducer.isEmpty())
    //      job.setCombinerClass(MMCJMRCombiner.class);

    //configure reducer
    job.setReducerClass(MMRJMRReducer.class);

    // By default, the job executes in "cluster" mode.
    // Determine if we can optimize and run it in "local" mode.
    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.matrix.WriteCSVMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String csvWriteInstructions, int numReducers, int replication,
        byte[] resultIndexes, String[] outputs) throws Exception {
    JobConf job = new JobConf(WriteCSVMR.class);
    job.setJobName("WriteCSV-MR");

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;//from w  w  w.  j  a  v  a2s.c om

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, true,
            ConvertTarget.CSVWRITE);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    MRJobConfiguration.setCSVWriteInstructions(job, csvWriteInstructions);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    long maxRlen = 0;
    for (long rlen : rlens)
        if (rlen > maxRlen)
            maxRlen = rlen;

    //set up the number of reducers (according to output size)
    int numRed = determineNumReducers(rlens, clens,
            ConfigurationManager.getConfig().getIntValue(DMLConfig.NUM_REDUCERS), (int) maxRlen);
    job.setNumReduceTasks(numRed);

    byte[] resultDimsUnknown = new byte[resultIndexes.length];
    MatrixCharacteristics[] stats = new MatrixCharacteristics[resultIndexes.length];
    OutputInfo[] outputInfos = new OutputInfo[outputs.length];
    HashMap<Byte, Integer> indexmap = new HashMap<Byte, Integer>();
    for (int i = 0; i < stats.length; i++) {
        indexmap.put(resultIndexes[i], i);
        resultDimsUnknown[i] = (byte) 0;
        stats[i] = new MatrixCharacteristics();
        outputInfos[i] = OutputInfo.CSVOutputInfo;
    }
    CSVWriteInstruction[] ins = MRInstructionParser.parseCSVWriteInstructions(csvWriteInstructions);
    for (CSVWriteInstruction in : ins)
        stats[indexmap.get(in.output)].set(rlens[in.input], clens[in.input], -1, -1);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    //set up what matrices are needed to pass from the mapper to reducer
    MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, "", "", csvWriteInstructions,
            resultIndexes);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true,
            true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(CSVWriteMapper.class);
    job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
    job.setMapOutputValueClass(MatrixBlock.class);

    //configure reducer
    job.setReducerClass(CSVWriteReducer.class);
    job.setOutputKeyComparatorClass(TaggedFirstSecondIndexes.Comparator.class);
    job.setPartitionerClass(TaggedFirstSecondIndexes.FirstIndexRangePartitioner.class);
    //job.setOutputFormat(UnPaddedOutputFormat.class);

    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.jaql.io.hbase.TableOutputConfigurator.java

License:Apache License

public void setParallel(JobConf conf) throws Exception {
    conf.set(TableOutputFormat.OUTPUT_TABLE, location);
    conf.setOutputKeyClass(JsonHolderDefault.class);
    conf.setOutputValueClass(JsonHolderDefault.class);
    HadoopSerializationDefault.register(conf);
    conf.setOutputKeyComparatorClass(DefaultJsonComparator.class);
}

From source file:com.manning.hip.ch4.joins.improved.impl.OptimizedDataJoinJob.java

License:Apache License

public static JobConf createDataJoinJob(String args[]) throws IOException {

    String inputDir = args[0];/* w  w  w  . j  a  v  a  2  s. co m*/
    String outputDir = args[1];
    Class inputFormat = SequenceFileInputFormat.class;
    if (args[2].compareToIgnoreCase("text") != 0) {
        System.out.println("Using SequenceFileInputFormat: " + args[2]);
    } else {
        System.out.println("Using TextInputFormat: " + args[2]);
        inputFormat = TextInputFormat.class;
    }
    int numOfReducers = Integer.parseInt(args[3]);
    Class mapper = getClassByName(args[4]);
    Class reducer = getClassByName(args[5]);
    Class mapoutputValueClass = getClassByName(args[6]);
    Class outputFormat = TextOutputFormat.class;
    Class outputValueClass = Text.class;
    if (args[7].compareToIgnoreCase("text") != 0) {
        System.out.println("Using SequenceFileOutputFormat: " + args[7]);
        outputFormat = SequenceFileOutputFormat.class;
        outputValueClass = getClassByName(args[7]);
    } else {
        System.out.println("Using TextOutputFormat: " + args[7]);
    }
    long maxNumOfValuesPerGroup = 100;
    String jobName = "";
    if (args.length > 8) {
        maxNumOfValuesPerGroup = Long.parseLong(args[8]);
    }
    if (args.length > 9) {
        jobName = args[9];
    }
    Configuration defaults = new Configuration();
    JobConf job = new JobConf(defaults, OptimizedDataJoinJob.class);
    job.setJobName("DataJoinJob: " + jobName);

    FileSystem fs = FileSystem.get(defaults);
    fs.delete(new Path(outputDir));
    FileInputFormat.setInputPaths(job, inputDir);

    job.setInputFormat(inputFormat);

    job.setMapperClass(mapper);
    FileOutputFormat.setOutputPath(job, new Path(outputDir));
    job.setOutputFormat(outputFormat);
    SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.BLOCK);
    job.setMapOutputKeyClass(CompositeKey.class);
    job.setMapOutputValueClass(mapoutputValueClass);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(outputValueClass);
    job.setReducerClass(reducer);

    job.setPartitionerClass(CompositeKeyPartitioner.class);
    job.setOutputKeyComparatorClass(CompositeKeyComparator.class);
    job.setOutputValueGroupingComparator(CompositeKeyOnlyComparator.class);

    job.setNumMapTasks(1);
    job.setNumReduceTasks(numOfReducers);
    job.setLong("datajoin.maxNumOfValuesPerGroup", maxNumOfValuesPerGroup);
    return job;
}

From source file:com.TCG.Nutch_DNS.Generator.java

License:Apache License

/**
 * Generate fetchlists in one or more segments. Whether to filter URLs or not
 * is read from the crawl.generate.filter property in the configuration files.
 * If the property is not found, the URLs are filtered. Same for the
 * normalisation./*  www . j a  va2s  .c  o  m*/
 * 
 * @param dbDir
 *          Crawl database directory
 * @param segments
 *          Segments directory
 * @param numLists
 *          Number of reduce tasks
 * @param topN
 *          Number of top URLs to be selected
 * @param curTime
 *          Current time in milliseconds
 * 
 * @return Path to generated segment or null if no entries were selected
 * 
 * @throws IOException
 *           When an I/O error occurs
 */
public Path[] generate(Path dbDir, Path segments, int numLists, long topN, long curTime, boolean filter,
        boolean norm, boolean force, int maxNumSegments) throws IOException {

    Path tempDir = new Path(
            getConf().get("mapred.temp.dir", ".") + "/generate-temp-" + UUID.randomUUID().toString());

    Path lock = new Path(dbDir, CrawlDb.LOCK_NAME);
    FileSystem fs = FileSystem.get(getConf());
    LockUtil.createLockFile(fs, lock, force);

    SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
    long start = System.currentTimeMillis();
    LOG.info("Generator: starting at " + sdf.format(start));
    LOG.info("Generator: Selecting best-scoring urls due for fetch.");
    LOG.info("Generator: filtering: " + filter);
    LOG.info("Generator: normalizing: " + norm);
    if (topN != Long.MAX_VALUE) {
        LOG.info("Generator: topN: " + topN);
    }

    // map to inverted subset due for fetch, sort by score
    JobConf job = new NutchJob(getConf());
    job.setJobName("generate: select from " + dbDir);

    if (numLists == -1) { // for politeness make
        numLists = job.getNumMapTasks(); // a partition per fetch task
    }
    if ("local".equals(job.get("mapred.job.tracker")) && numLists != 1) {
        // override
        LOG.info("Generator: jobtracker is 'local', generating exactly one partition.");
        numLists = 1;
    }
    job.setLong(GENERATOR_CUR_TIME, curTime);
    // record real generation time
    long generateTime = System.currentTimeMillis();
    job.setLong(Nutch.GENERATE_TIME_KEY, generateTime);
    job.setLong(GENERATOR_TOP_N, topN);
    job.setBoolean(GENERATOR_FILTER, filter);
    job.setBoolean(GENERATOR_NORMALISE, norm);
    job.setInt(GENERATOR_MAX_NUM_SEGMENTS, maxNumSegments);

    FileInputFormat.addInputPath(job, new Path(dbDir, CrawlDb.CURRENT_NAME));
    job.setInputFormat(SequenceFileInputFormat.class);

    job.setMapperClass(Selector.class);
    job.setPartitionerClass(Selector.class);
    job.setReducerClass(Selector.class);

    FileOutputFormat.setOutputPath(job, tempDir);
    job.setOutputFormat(SequenceFileOutputFormat.class);
    job.setOutputKeyClass(FloatWritable.class);
    job.setOutputKeyComparatorClass(DecreasingFloatComparator.class);
    job.setOutputValueClass(SelectorEntry.class);
    job.setOutputFormat(GeneratorOutputFormat.class);

    try {
        JobClient.runJob(job);
    } catch (IOException e) {
        LockUtil.removeLockFile(fs, lock);
        fs.delete(tempDir, true);
        throw e;
    }

    // read the subdirectories generated in the temp
    // output and turn them into segments
    List<Path> generatedSegments = new ArrayList<Path>();

    FileStatus[] status = fs.listStatus(tempDir);
    try {
        for (FileStatus stat : status) {
            Path subfetchlist = stat.getPath();
            if (!subfetchlist.getName().startsWith("fetchlist-"))
                continue;
            // start a new partition job for this segment
            Path newSeg = partitionSegment(fs, segments, subfetchlist, numLists);
            generatedSegments.add(newSeg);
        }
    } catch (Exception e) {
        LOG.warn("Generator: exception while partitioning segments, exiting ...");
        fs.delete(tempDir, true);
        return null;
    }

    if (generatedSegments.size() == 0) {
        LOG.warn("Generator: 0 records selected for fetching, exiting ...");
        LockUtil.removeLockFile(fs, lock);
        fs.delete(tempDir, true);
        return null;
    }

    if (getConf().getBoolean(GENERATE_UPDATE_CRAWLDB, false)) {
        // update the db from tempDir
        Path tempDir2 = new Path(
                getConf().get("mapred.temp.dir", ".") + "/generate-temp-" + UUID.randomUUID().toString());

        job = new NutchJob(getConf());
        job.setJobName("generate: updatedb " + dbDir);
        job.setLong(Nutch.GENERATE_TIME_KEY, generateTime);
        for (Path segmpaths : generatedSegments) {
            Path subGenDir = new Path(segmpaths, CrawlDatum.GENERATE_DIR_NAME);
            FileInputFormat.addInputPath(job, subGenDir);
        }
        FileInputFormat.addInputPath(job, new Path(dbDir, CrawlDb.CURRENT_NAME));
        job.setInputFormat(SequenceFileInputFormat.class);
        job.setMapperClass(CrawlDbUpdater.class);
        job.setReducerClass(CrawlDbUpdater.class);
        job.setOutputFormat(MapFileOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(CrawlDatum.class);
        FileOutputFormat.setOutputPath(job, tempDir2);
        try {
            JobClient.runJob(job);
            CrawlDb.install(job, dbDir);
        } catch (IOException e) {
            LockUtil.removeLockFile(fs, lock);
            fs.delete(tempDir, true);
            fs.delete(tempDir2, true);
            throw e;
        }
        fs.delete(tempDir2, true);
    }

    LockUtil.removeLockFile(fs, lock);
    fs.delete(tempDir, true);

    long end = System.currentTimeMillis();
    LOG.info("Generator: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end));

    Path[] patharray = new Path[generatedSegments.size()];
    return generatedSegments.toArray(patharray);
}

From source file:com.trace.hadoop.examples.Grep.java

License:Apache License

public int run(String[] args) throws Exception {
    if (args.length < 3) {
        System.out.println("Grep <inDir> <outDir> <regex> [<group>]");
        ToolRunner.printGenericCommandUsage(System.out);
        return -1;
    }// www.  j  av  a 2 s  . co m

    Path tempDir = new Path("grep-temp-" + Integer.toString(new Random().nextInt(Integer.MAX_VALUE)));

    JobConf grepJob = new JobConf(getConf(), Grep.class);

    try {

        grepJob.setJobName("grep-search");

        FileInputFormat.setInputPaths(grepJob, args[0]);

        grepJob.setMapperClass(RegexMapper.class);
        grepJob.set("mapred.mapper.regex", args[2]);
        if (args.length == 4)
            grepJob.set("mapred.mapper.regex.group", args[3]);

        grepJob.setCombinerClass(LongSumReducer.class);
        grepJob.setReducerClass(LongSumReducer.class);

        FileOutputFormat.setOutputPath(grepJob, tempDir);
        grepJob.setOutputFormat(SequenceFileOutputFormat.class);
        grepJob.setOutputKeyClass(Text.class);
        grepJob.setOutputValueClass(LongWritable.class);

        JobClient.runJob(grepJob);

        JobConf sortJob = new JobConf(getConf(), Grep.class);
        sortJob.setJobName("grep-sort");

        FileInputFormat.setInputPaths(sortJob, tempDir);
        sortJob.setInputFormat(SequenceFileInputFormat.class);

        sortJob.setMapperClass(InverseMapper.class);

        sortJob.setNumReduceTasks(1); // write a single file
        FileOutputFormat.setOutputPath(sortJob, new Path(args[1]));
        sortJob.setOutputKeyComparatorClass // sort by decreasing freq
        (LongWritable.DecreasingComparator.class);

        JobClient.runJob(sortJob);
    } finally {
        FileSystem.get(grepJob).delete(tempDir, true);
    }
    return 0;
}

From source file:crunch.MaxTemperature.java

License:Apache License

@Override
    public int run(String[] args) throws IOException {
        JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
        if (conf == null) {
            return -1;
        }/*w  ww.ja  v  a 2  s.c  om*/

        conf.setMapperClass(MaxTemperatureMapper.class);
        /*[*/conf.setPartitionerClass(FirstPartitioner.class);
        /*]*/
        /*[*/conf.setOutputKeyComparatorClass(KeyComparator.class);
        /*]*/
        /*[*/conf.setOutputValueGroupingComparator(GroupComparator.class);/*]*/
        conf.setReducerClass(MaxTemperatureReducer.class);
        conf.setOutputKeyClass(IntPair.class);
        conf.setOutputValueClass(NullWritable.class);

        JobClient.runJob(conf);
        return 0;
    }

From source file:de.l3s.streamcorpus.mapreduce.TerrierIndexing.java

License:Mozilla Public License

/** Starts the MapReduce indexing.
 * @param args//from   ww w .  j  av  a  2s . c om
 * @throws Exception
 */
public int run(String[] args) throws Exception {
    long time = System.currentTimeMillis();

    // For the moment: Hard-code the terrier home to quick test
    System.setProperty("terrier.home", "/home/tuan.tran/executable/StreamCorpusIndexer");

    boolean docPartitioned = false;
    int numberOfReducers = Integer
            .parseInt(ApplicationSetup.getProperty("terrier.hadoop.indexing.reducers", "26"));
    final HadoopPlugin.JobFactory jf = HadoopPlugin.getJobFactory("HOD-TerrierIndexing");
    if (args.length == 2 && args[0].equals("-p")) {
        logger.debug("Document-partitioned Mode, " + numberOfReducers + " output indices.");
        numberOfReducers = Integer.parseInt(args[1]);
        docPartitioned = true;
    } else if (args.length == 1 && args[0].equals("--merge")) {
        if (numberOfReducers > 1)
            mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers);
        else
            logger.error("No point merging 1 reduce task output");
        return 0;
    } else if (args.length == 0) {
        logger.debug("Term-partitioned Mode, " + numberOfReducers + " reducers creating one inverted index.");
        docPartitioned = false;
        if (numberOfReducers > MAX_REDUCE) {
            logger.warn("Excessive reduce tasks (" + numberOfReducers + ") in use "
                    + "- SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm can use " + MAX_REDUCE + " at most");
        }
    }

    /*else
    {
       logger.fatal(usage());
       return 0;
    }*/

    if (!(CompressionFactory.getCompressionConfiguration("inverted", new String[0],
            false) instanceof BitCompressionConfiguration)) {
        logger.error("Sorry, only default BitCompressionConfiguration is supported by HadoopIndexing"
                + " - you can recompress the inverted index later using IndexRecompressor");
        return 0;
    }

    if (jf == null)
        throw new Exception("Could not get JobFactory from HadoopPlugin");
    final JobConf conf = jf.newJob();
    conf.setJarByClass(TerrierIndexing.class);
    conf.setJobName("StreamCorpusIndexer: Terrier Indexing");
    if (Files.exists(ApplicationSetup.TERRIER_INDEX_PATH)
            && Index.existsIndex(ApplicationSetup.TERRIER_INDEX_PATH, ApplicationSetup.TERRIER_INDEX_PREFIX)) {
        logger.fatal("Cannot index while index exists at " + ApplicationSetup.TERRIER_INDEX_PATH + ","
                + ApplicationSetup.TERRIER_INDEX_PREFIX);
        return 0;
    }

    // boolean blockIndexing = ApplicationSetup.BLOCK_INDEXING;
    boolean blockIndexing = true;
    if (blockIndexing) {
        conf.setMapperClass(Hadoop_BlockSinglePassIndexer.class);
        conf.setReducerClass(Hadoop_BlockSinglePassIndexer.class);
    } else {
        conf.setMapperClass(Hadoop_BasicSinglePassIndexer.class);
        conf.setReducerClass(Hadoop_BasicSinglePassIndexer.class);
    }
    FileOutputFormat.setOutputPath(conf, new Path(ApplicationSetup.TERRIER_INDEX_PATH));
    conf.set("indexing.hadoop.prefix", ApplicationSetup.TERRIER_INDEX_PREFIX);
    conf.setMapOutputKeyClass(SplitEmittedTerm.class);
    conf.setMapOutputValueClass(MapEmittedPostingList.class);
    conf.setBoolean("indexing.hadoop.multiple.indices", docPartitioned);

    if (!conf.get("mapred.job.tracker").equals("local")) {
        conf.setMapOutputCompressorClass(GzipCodec.class);
        conf.setCompressMapOutput(true);
    } else {
        conf.setCompressMapOutput(false);
    }

    conf.setInputFormat(MultiFileCollectionInputFormat.class);
    conf.setOutputFormat(NullOutputFormat.class);
    conf.setOutputKeyComparatorClass(SplitEmittedTerm.SETRawComparatorTermSplitFlush.class);
    conf.setOutputValueGroupingComparator(SplitEmittedTerm.SETRawComparatorTerm.class);
    conf.setReduceSpeculativeExecution(false);
    //parse the collection.spec
    BufferedReader specBR = Files.openFileReader(ApplicationSetup.COLLECTION_SPEC);
    String line = null;
    List<Path> paths = new ArrayList<Path>();
    while ((line = specBR.readLine()) != null) {
        if (line.startsWith("#"))
            continue;
        paths.add(new Path(line));
    }
    specBR.close();
    FileInputFormat.setInputPaths(conf, paths.toArray(new Path[paths.size()]));

    // not sure if this is effective in YARN
    conf.setNumMapTasks(2000);

    // increase the heap usage
    conf.set("mapreduce.map.memory.mb", "6100");
    conf.set("mapred.job.map.memory.mb", "6100");
    conf.set("mapreduce.reduce.memory.mb", "6144");
    conf.set("mapred.job.reduce.memory.mb", "6144");

    conf.set("mapreduce.map.java.opts", "-Xmx6100m");
    conf.set("mapred.map.child.java.opts", "-Xmx6100m");
    conf.set("mapreduce.reduce.java.opts", "-Xmx6144m");
    conf.set("mapred.reduce.child.opts", "-Xmx6144m");

    //conf.setBoolean("mapred.used.genericoptionsparser", true) ;

    // This is the nasty thing in MapReduce v2 and YARN: They always prefer their ancient jars first. Set this on to say you don't like it
    conf.set("mapreduce.job.user.classpath.first", "true");

    // increase the yarn memory to 10 GB
    conf.set("yarn.nodemanager.resource.memory-mb", "12288");
    conf.set("yarn.nodemanager.resource.cpu-vcores", "16");
    conf.set("yarn.scheduler.minimum-allocation-mb", "4096");

    conf.setNumReduceTasks(numberOfReducers);
    if (numberOfReducers > 1) {
        if (docPartitioned)
            conf.setPartitionerClass(SplitEmittedTerm.SETPartitioner.class);
        else
            conf.setPartitionerClass(SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm.class);
    } else {
        //for JUnit tests, we seem to need to restore the original partitioner class
        conf.setPartitionerClass(HashPartitioner.class);
    }

    /*JobID jobId = null;
    boolean ranOK = true;
    try{
       RunningJob rj = JobClient.runJob(conf);
       jobId = rj.getID();
       HadoopUtility.finishTerrierJob(conf);
    } catch (Exception e) { 
       logger.error("Problem running job", e);
       e.printStackTrace();
       ranOK = false;
    }
    if (jobId != null)
    {
       deleteTaskFiles(ApplicationSetup.TERRIER_INDEX_PATH, jobId);
    }  */

    //if (ranOK)
    //{
    System.out.println("Merging indices");
    if (!docPartitioned) {
        if (numberOfReducers > 1)
            mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers);
    }

    Hadoop_BasicSinglePassIndexer.finish(ApplicationSetup.TERRIER_INDEX_PATH,
            docPartitioned ? numberOfReducers : 1, jf);
    //}
    System.out.println("Time Taken = " + ((System.currentTimeMillis() - time) / 1000) + " seconds");
    jf.close();
    return 0;
}

From source file:de.l3s.streamcorpus.StreamCorpusIndexing.java

License:Mozilla Public License

/** Starts the MapReduce indexing.
 * @param args//from   w  w w  .  j av a2 s.  c o m
 * @throws Exception
 */
public int run(String[] args) throws Exception {
    long time = System.currentTimeMillis();

    // For the moment: Hard-code the terrier home to quick test
    System.setProperty("terrier.home", "/home/tuan.tran/executable/StreamCorpusIndexer");

    boolean docPartitioned = false;
    int numberOfReducers = Integer
            .parseInt(ApplicationSetup.getProperty("terrier.hadoop.indexing.reducers", "26"));
    final HadoopPlugin.JobFactory jf = HadoopPlugin.getJobFactory("HOD-TerrierIndexing");
    if (args.length == 2 && args[0].equals("-p")) {
        logger.debug("Document-partitioned Mode, " + numberOfReducers + " output indices.");
        numberOfReducers = Integer.parseInt(args[1]);
        docPartitioned = true;
    } else if (args.length == 1 && args[0].equals("--merge")) {
        if (numberOfReducers > 1)
            mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers);
        else
            logger.error("No point merging 1 reduce task output");
        return 0;
    } else if (args.length == 0) {
        logger.debug("Term-partitioned Mode, " + numberOfReducers + " reducers creating one inverted index.");
        docPartitioned = false;
        if (numberOfReducers > MAX_REDUCE) {
            logger.warn("Excessive reduce tasks (" + numberOfReducers + ") in use "
                    + "- SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm can use " + MAX_REDUCE + " at most");
        }
    }

    /*else
    {
       logger.fatal(usage());
       return 0;
    }*/

    if (!(CompressionFactory.getCompressionConfiguration("inverted", new String[0],
            false) instanceof BitCompressionConfiguration)) {
        logger.error("Sorry, only default BitCompressionConfiguration is supported by HadoopIndexing"
                + " - you can recompress the inverted index later using IndexRecompressor");
        return 0;
    }

    if (jf == null)
        throw new Exception("Could not get JobFactory from HadoopPlugin");
    final JobConf conf = jf.newJob();
    conf.setJarByClass(StreamCorpusIndexing.class);
    conf.setJobName("StreamCorpusIndexer: Terrier Indexing");
    if (Files.exists(ApplicationSetup.TERRIER_INDEX_PATH)
            && Index.existsIndex(ApplicationSetup.TERRIER_INDEX_PATH, ApplicationSetup.TERRIER_INDEX_PREFIX)) {
        logger.fatal("Cannot index while index exists at " + ApplicationSetup.TERRIER_INDEX_PATH + ","
                + ApplicationSetup.TERRIER_INDEX_PREFIX);
        return 0;
    }

    // boolean blockIndexing = ApplicationSetup.BLOCK_INDEXING;
    boolean blockIndexing = true;
    if (blockIndexing) {
        conf.setMapperClass(Hadoop_BlockSinglePassIndexer.class);
        conf.setReducerClass(Hadoop_BlockSinglePassIndexer.class);
    } else {
        conf.setMapperClass(Hadoop_BasicSinglePassIndexer.class);
        conf.setReducerClass(Hadoop_BasicSinglePassIndexer.class);
    }
    FileOutputFormat.setOutputPath(conf, new Path(ApplicationSetup.TERRIER_INDEX_PATH));
    conf.set("indexing.hadoop.prefix", ApplicationSetup.TERRIER_INDEX_PREFIX);
    conf.setMapOutputKeyClass(SplitEmittedTerm.class);
    conf.setMapOutputValueClass(MapEmittedPostingList.class);
    conf.setBoolean("indexing.hadoop.multiple.indices", docPartitioned);

    if (!conf.get("mapred.job.tracker").equals("local")) {
        conf.setMapOutputCompressorClass(GzipCodec.class);
        conf.setCompressMapOutput(true);
    } else {
        conf.setCompressMapOutput(false);
    }

    conf.setInputFormat(MultiFileCollectionInputFormat.class);
    conf.setOutputFormat(NullOutputFormat.class);
    conf.setOutputKeyComparatorClass(SplitEmittedTerm.SETRawComparatorTermSplitFlush.class);
    conf.setOutputValueGroupingComparator(SplitEmittedTerm.SETRawComparatorTerm.class);
    conf.setReduceSpeculativeExecution(false);
    //parse the collection.spec
    BufferedReader specBR = Files.openFileReader(ApplicationSetup.COLLECTION_SPEC);
    String line = null;
    List<Path> paths = new ArrayList<Path>();
    while ((line = specBR.readLine()) != null) {
        if (line.startsWith("#"))
            continue;
        paths.add(new Path(line));
    }
    specBR.close();
    FileInputFormat.setInputPaths(conf, paths.toArray(new Path[paths.size()]));

    // not sure if this is effective in YARN
    conf.setNumMapTasks(2000);

    // increase the heap usage
    conf.set("mapreduce.map.memory.mb", "6100");
    conf.set("mapred.job.map.memory.mb", "6100");
    conf.set("mapreduce.reduce.memory.mb", "6144");
    conf.set("mapred.job.reduce.memory.mb", "6144");

    conf.set("mapreduce.map.java.opts", "-Xmx6100m");
    conf.set("mapred.map.child.java.opts", "-Xmx6100m");
    conf.set("mapreduce.reduce.java.opts", "-Xmx6144m");
    conf.set("mapred.reduce.child.opts", "-Xmx6144m");

    //conf.setBoolean("mapred.used.genericoptionsparser", true) ;

    // This is the nasty thing in MapReduce v2 and YARN: They always prefer their ancient jars first. Set this on to say you don't like it
    conf.set("mapreduce.job.user.classpath.first", "true");

    // increase the yarn memory to 10 GB
    conf.set("yarn.nodemanager.resource.memory-mb", "12288");
    conf.set("yarn.nodemanager.resource.cpu-vcores", "16");
    conf.set("yarn.scheduler.minimum-allocation-mb", "4096");

    conf.setNumReduceTasks(numberOfReducers);
    if (numberOfReducers > 1) {
        if (docPartitioned)
            conf.setPartitionerClass(SplitEmittedTerm.SETPartitioner.class);
        else
            conf.setPartitionerClass(SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm.class);
    } else {
        //for JUnit tests, we seem to need to restore the original partitioner class
        conf.setPartitionerClass(HashPartitioner.class);
    }

    /*JobID jobId = null;
    boolean ranOK = true;
    try{
       RunningJob rj = JobClient.runJob(conf);
       jobId = rj.getID();
       HadoopUtility.finishTerrierJob(conf);
    } catch (Exception e) { 
       logger.error("Problem running job", e);
       e.printStackTrace();
       ranOK = false;
    }
    if (jobId != null)
    {
       deleteTaskFiles(ApplicationSetup.TERRIER_INDEX_PATH, jobId);
    }  */

    //if (ranOK)
    //{
    System.out.println("Merging indices");
    if (!docPartitioned) {
        if (numberOfReducers > 1)
            mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers);
    }

    Hadoop_BasicSinglePassIndexer.finish(ApplicationSetup.TERRIER_INDEX_PATH,
            docPartitioned ? numberOfReducers : 1, jf);
    //}
    System.out.println("Time Taken = " + ((System.currentTimeMillis() - time) / 1000) + " seconds");
    jf.close();
    return 0;
}

From source file:drivers.FinishPageRank.java

@Override
public int run(String[] args) throws Exception {
    Configuration conf = getConf();
    JobConf job = new JobConf(conf, this.getClass());
    Path in = new Path(args[0]);
    Path out = new Path(args[1]);
    FileInputFormat.setInputPaths(job, in);
    FileOutputFormat.setOutputPath(job, out);
    job.setJobName("Fiqie|Finish");
    job.setOutputKeyComparatorClass(DecreasingComparator.class);
    job.setMapperClass(SortingPageRankMapper.class);
    job.setReducerClass(SortingPageRankReducer.class);
    job.setInputFormat(KeyValueTextInputFormat.class);
    job.setOutputFormat(TextOutputFormat.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);
    JobClient.runJob(job);//  w  w w .j  a v  a 2s.  c  om
    return 0;
}