List of usage examples for org.apache.hadoop.mapred JobConf setOutputValueGroupingComparator
public void setOutputValueGroupingComparator(Class<? extends RawComparator> theClass)
From source file:de.l3s.streamcorpus.StreamCorpusIndexing.java
License:Mozilla Public License
/** Starts the MapReduce indexing. * @param args//from w w w. jav a 2 s .c o m * @throws Exception */ public int run(String[] args) throws Exception { long time = System.currentTimeMillis(); // For the moment: Hard-code the terrier home to quick test System.setProperty("terrier.home", "/home/tuan.tran/executable/StreamCorpusIndexer"); boolean docPartitioned = false; int numberOfReducers = Integer .parseInt(ApplicationSetup.getProperty("terrier.hadoop.indexing.reducers", "26")); final HadoopPlugin.JobFactory jf = HadoopPlugin.getJobFactory("HOD-TerrierIndexing"); if (args.length == 2 && args[0].equals("-p")) { logger.debug("Document-partitioned Mode, " + numberOfReducers + " output indices."); numberOfReducers = Integer.parseInt(args[1]); docPartitioned = true; } else if (args.length == 1 && args[0].equals("--merge")) { if (numberOfReducers > 1) mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers); else logger.error("No point merging 1 reduce task output"); return 0; } else if (args.length == 0) { logger.debug("Term-partitioned Mode, " + numberOfReducers + " reducers creating one inverted index."); docPartitioned = false; if (numberOfReducers > MAX_REDUCE) { logger.warn("Excessive reduce tasks (" + numberOfReducers + ") in use " + "- SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm can use " + MAX_REDUCE + " at most"); } } /*else { logger.fatal(usage()); return 0; }*/ if (!(CompressionFactory.getCompressionConfiguration("inverted", new String[0], false) instanceof BitCompressionConfiguration)) { logger.error("Sorry, only default BitCompressionConfiguration is supported by HadoopIndexing" + " - you can recompress the inverted index later using IndexRecompressor"); return 0; } if (jf == null) throw new Exception("Could not get JobFactory from HadoopPlugin"); final JobConf conf = jf.newJob(); conf.setJarByClass(StreamCorpusIndexing.class); conf.setJobName("StreamCorpusIndexer: Terrier Indexing"); if (Files.exists(ApplicationSetup.TERRIER_INDEX_PATH) && Index.existsIndex(ApplicationSetup.TERRIER_INDEX_PATH, ApplicationSetup.TERRIER_INDEX_PREFIX)) { logger.fatal("Cannot index while index exists at " + ApplicationSetup.TERRIER_INDEX_PATH + "," + ApplicationSetup.TERRIER_INDEX_PREFIX); return 0; } // boolean blockIndexing = ApplicationSetup.BLOCK_INDEXING; boolean blockIndexing = true; if (blockIndexing) { conf.setMapperClass(Hadoop_BlockSinglePassIndexer.class); conf.setReducerClass(Hadoop_BlockSinglePassIndexer.class); } else { conf.setMapperClass(Hadoop_BasicSinglePassIndexer.class); conf.setReducerClass(Hadoop_BasicSinglePassIndexer.class); } FileOutputFormat.setOutputPath(conf, new Path(ApplicationSetup.TERRIER_INDEX_PATH)); conf.set("indexing.hadoop.prefix", ApplicationSetup.TERRIER_INDEX_PREFIX); conf.setMapOutputKeyClass(SplitEmittedTerm.class); conf.setMapOutputValueClass(MapEmittedPostingList.class); conf.setBoolean("indexing.hadoop.multiple.indices", docPartitioned); if (!conf.get("mapred.job.tracker").equals("local")) { conf.setMapOutputCompressorClass(GzipCodec.class); conf.setCompressMapOutput(true); } else { conf.setCompressMapOutput(false); } conf.setInputFormat(MultiFileCollectionInputFormat.class); conf.setOutputFormat(NullOutputFormat.class); conf.setOutputKeyComparatorClass(SplitEmittedTerm.SETRawComparatorTermSplitFlush.class); conf.setOutputValueGroupingComparator(SplitEmittedTerm.SETRawComparatorTerm.class); conf.setReduceSpeculativeExecution(false); //parse the collection.spec BufferedReader specBR = Files.openFileReader(ApplicationSetup.COLLECTION_SPEC); String line = null; List<Path> paths = new ArrayList<Path>(); while ((line = specBR.readLine()) != null) { if (line.startsWith("#")) continue; paths.add(new Path(line)); } specBR.close(); FileInputFormat.setInputPaths(conf, paths.toArray(new Path[paths.size()])); // not sure if this is effective in YARN conf.setNumMapTasks(2000); // increase the heap usage conf.set("mapreduce.map.memory.mb", "6100"); conf.set("mapred.job.map.memory.mb", "6100"); conf.set("mapreduce.reduce.memory.mb", "6144"); conf.set("mapred.job.reduce.memory.mb", "6144"); conf.set("mapreduce.map.java.opts", "-Xmx6100m"); conf.set("mapred.map.child.java.opts", "-Xmx6100m"); conf.set("mapreduce.reduce.java.opts", "-Xmx6144m"); conf.set("mapred.reduce.child.opts", "-Xmx6144m"); //conf.setBoolean("mapred.used.genericoptionsparser", true) ; // This is the nasty thing in MapReduce v2 and YARN: They always prefer their ancient jars first. Set this on to say you don't like it conf.set("mapreduce.job.user.classpath.first", "true"); // increase the yarn memory to 10 GB conf.set("yarn.nodemanager.resource.memory-mb", "12288"); conf.set("yarn.nodemanager.resource.cpu-vcores", "16"); conf.set("yarn.scheduler.minimum-allocation-mb", "4096"); conf.setNumReduceTasks(numberOfReducers); if (numberOfReducers > 1) { if (docPartitioned) conf.setPartitionerClass(SplitEmittedTerm.SETPartitioner.class); else conf.setPartitionerClass(SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm.class); } else { //for JUnit tests, we seem to need to restore the original partitioner class conf.setPartitionerClass(HashPartitioner.class); } /*JobID jobId = null; boolean ranOK = true; try{ RunningJob rj = JobClient.runJob(conf); jobId = rj.getID(); HadoopUtility.finishTerrierJob(conf); } catch (Exception e) { logger.error("Problem running job", e); e.printStackTrace(); ranOK = false; } if (jobId != null) { deleteTaskFiles(ApplicationSetup.TERRIER_INDEX_PATH, jobId); } */ //if (ranOK) //{ System.out.println("Merging indices"); if (!docPartitioned) { if (numberOfReducers > 1) mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers); } Hadoop_BasicSinglePassIndexer.finish(ApplicationSetup.TERRIER_INDEX_PATH, docPartitioned ? numberOfReducers : 1, jf); //} System.out.println("Time Taken = " + ((System.currentTimeMillis() - time) / 1000) + " seconds"); jf.close(); return 0; }
From source file:org.apache.sysml.runtime.controlprogram.parfor.ResultMergeRemoteMR.java
License:Apache License
@SuppressWarnings({ "unused", "deprecation" }) protected void executeMerge(String fname, String fnameNew, String[] srcFnames, InputInfo ii, OutputInfo oi, long rlen, long clen, int brlen, int bclen) throws DMLRuntimeException { String jobname = "ParFor-RMMR"; long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; JobConf job = new JobConf(ResultMergeRemoteMR.class); job.setJobName(jobname + _pfid);//from w w w . ja va 2 s . co m //maintain dml script counters Statistics.incrementNoOfCompiledMRJobs(); //warning for textcell/binarycell without compare boolean withCompare = (fname != null); if ((oi == OutputInfo.TextCellOutputInfo || oi == OutputInfo.BinaryCellOutputInfo) && !withCompare && ResultMergeLocalFile.ALLOW_COPY_CELLFILES) LOG.warn("Result merge for " + OutputInfo.outputInfoToString(oi) + " without compare can be realized more efficiently with LOCAL_FILE than REMOTE_MR."); try { Path pathCompare = null; Path pathNew = new Path(fnameNew); ///// //configure the MR job if (withCompare) { FileSystem fs = IOUtilFunctions.getFileSystem(pathNew, job); pathCompare = new Path(fname).makeQualified(fs); MRJobConfiguration.setResultMergeInfo(job, pathCompare.toString(), ii, LocalFileUtils.getWorkingDir(LocalFileUtils.CATEGORY_RESULTMERGE), rlen, clen, brlen, bclen); } else MRJobConfiguration.setResultMergeInfo(job, "null", ii, LocalFileUtils.getWorkingDir(LocalFileUtils.CATEGORY_RESULTMERGE), rlen, clen, bclen, bclen); //set mappers, reducers, combiners job.setMapperClass(ResultMergeRemoteMapper.class); job.setReducerClass(ResultMergeRemoteReducer.class); if (oi == OutputInfo.TextCellOutputInfo) { job.setMapOutputKeyClass(MatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixCell.class); job.setOutputKeyClass(NullWritable.class); job.setOutputValueClass(Text.class); } else if (oi == OutputInfo.BinaryCellOutputInfo) { job.setMapOutputKeyClass(MatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixCell.class); job.setOutputKeyClass(MatrixIndexes.class); job.setOutputValueClass(MatrixCell.class); } else if (oi == OutputInfo.BinaryBlockOutputInfo) { //setup partitioning, grouping, sorting for composite key (old API) job.setPartitionerClass(ResultMergeRemotePartitioning.class); //partitioning job.setOutputValueGroupingComparator(ResultMergeRemoteGrouping.class); //grouping job.setOutputKeyComparatorClass(ResultMergeRemoteSorting.class); //sorting job.setMapOutputKeyClass(ResultMergeTaggedMatrixIndexes.class); job.setMapOutputValueClass(TaggedMatrixBlock.class); job.setOutputKeyClass(MatrixIndexes.class); job.setOutputValueClass(MatrixBlock.class); } //set input format job.setInputFormat(ii.inputFormatClass); //set the input path Path[] paths = null; if (withCompare) { paths = new Path[srcFnames.length + 1]; paths[0] = pathCompare; for (int i = 1; i < paths.length; i++) paths[i] = new Path(srcFnames[i - 1]); } else { paths = new Path[srcFnames.length]; for (int i = 0; i < paths.length; i++) paths[i] = new Path(srcFnames[i]); } FileInputFormat.setInputPaths(job, paths); //set output format job.setOutputFormat(oi.outputFormatClass); //set output path MapReduceTool.deleteFileIfExistOnHDFS(fnameNew); FileOutputFormat.setOutputPath(job, pathNew); ////// //set optimization parameters //set the number of mappers and reducers //job.setNumMapTasks( _numMappers ); //use default num mappers long reducerGroups = _numReducers; if (oi == OutputInfo.BinaryBlockOutputInfo) reducerGroups = Math.max(rlen / brlen, 1) * Math.max(clen / bclen, 1); else //textcell/binarycell reducerGroups = Math.max((rlen * clen) / StagingFileUtils.CELL_BUFFER_SIZE, 1); job.setNumReduceTasks((int) Math.min(_numReducers, reducerGroups)); //disable automatic tasks timeouts and speculative task exec job.setInt(MRConfigurationNames.MR_TASK_TIMEOUT, 0); job.setMapSpeculativeExecution(false); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); //enables the reuse of JVMs (multiple tasks per MR task) if (_jvmReuse) job.setNumTasksToExecutePerJvm(-1); //unlimited //enables compression - not conclusive for different codecs (empirically good compression ratio, but significantly slower) //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS, "true"); //job.set(MRConfigurationNames.MR_MAP_OUTPUT_COMPRESS_CODEC, "org.apache.hadoop.io.compress.GzipCodec"); //set the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, _replication); //set the max number of retries per map task // disabled job-level configuration to respect cluster configuration // note: this refers to hadoop2, hence it never had effect on mr1 //job.setInt(MRConfigurationNames.MR_MAP_MAXATTEMPTS, _max_retry); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); ///// // execute the MR job JobClient.runJob(job); //maintain dml script counters Statistics.incrementNoOfExecutedMRJobs(); } catch (Exception ex) { throw new DMLRuntimeException(ex); } if (DMLScript.STATISTICS) { long t1 = System.nanoTime(); Statistics.maintainCPHeavyHitters("MR-Job_" + jobname, t1 - t0); } }
From source file:org.terrier.applications.HadoopIndexing.java
License:Mozilla Public License
/** Starts the MapReduce indexing. * @param args//from w ww. j ava 2 s . c o m * @throws Exception */ public static void main(String[] args) throws Exception { long time = System.currentTimeMillis(); boolean docPartitioned = false; int numberOfReducers = Integer .parseInt(ApplicationSetup.getProperty("terrier.hadoop.indexing.reducers", "26")); final HadoopPlugin.JobFactory jf = HadoopPlugin.getJobFactory("HOD-TerrierIndexing"); if (args.length == 2 && args[0].equals("-p")) { logger.info("Document-partitioned Mode, " + numberOfReducers + " output indices."); numberOfReducers = Integer.parseInt(args[1]); docPartitioned = true; } else if (args.length == 1 && args[0].equals("--merge")) { if (numberOfReducers > 1) mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers); else logger.error("No point merging 1 reduce task output"); return; } else if (args.length == 0) { logger.info("Term-partitioned Mode, " + numberOfReducers + " reducers creating one inverted index."); docPartitioned = false; if (numberOfReducers > MAX_REDUCE) { logger.warn("Excessive reduce tasks (" + numberOfReducers + ") in use " + "- SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm can use " + MAX_REDUCE + " at most"); } } else { logger.fatal(usage()); return; } if (!(CompressionFactory.getCompressionConfiguration("inverted", new String[0], false) instanceof BitCompressionConfiguration)) { logger.error("Sorry, only default BitCompressionConfiguration is supported by HadoopIndexing" + " - you can recompress the inverted index later using IndexRecompressor"); return; } if (jf == null) throw new Exception("Could not get JobFactory from HadoopPlugin"); final JobConf conf = jf.newJob(); conf.setJobName("terrierIndexing"); if (Files.exists(ApplicationSetup.TERRIER_INDEX_PATH) && Index.existsIndex(ApplicationSetup.TERRIER_INDEX_PATH, ApplicationSetup.TERRIER_INDEX_PREFIX)) { logger.fatal("Cannot index while index exists at " + ApplicationSetup.TERRIER_INDEX_PATH + "," + ApplicationSetup.TERRIER_INDEX_PREFIX); return; } boolean blockIndexing = ApplicationSetup.BLOCK_INDEXING; if (blockIndexing) { conf.setMapperClass(Hadoop_BlockSinglePassIndexer.class); conf.setReducerClass(Hadoop_BlockSinglePassIndexer.class); } else { conf.setMapperClass(Hadoop_BasicSinglePassIndexer.class); conf.setReducerClass(Hadoop_BasicSinglePassIndexer.class); } FileOutputFormat.setOutputPath(conf, new Path(ApplicationSetup.TERRIER_INDEX_PATH)); conf.set("indexing.hadoop.prefix", ApplicationSetup.TERRIER_INDEX_PREFIX); conf.setMapOutputKeyClass(SplitEmittedTerm.class); conf.setMapOutputValueClass(MapEmittedPostingList.class); conf.setBoolean("indexing.hadoop.multiple.indices", docPartitioned); if (!conf.get("mapred.job.tracker").equals("local")) { conf.setMapOutputCompressorClass(GzipCodec.class); conf.setCompressMapOutput(true); } else { conf.setCompressMapOutput(false); } conf.setInputFormat(MultiFileCollectionInputFormat.class); conf.setOutputFormat(NullOutputFormat.class); conf.setOutputKeyComparatorClass(SplitEmittedTerm.SETRawComparatorTermSplitFlush.class); conf.setOutputValueGroupingComparator(SplitEmittedTerm.SETRawComparatorTerm.class); conf.setReduceSpeculativeExecution(false); //parse the collection.spec BufferedReader specBR = Files.openFileReader(ApplicationSetup.COLLECTION_SPEC); String line = null; List<Path> paths = new ArrayList<Path>(); while ((line = specBR.readLine()) != null) { if (line.startsWith("#")) continue; paths.add(new Path(line)); } specBR.close(); FileInputFormat.setInputPaths(conf, paths.toArray(new Path[paths.size()])); conf.setNumReduceTasks(numberOfReducers); if (numberOfReducers > 1) { if (docPartitioned) conf.setPartitionerClass(SplitEmittedTerm.SETPartitioner.class); else conf.setPartitionerClass(SplitEmittedTerm.SETPartitionerLowercaseAlphaTerm.class); } else { //for JUnit tests, we seem to need to restore the original partitioner class conf.setPartitionerClass(HashPartitioner.class); } JobID jobId = null; boolean ranOK = true; try { RunningJob rj = JobClient.runJob(conf); jobId = rj.getID(); HadoopUtility.finishTerrierJob(conf); } catch (Exception e) { logger.error("Problem running job", e); ranOK = false; } if (jobId != null) { deleteTaskFiles(ApplicationSetup.TERRIER_INDEX_PATH, jobId); } if (ranOK) { if (!docPartitioned) { if (numberOfReducers > 1) mergeLexiconInvertedFiles(ApplicationSetup.TERRIER_INDEX_PATH, numberOfReducers); } Hadoop_BasicSinglePassIndexer.finish(ApplicationSetup.TERRIER_INDEX_PATH, docPartitioned ? numberOfReducers : 1, jf); } System.out.println("Time Taken = " + ((System.currentTimeMillis() - time) / 1000) + " seconds"); jf.close(); }