List of usage examples for org.apache.hadoop.mapred JobConf setReducerClass
public void setReducerClass(Class<? extends Reducer> theClass)
From source file:org.apache.cassandra.bulkloader.CassandraBulkLoader.java
License:Apache License
public static void runJob(String[] args) { JobConf conf = new JobConf(CassandraBulkLoader.class); if (args.length >= 4) { conf.setNumReduceTasks(new Integer(args[3])); }//from w ww. j ava2s . c om try { // We store the cassandra storage-conf.xml on the HDFS cluster DistributedCache.addCacheFile(new URI("/cassandra/storage-conf.xml#storage-conf.xml"), conf); } catch (URISyntaxException e) { throw new RuntimeException(e); } conf.setInputFormat(KeyValueTextInputFormat.class); conf.setJobName("CassandraBulkLoader_v2"); conf.setMapperClass(Map.class); conf.setReducerClass(Reduce.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(conf, new Path(args[1])); FileOutputFormat.setOutputPath(conf, new Path(args[2])); try { JobClient.runJob(conf); } catch (IOException e) { throw new RuntimeException(e); } }
From source file:org.apache.hcatalog.hcatmix.load.HadoopLoadGenerator.java
License:Apache License
/** * Prepare input directory/jobConf and launch the hadoop job, for load testing * * @param confFileName The properties file for the task, should be available in the classpath * @param conf//from ww w . ja va2 s. c o m * @return * @throws IOException * @throws MetaException * @throws TException */ public SortedMap<Long, ReduceResult> runLoadTest(String confFileName, Configuration conf) throws Exception, MetaException, TException { JobConf jobConf; if (conf != null) { jobConf = new JobConf(conf); } else { jobConf = new JobConf(new Configuration()); } InputStream confFileIS; try { confFileIS = HCatMixUtils.getInputStream(confFileName); } catch (Exception e) { LOG.error("Couldn't load configuration file " + confFileName); throw e; } Properties props = new Properties(); try { props.load(confFileIS); } catch (IOException e) { LOG.error("Couldn't load properties file: " + confFileName, e); throw e; } LOG.info("Loading configuration file: " + confFileName); addToJobConf(jobConf, props, Conf.MAP_RUN_TIME_MINUTES); addToJobConf(jobConf, props, Conf.STAT_COLLECTION_INTERVAL_MINUTE); addToJobConf(jobConf, props, Conf.THREAD_INCREMENT_COUNT); addToJobConf(jobConf, props, Conf.THREAD_INCREMENT_INTERVAL_MINUTES); addToJobConf(jobConf, props, Conf.THREAD_COMPLETION_BUFFER_MINUTES); int numMappers = Integer .parseInt(props.getProperty(Conf.NUM_MAPPERS.propName, "" + Conf.NUM_MAPPERS.defaultValue)); Path inputDir = new Path(props.getProperty(Conf.INPUT_DIR.propName, Conf.INPUT_DIR.defaultValueStr)); Path outputDir = new Path(props.getProperty(Conf.OUTPUT_DIR.propName, Conf.OUTPUT_DIR.defaultValueStr)); jobConf.setJobName(JOB_NAME); jobConf.setNumMapTasks(numMappers); jobConf.setMapperClass(HCatMapper.class); jobConf.setJarByClass(HCatMapper.class); jobConf.setReducerClass(HCatReducer.class); jobConf.setMapOutputKeyClass(LongWritable.class); jobConf.setMapOutputValueClass(IntervalResult.class); jobConf.setOutputKeyClass(LongWritable.class); jobConf.setOutputValueClass(ReduceResult.class); jobConf.setOutputFormat(SequenceFileOutputFormat.class); jobConf.set(Conf.TASK_CLASS_NAMES.getJobConfKey(), props.getProperty(Conf.TASK_CLASS_NAMES.propName, Conf.TASK_CLASS_NAMES.defaultValueStr)); fs = FileSystem.get(jobConf); Path jarRoot = new Path("/tmp/hcatmix_jar_" + new Random().nextInt()); HadoopUtils.uploadClasspathAndAddToJobConf(jobConf, jarRoot); fs.deleteOnExit(jarRoot); FileInputFormat.setInputPaths(jobConf, createInputFiles(inputDir, numMappers)); if (fs.exists(outputDir)) { fs.delete(outputDir, true); } FileOutputFormat.setOutputPath(jobConf, outputDir); // Set up delegation token required for hiveMetaStoreClient in map task HiveConf hiveConf = new HiveConf(HadoopLoadGenerator.class); HiveMetaStoreClient hiveClient = new HiveMetaStoreClient(hiveConf); String tokenStr = hiveClient.getDelegationToken(UserGroupInformation.getCurrentUser().getUserName(), "mapred"); Token<? extends AbstractDelegationTokenIdentifier> token = new Token<DelegationTokenIdentifier>(); token.decodeFromUrlString(tokenStr); token.setService(new Text(METASTORE_TOKEN_SIGNATURE)); jobConf.getCredentials().addToken(new Text(METASTORE_TOKEN_KEY), token); // Submit the job, once the job is complete see output LOG.info("Submitted hadoop job"); RunningJob j = JobClient.runJob(jobConf); LOG.info("JobID is: " + j.getJobName()); if (!j.isSuccessful()) { throw new IOException("Job failed"); } return readResult(outputDir, jobConf); }
From source file:org.apache.ignite.internal.processors.hadoop.examples.GridHadoopWordCount1.java
License:Apache License
/** * Sets task classes with related info if needed into configuration object. * * @param jobConf Configuration to change. * @param setMapper Option to set mapper and input format classes. * @param setCombiner Option to set combiner class. * @param setReducer Option to set reducer and output format classes. */// ww w . ja v a 2 s .com public static void setTasksClasses(JobConf jobConf, boolean setMapper, boolean setCombiner, boolean setReducer) { if (setMapper) { jobConf.setMapperClass(GridHadoopWordCount1Map.class); jobConf.setInputFormat(TextInputFormat.class); } if (setCombiner) jobConf.setCombinerClass(GridHadoopWordCount1Reduce.class); if (setReducer) { jobConf.setReducerClass(GridHadoopWordCount1Reduce.class); jobConf.setOutputFormat(TextOutputFormat.class); } }
From source file:org.apache.ignite.internal.processors.hadoop.examples.HadoopWordCount1.java
License:Apache License
/** * Sets task classes with related info if needed into configuration object. * * @param jobConf Configuration to change. * @param setMapper Option to set mapper and input format classes. * @param setCombiner Option to set combiner class. * @param setReducer Option to set reducer and output format classes. */// w ww .j a v a 2s. c om public static void setTasksClasses(JobConf jobConf, boolean setMapper, boolean setCombiner, boolean setReducer) { if (setMapper) { jobConf.setMapperClass(HadoopWordCount1Map.class); jobConf.setInputFormat(TextInputFormat.class); } if (setCombiner) jobConf.setCombinerClass(HadoopWordCount1Reduce.class); if (setReducer) { jobConf.setReducerClass(HadoopWordCount1Reduce.class); jobConf.setOutputFormat(TextOutputFormat.class); } }
From source file:org.apache.mahout.avro.text.mapred.AvroDocumentProcessor.java
License:Apache License
@Override public int run(String[] args) throws Exception { JobConf conf = new JobConf(); if (args.length != 2) { System.err.println("Usage: wordcount <in> <out>"); return 0; }//from w w w .j av a 2s . com conf.setStrings("io.serializations", new String[] { WritableSerialization.class.getName(), AvroSpecificSerialization.class.getName(), AvroReflectSerialization.class.getName(), AvroGenericSerialization.class.getName() }); AvroComparator.setSchema(AvroDocument._SCHEMA); //TODO: must be done in mapper, reducer configure method. conf.setClass("mapred.output.key.comparator.class", AvroComparator.class, RawComparator.class); conf.setJarByClass(AvroDocumentProcessor.class); conf.setMapperClass(ProcessorMapper.class); conf.setReducerClass(IdentityReducer.class); conf.setOutputKeyClass(AvroDocument.class); conf.setOutputValueClass(NullWritable.class); conf.setInputFormat(AvroInputFormat.class); conf.setOutputFormat(AvroOutputFormat.class); AvroInputFormat.setAvroInputClass(conf, AvroDocument.class); AvroOutputFormat.setAvroOutputClass(conf, AvroDocument.class); Path input = new Path(args[0]); Path output = new Path(args[1]); FileSystem fs = FileSystem.get(conf); fs.delete(output, true); FileInputFormat.addInputPath(conf, input); FileOutputFormat.setOutputPath(conf, output); RunningJob job = JobClient.runJob(conf); job.waitForCompletion(); return job.isComplete() ? 0 : 1; }
From source file:org.apache.mahout.avro.text.mapred.AvroDocumentsWordCount.java
License:Apache License
@Override public int run(String[] args) throws Exception { JobConf conf = new JobConf(); if (args.length != 2) { System.err.println("Usage: wordcount <in> <out>"); return 0; }//from w ww . j a v a2s .co m conf.setStrings("io.serializations", new String[] { WritableSerialization.class.getName(), AvroSpecificSerialization.class.getName(), AvroReflectSerialization.class.getName(), AvroGenericSerialization.class.getName() }); conf.setJarByClass(AvroDocumentsWordCount.class); conf.setMapperClass(TokenizerMapper.class); conf.setCombinerClass(IntSumReducer.class); conf.setReducerClass(IntSumReducer.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setInputFormat(AvroInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); Path input = new Path(args[0]); Path output = new Path(args[1]); FileSystem fs = FileSystem.get(conf); fs.delete(output, true); AvroInputFormat.setAvroInputClass(conf, AvroDocument.class); FileInputFormat.addInputPath(conf, input); FileOutputFormat.setOutputPath(conf, output); RunningJob job = JobClient.runJob(conf); job.waitForCompletion(); return job.isSuccessful() ? 1 : 0; }
From source file:org.apache.mahout.avro.text.mapred.WikipediaToAvroDocuments.java
License:Apache License
/** * Run the job/*from w w w. j av a2 s .c o m*/ * * @param input * the input pathname String * @param output * the output pathname String * @param catFile * the file containing the Wikipedia categories * @param exactMatchOnly * if true, then the Wikipedia category must match exactly instead of * simply containing the category string * @param all * if true select all categories */ public static int runJob(String input, String output, String catFile, boolean exactMatchOnly, boolean all) throws IOException { JobClient client = new JobClient(); JobConf conf = new JobConf(WikipediaToAvroDocuments.class); if (log.isInfoEnabled()) { log.info("Input: " + input + " Out: " + output + " Categories: " + catFile + " All Files: " + all); } Path inPath = new Path(input); Path outPath = new Path(output); FileInputFormat.setInputPaths(conf, inPath); FileOutputFormat.setOutputPath(conf, outPath); //AvroOutputFormat.setClass(conf, AvroDocument.class); //AvroOutputFormat.setSchema(conf, AvroDocument._SCHEMA); conf.set("xmlinput.start", "<page>"); conf.set("xmlinput.end", "</page>"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(AvroDocument.class); conf.setBoolean("exact.match.only", exactMatchOnly); conf.setBoolean("all.files", all); conf.setMapperClass(WikipediaAvroDocumentMapper.class); conf.setInputFormat(XmlInputFormat.class); conf.setReducerClass(IdentityReducer.class); conf.setOutputFormat(AvroOutputFormat.class); AvroOutputFormat.setAvroOutputClass(conf, AvroDocument.class); FileSystem dfs = FileSystem.get(outPath.toUri(), conf); if (dfs.exists(outPath)) { dfs.delete(outPath, true); } Set<String> categories = new HashSet<String>(); if (catFile.equals("") == false) { for (String line : new FileLineIterable(new File(catFile))) { categories.add(line.trim().toLowerCase()); } } DefaultStringifier<Set<String>> setStringifier = new DefaultStringifier<Set<String>>(conf, GenericsUtil.getClass(categories)); String categoriesStr = setStringifier.toString(categories); conf.set("wikipedia.categories", categoriesStr); client.setConf(conf); RunningJob job = JobClient.runJob(conf); job.waitForCompletion(); return job.isSuccessful() ? 1 : 0; }
From source file:org.apache.mahout.classifier.bayes.BayesThetaNormalizerDriver.java
License:Apache License
/** * Run the job//from ww w. j av a 2 s . c om * * @param input the input pathname String * @param output the output pathname String */ public static void runJob(String input, String output) throws IOException { JobClient client = new JobClient(); JobConf conf = new JobConf(BayesThetaNormalizerDriver.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(DoubleWritable.class); FileInputFormat.addInputPath(conf, new Path(output + "/trainer-tfIdf/trainer-tfIdf")); Path outPath = new Path(output + "/trainer-thetaNormalizer"); FileOutputFormat.setOutputPath(conf, outPath); conf.setNumMapTasks(100); //conf.setNumReduceTasks(1); conf.setMapperClass(BayesThetaNormalizerMapper.class); conf.setInputFormat(SequenceFileInputFormat.class); conf.setCombinerClass(BayesThetaNormalizerReducer.class); conf.setReducerClass(BayesThetaNormalizerReducer.class); conf.setOutputFormat(SequenceFileOutputFormat.class); conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization"); // Dont ever forget this. People should keep track of how hadoop conf parameters and make or break a piece of code FileSystem dfs = FileSystem.get(outPath.toUri(), conf); if (dfs.exists(outPath)) { dfs.delete(outPath, true); } Path Sigma_kFiles = new Path(output + "/trainer-weights/Sigma_k/*"); Map<String, Double> labelWeightSum = SequenceFileModelReader.readLabelSums(dfs, Sigma_kFiles, conf); DefaultStringifier<Map<String, Double>> mapStringifier = new DefaultStringifier<Map<String, Double>>(conf, GenericsUtil.getClass(labelWeightSum)); String labelWeightSumString = mapStringifier.toString(labelWeightSum); log.info("Sigma_k for Each Label"); Map<String, Double> c = mapStringifier.fromString(labelWeightSumString); log.info("{}", c); conf.set("cnaivebayes.sigma_k", labelWeightSumString); Path sigma_kSigma_jFile = new Path(output + "/trainer-weights/Sigma_kSigma_j/*"); double sigma_jSigma_k = SequenceFileModelReader.readSigma_jSigma_k(dfs, sigma_kSigma_jFile, conf); DefaultStringifier<Double> stringifier = new DefaultStringifier<Double>(conf, Double.class); String sigma_jSigma_kString = stringifier.toString(sigma_jSigma_k); log.info("Sigma_kSigma_j for each Label and for each Features"); double retSigma_jSigma_k = stringifier.fromString(sigma_jSigma_kString); log.info("{}", retSigma_jSigma_k); conf.set("cnaivebayes.sigma_jSigma_k", sigma_jSigma_kString); Path vocabCountFile = new Path(output + "/trainer-tfIdf/trainer-vocabCount/*"); double vocabCount = SequenceFileModelReader.readVocabCount(dfs, vocabCountFile, conf); String vocabCountString = stringifier.toString(vocabCount); log.info("Vocabulary Count"); conf.set("cnaivebayes.vocabCount", vocabCountString); double retvocabCount = stringifier.fromString(vocabCountString); log.info("{}", retvocabCount); client.setConf(conf); JobClient.runJob(conf); }
From source file:org.apache.mahout.classifier.bayes.common.BayesFeatureDriver.java
License:Apache License
/** * Run the job/*w ww . j a v a2 s . c o m*/ * * @param input the input pathname String * @param output the output pathname String */ public static void runJob(String input, String output, int gramSize) throws IOException { JobClient client = new JobClient(); JobConf conf = new JobConf(BayesFeatureDriver.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(DoubleWritable.class); FileInputFormat.setInputPaths(conf, new Path(input)); Path outPath = new Path(output); FileOutputFormat.setOutputPath(conf, outPath); conf.setNumMapTasks(100); //conf.setNumReduceTasks(1); conf.setMapperClass(BayesFeatureMapper.class); conf.setInputFormat(KeyValueTextInputFormat.class); conf.setCombinerClass(BayesFeatureReducer.class); conf.setReducerClass(BayesFeatureReducer.class); conf.setOutputFormat(BayesFeatureOutputFormat.class); conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization"); // Dont ever forget this. People should keep track of how hadoop conf parameters and make or break a piece of code FileSystem dfs = FileSystem.get(outPath.toUri(), conf); if (dfs.exists(outPath)) { dfs.delete(outPath, true); } DefaultStringifier<Integer> intStringifier = new DefaultStringifier<Integer>(conf, Integer.class); String gramSizeString = intStringifier.toString(gramSize); log.info("{}", intStringifier.fromString(gramSizeString)); conf.set("bayes.gramSize", gramSizeString); client.setConf(conf); JobClient.runJob(conf); }
From source file:org.apache.mahout.classifier.bayes.common.BayesTfIdfDriver.java
License:Apache License
/** * Run the job/*from w ww . j a v a 2 s . c o m*/ * * @param input the input pathname String * @param output the output pathname String */ public static void runJob(String input, String output) throws IOException { JobClient client = new JobClient(); JobConf conf = new JobConf(BayesTfIdfDriver.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(DoubleWritable.class); FileInputFormat.addInputPath(conf, new Path(output + "/trainer-termDocCount")); FileInputFormat.addInputPath(conf, new Path(output + "/trainer-wordFreq")); FileInputFormat.addInputPath(conf, new Path(output + "/trainer-featureCount")); Path outPath = new Path(output + "/trainer-tfIdf"); FileOutputFormat.setOutputPath(conf, outPath); conf.setNumMapTasks(100); conf.setMapperClass(BayesTfIdfMapper.class); conf.setInputFormat(SequenceFileInputFormat.class); conf.setCombinerClass(BayesTfIdfReducer.class); conf.setReducerClass(BayesTfIdfReducer.class); conf.setOutputFormat(BayesTfIdfOutputFormat.class); conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization"); // Dont ever forget this. People should keep track of how hadoop conf parameters and make or break a piece of code FileSystem dfs = FileSystem.get(outPath.toUri(), conf); if (dfs.exists(outPath)) { dfs.delete(outPath, true); } Path interimFile = new Path(output + "/trainer-docCount/part-*"); Map<String, Double> labelDocumentCounts = SequenceFileModelReader.readLabelDocumentCounts(dfs, interimFile, conf); DefaultStringifier<Map<String, Double>> mapStringifier = new DefaultStringifier<Map<String, Double>>(conf, GenericsUtil.getClass(labelDocumentCounts)); String labelDocumentCountString = mapStringifier.toString(labelDocumentCounts); log.info("Counts of documents in Each Label"); Map<String, Double> c = mapStringifier.fromString(labelDocumentCountString); log.info("{}", c); conf.set("cnaivebayes.labelDocumentCounts", labelDocumentCountString); client.setConf(conf); JobClient.runJob(conf); }