List of usage examples for weka.core Instances add
@Override public boolean add(Instance instance)
From source file:edu.oregonstate.eecs.mcplan.abstraction.WekaUtil.java
License:Open Source License
public static void addInstance(final Instances instances, final Instance i) { instances.add(i); i.setDataset(instances);/*from ww w .ja v a 2s.co m*/ }
From source file:edu.oregonstate.eecs.mcplan.abstraction.WekaUtil.java
License:Open Source License
/** * Creates an Instances object containing the specified feature vector * and with an added "dummy label".// ww w . j a v a 2s. c o m * @param attributes * @param features * @return */ public static Instances createSingletonInstances(final List<Attribute> attributes, final double[] features) { final ArrayList<Attribute> attr_dummy_label = new ArrayList<Attribute>(attributes); attr_dummy_label.add(createBinaryNominalAttribute("__dummy_label__")); final double[] features_dummy_label = new double[features.length + 1]; Fn.memcpy(features_dummy_label, features, features.length); final Instance instance = new DenseInstance(1.0, features_dummy_label); final Instances x = new Instances("__eval__", attr_dummy_label, 1); x.setClassIndex(attr_dummy_label.size() - 1); x.add(instance); instance.setDataset(x); return x; }
From source file:edu.teco.context.recognition.WekaManager.java
License:Apache License
private void fillData(double[] featureValues, String className, Instances data) { double[] vals = new double[data.numAttributes()]; if (vals.length != (featureValues.length + 1)) { if (FrameworkContext.WARN) Log.w(TAG, "Number of feature values and weka instance values differs."); }//w w w . j av a2s . c om for (int i = 0; i < featureValues.length; i++) { vals[i] = featureValues[i]; } vals[vals.length - 1] = attClassVals.indexOf(className); DenseInstance instance = new DenseInstance(1.0, vals); if (isLogDirectlyToFile) { instance.setDataset(data); logArffData(instance.toString()); } else { // add data.add(instance); } }
From source file:edu.umbc.cs.maple.utils.WekaUtils.java
License:Open Source License
/** Merge two instance sets. * @param instances1/* w w w . j av a 2 s . com*/ * @param instances2 * @return the merged instance sets */ public static Instances mergeInstances(Instances instances1, Instances instances2) { if (instances1 == null) return instances2; if (instances2 == null) return instances1; if (!instances1.checkInstance(instances2.firstInstance())) throw new IllegalArgumentException("The instance sets are incompatible."); Instances mergedInstances = new Instances(instances1); Instances tempInstances = new Instances(instances2); for (int i = 0; i < tempInstances.numInstances(); i++) { mergedInstances.add(tempInstances.instance(i)); } return mergedInstances; }
From source file:edu.utexas.cs.tactex.utils.RegressionUtils.java
License:Open Source License
/** * Note: shouldn't use this function in new code. * It is kept for backward compatibility since PolyRegCust uses it. * @param xvals// w w w. ja v a 2 s . c om * @param maxDegree * @return */ public static Instances polyFeatures1D(Double[] xvals, int maxDegree) { ArrayList<Attribute> attributes = new ArrayList<Attribute>(); for (int i = 0; i < maxDegree; ++i) { // attribute name is the polynomial power Attribute xattr = new Attribute(Integer.toString(i)); attributes.add(xattr); } Instances X = new Instances("X", attributes, xvals.length); for (int i = 0; i < xvals.length; ++i) { ArrayList<Double> features = create1DPolyFeatures(xvals[i], maxDegree); Instance row = createInstance(features); X.add(row); } return X; }
From source file:edu.utexas.cs.tactex.utils.RegressionUtils.java
License:Open Source License
public static Instances createInstances(ArrayList<Instance> instArr, ArrayList<String> attrNames) { ArrayList<Attribute> attributes = new ArrayList<Attribute>(); for (String attr : attrNames) { // attribute name is the polynomial power attributes.add(new Attribute(attr)); }/*from w w w . java2s .c o m*/ Instances X = new Instances("X", attributes, instArr.size()); for (Instance inst : instArr) { X.add(inst); } return X; }
From source file:edu.utexas.cs.tactex.utils.RegressionUtils.java
License:Open Source License
public static Instances createXInstances(XYForRegression xy) { // build attributes ArrayList<Attribute> attributes = new ArrayList<Attribute>(); for (String attrName : xy.getAttrNames()) { // attribute name is the polynomial power Attribute xattr = new Attribute(attrName); attributes.add(xattr);//from w ww . j a v a2 s . c o m } double[][] Xarr = xy.getX(); int numInstances = Xarr.length; int numAttr = Xarr[0].length; Instances Xinst = new Instances("X", attributes, numInstances); // fill instances for (int i = 0; i < numInstances; ++i) { Instance row = new DenseInstance(numAttr); for (int j = 0; j < numAttr; ++j) { row.setValue(j, Xarr[i][j]); } Xinst.add(row); } return Xinst; }
From source file:elh.eus.absa.CLI.java
License:Open Source License
/** * Main access to the train-atc functionalities. Train ATC using a double one vs. all classifier * (E and A) for E#A aspect categories// w w w. j av a 2 s . c o m * @throws Exception */ public final void trainATC2(final InputStream inputStream) throws IOException { // load training parameters file String paramFile = parsedArguments.getString("params"); String testFile = parsedArguments.getString("testset"); String paramFile2 = parsedArguments.getString("params2"); String corpusFormat = parsedArguments.getString("corpusFormat"); //String validation = parsedArguments.getString("validation"); String lang = parsedArguments.getString("language"); //int foldNum = Integer.parseInt(parsedArguments.getString("foldNum")); //boolean printPreds = parsedArguments.getBoolean("printPreds"); boolean nullSentenceOpinions = parsedArguments.getBoolean("nullSentences"); boolean onlyTest = parsedArguments.getBoolean("testOnly"); double threshold = 0.5; double threshold2 = 0.5; String modelsPath = "/home/inaki/elixa-atp/ovsaModels"; CorpusReader reader = new CorpusReader(inputStream, corpusFormat, nullSentenceOpinions, lang); Features atcTrain = new Features(reader, paramFile, "3"); Instances traindata = atcTrain.loadInstances(true, "atc"); if (onlyTest) { if (FileUtilsElh.checkFile(testFile)) { System.err.println("read from test file"); reader = new CorpusReader(new FileInputStream(new File(testFile)), corpusFormat, nullSentenceOpinions, lang); atcTrain.setCorpus(reader); traindata = atcTrain.loadInstances(true, "atc"); } } //setting class attribute (entCat|attCat|entAttCat|polarityCat) //HashMap<String, Integer> opInst = atcTrain.getOpinInst(); //WekaWrapper classifyAtts; WekaWrapper onevsall; try { //classify.printMultilabelPredictions(classify.multiLabelPrediction()); */ //onevsall Instances entdata = new Instances(traindata); entdata.deleteAttributeAt(entdata.attribute("attCat").index()); entdata.deleteAttributeAt(entdata.attribute("entAttCat").index()); entdata.setClassIndex(entdata.attribute("entCat").index()); onevsall = new WekaWrapper(entdata, true); if (!onlyTest) { onevsall.trainOneVsAll(modelsPath, paramFile + "entCat"); System.out.println("trainATC: one vs all models ready"); } onevsall.setTestdata(entdata); HashMap<Integer, HashMap<String, Double>> ovsaRes = onevsall.predictOneVsAll(modelsPath, paramFile + "entCat"); System.out.println("trainATC: one vs all predictions ready"); HashMap<Integer, String> instOps = new HashMap<Integer, String>(); for (String oId : atcTrain.getOpinInst().keySet()) { instOps.put(atcTrain.getOpinInst().get(oId), oId); } atcTrain = new Features(reader, paramFile2, "3"); entdata = atcTrain.loadInstances(true, "attTrain2_data"); entdata.deleteAttributeAt(entdata.attribute("entAttCat").index()); //entdata.setClassIndex(entdata.attribute("entCat").index()); Attribute insAtt = entdata.attribute("instanceId"); double maxInstId = entdata.kthSmallestValue(insAtt, entdata.numDistinctValues(insAtt) - 1); System.err.println("last instance has index: " + maxInstId); for (int ins = 0; ins < entdata.numInstances(); ins++) { System.err.println("ins" + ins); int i = (int) entdata.instance(ins).value(insAtt); Instance currentInst = entdata.instance(ins); //System.err.println("instance "+i+" oid "+kk.get(i+1)+"kk contains key i?"+kk.containsKey(i)); String sId = reader.getOpinion(instOps.get(i)).getsId(); String oId = instOps.get(i); reader.removeSentenceOpinions(sId); int oSubId = 0; for (String cl : ovsaRes.get(i).keySet()) { //System.err.println("instance: "+i+" class "+cl+" value: "+ovsaRes.get(i).get(cl)); if (ovsaRes.get(i).get(cl) > threshold) { //System.err.println("one got through ! instance "+i+" class "+cl+" value: "+ovsaRes.get(i).get(cl)); // for the first one update the instances if (oSubId >= 1) { Instance newIns = new SparseInstance(currentInst); newIns.setDataset(entdata); entdata.add(newIns); newIns.setValue(insAtt, maxInstId + oSubId); newIns.setClassValue(cl); instOps.put((int) maxInstId + oSubId, oId); } // if the are more create new instances else { currentInst.setClassValue(cl); //create and add opinion to the structure // trgt, offsetFrom, offsetTo, polarity, cat, sId); //Opinion op = new Opinion(instOps.get(i)+"_"+oSubId, "", 0, 0, "", cl, sId); //reader.addOpinion(op); } oSubId++; } } //finished updating instances data } entdata.setClass(entdata.attribute("attCat")); onevsall = new WekaWrapper(entdata, true); /** * Bigarren sailkatzailea * * */ if (!onlyTest) { onevsall.trainOneVsAll(modelsPath, paramFile + "attCat"); System.out.println("trainATC: one vs all attcat models ready"); } ovsaRes = onevsall.predictOneVsAll(modelsPath, paramFile + "entAttCat"); insAtt = entdata.attribute("instanceId"); maxInstId = entdata.kthSmallestValue(insAtt, insAtt.numValues()); System.err.println("last instance has index: " + maxInstId); for (int ins = 0; ins < entdata.numInstances(); ins++) { System.err.println("ins: " + ins); int i = (int) entdata.instance(ins).value(insAtt); Instance currentInst = entdata.instance(ins); //System.err.println("instance "+i+" oid "+kk.get(i+1)+"kk contains key i?"+kk.containsKey(i)); String sId = reader.getOpinion(instOps.get(i)).getsId(); String oId = instOps.get(i); reader.removeSentenceOpinions(sId); int oSubId = 0; for (String cl : ovsaRes.get(i).keySet()) { //System.err.println("instance: "+i+" class "+cl+" value: "+ovsaRes.get(i).get(cl)); if (ovsaRes.get(i).get(cl) > threshold2) { ///System.err.println("instance: "+i+" class "+cl+" value: "+ovsaRes.get(i).get(cl)); if (ovsaRes.get(i).get(cl) > threshold) { //System.err.println("one got through ! instance "+i+" class "+cl+" value: "+ovsaRes.get(i).get(cl)); // for the first one update the instances if (oSubId >= 1) { String label = currentInst.stringValue(entdata.attribute("entAtt")) + "#" + cl; //create and add opinion to the structure // trgt, offsetFrom, offsetTo, polarity, cat, sId); Opinion op = new Opinion(oId + "_" + oSubId, "", 0, 0, "", label, sId); reader.addOpinion(op); } // if the are more create new instances else { String label = currentInst.stringValue(entdata.attribute("entAtt")) + "#" + cl; //create and add opinion to the structure // trgt, offsetFrom, offsetTo, polarity, cat, sId); reader.removeOpinion(oId); Opinion op = new Opinion(oId + "_" + oSubId, "", 0, 0, "", label, sId); reader.addOpinion(op); } oSubId++; } } //finished updating instances data } } reader.print2Semeval2015format(paramFile + "entAttCat.xml"); } catch (Exception e) { e.printStackTrace(); } //traindata.setClass(traindata.attribute("entAttCat")); System.err.println("DONE CLI train-atc2 (oneVsAll)"); }
From source file:elh.eus.absa.Features.java
License:Open Source License
/** * Function fills the attribute vectors for the instances existing in the corpus given. * Attribute vectors contain the features loaded by the creatFeatureSet() function. * //from w w w . j a va 2 s. c om * @param boolean save : whether the Instances file should be saved to an arff file or not. * @return Weka Instances object containing the attribute vectors filled with the features specified * in the parameter file. */ public Instances loadInstances(boolean save, String prefix) throws IOException { String savePath = params.getProperty("fVectorDir") + File.separator + "arff" + File.separator + "train_" + prefix; HashMap<String, Opinion> trainExamples = corpus.getOpinions(); int trainExamplesNum = trainExamples.size(); int bowWin = 0; if (params.containsKey("window")) { bowWin = Integer.parseInt(params.getProperty("window")); savePath = savePath + "_w" + bowWin; } //Properties posProp = new Properties(); //eus.ixa.ixa.pipe.pos.Annotate postagger = new eus.ixa.ixa.pipe.pos.Annotate(posProp); if (params.containsKey("lemmaNgrams")) { Properties posProp = NLPpipelineWrapper.setPostaggerProperties(params.getProperty("pos-model"), params.getProperty("lemma-model"), corpus.getLang(), "bin", "false"); postagger = new eus.ixa.ixa.pipe.pos.Annotate(posProp); } //System.out.println("train examples: "+trainExamplesNum); //Create the Weka object for the training set Instances rsltdata = new Instances("train", atts, trainExamplesNum); // setting class attribute (last attribute in train data. //traindata.setClassIndex(traindata.numAttributes() - 1); System.err.println("Features: loadInstances() - featNum: " + this.featNum + " - trainset attrib num -> " + rsltdata.numAttributes() + " - "); System.out.println("Features: loadInstances() - featNum: " + this.featNum + " - trainset attrib num -> " + rsltdata.numAttributes() + " - "); int instId = 1; // fill the vectors for each training example for (String oId : trainExamples.keySet()) { //System.err.println("sentence: "+ corpus.getOpinionSentence(o.getId())); //value vector double[] values = new double[featNum]; // first element is the instanceId values[rsltdata.attribute("instanceId").index()] = instId; // string normalization (emoticons, twitter grammar,...) String opNormalized = corpus.getOpinionSentence(oId); // compute uppercase ratio before normalization (if needed) double upRatio = 0.0; if (params.getProperty("upperCaseRatio", "no").equalsIgnoreCase("yes")) { String upper = opNormalized.replaceAll("[\\p{Ll}]", ""); upRatio = (double) upper.length() / (double) opNormalized.length(); values[rsltdata.attribute("upperCaseRation").index()] = upRatio; } // string normalization (emoticons, twitter grammar,...) if ((params.containsKey("wfngrams") || params.containsKey("lemmaNgrams")) && (!params.getProperty("normalization", "none").equalsIgnoreCase("noEmot"))) { opNormalized = normalize(opNormalized, params.getProperty("normalization", "none")); } //process the current instance with the NLP pipeline in order to get token and lemma|pos features KAFDocument nafinst = new KAFDocument("", ""); String nafname = trainExamples.get(oId).getsId().replace(':', '_'); String nafDir = params.getProperty("kafDir"); String nafPath = nafDir + File.separator + nafname + ".kaf"; //counter for opinion sentence token number. Used for computing relative values of the features int tokNum = 1; try { if (params.containsKey("lemmaNgrams")) //(lemmaNgrams != null) && (!lemmaNgrams.isEmpty())) { if (FileUtilsElh.checkFile(nafPath)) { nafinst = KAFDocument.createFromFile(new File(nafPath)); } else { nafinst = NLPpipelineWrapper.ixaPipesTokPos(opNormalized, corpus.getLang(), params.getProperty("pos-model"), params.getProperty("lemma-model"), postagger); Files.createDirectories(Paths.get(nafDir)); nafinst.save(nafPath); } tokNum = nafinst.getWFs().size(); //System.err.println("Features::loadInstances - postagging opinion sentence ("+oId+") - "+corpus.getOpinionSentence(oId)); } else { if (FileUtilsElh.checkFile(nafPath)) { nafinst = KAFDocument.createFromFile(new File(nafPath)); } else { nafinst = NLPpipelineWrapper.ixaPipesTok(opNormalized, corpus.getLang()); } tokNum = nafinst.getWFs().size(); //System.err.println("Features::loadInstances - tokenizing opinion sentence ("+oId+") - "+corpus.getOpinionSentence(oId)); } } catch (IOException | JDOMException e) { System.err.println("Features::loadInstances() - error when NLP processing the instance " + instId + "|" + oId + ") for filling the attribute vector"); e.printStackTrace(); System.exit(5); } LinkedList<String> ngrams = new LinkedList<String>(); int ngramDim; try { ngramDim = Integer.valueOf(params.getProperty("wfngrams")); } catch (Exception e) { ngramDim = 0; } boolean polNgrams = false; if (params.containsKey("polNgrams")) { polNgrams = params.getProperty("polNgrams").equalsIgnoreCase("yes"); } List<WF> window = nafinst.getWFs(); Integer end = corpus.getOpinion(oId).getTo(); // apply window if window active (>0) and if the target is not null (to=0) if ((bowWin > 0) && (end > 0)) { Integer start = corpus.getOpinion(oId).getFrom(); Integer to = window.size(); Integer from = 0; end++; for (int i = 0; i < window.size(); i++) { WF wf = window.get(i); if ((wf.getOffset() == start) && (i >= bowWin)) { from = i - bowWin; } else if (wf.getOffset() >= end) { if (i + bowWin < window.size()) { to = i + bowWin; } break; } } window = window.subList(from, to); //System.out.println("startTgt: "+start+" - from: "+from+" | endTrgt:"+(end-1)+" - to:"+to); } //System.out.println("Sentence: "+corpus.getOpinionSentence(oId)+" - target: "+corpus.getOpinion(oId).getTarget()+ // "\n window: from-> "+window.get(0).getForm()+" to-> "+window.get(window.size()-1)+" .\n"); List<String> windowWFIds = new ArrayList<String>(); // word form ngram related features for (WF wf : window) { windowWFIds.add(wf.getId()); String wfStr = wf.getForm(); if (params.containsKey("wfngrams") && ngramDim > 0) { if (!savePath.contains("_wf" + ngramDim)) { savePath = savePath + "_wf" + ngramDim; } //if the current word form is in the ngram list activate the feature in the vector if (ngrams.size() >= ngramDim) { ngrams.removeFirst(); } ngrams.add(wfStr); // add ngrams to the feature vector checkNgramFeatures(ngrams, values, "wf", 1, false); //toknum } // Clark cluster info corresponding to the current word form if (params.containsKey("clark") && attributeSets.get("ClarkCl").containsKey(wfStr)) { if (!savePath.contains("_cl")) { savePath = savePath + "_cl"; } values[rsltdata.attribute("ClarkClId_" + attributeSets.get("ClarkCl").get(wfStr)).index()]++; } // Clark cluster info corresponding to the current word form if (params.containsKey("brown") && attributeSets.get("BrownCl").containsKey(wfStr)) { if (!savePath.contains("_br")) { savePath = savePath + "_br"; } values[rsltdata.attribute("BrownClId_" + attributeSets.get("BrownCl").get(wfStr)).index()]++; } // Clark cluster info corresponding to the current word form if (params.containsKey("word2vec") && attributeSets.get("w2vCl").containsKey(wfStr)) { if (!savePath.contains("_w2v")) { savePath = savePath + "_w2v"; } values[rsltdata.attribute("w2vClId_" + attributeSets.get("w2vCl").get(wfStr)).index()]++; } } //empty ngram list and add remaining ngrams to the feature list checkNgramFeatures(ngrams, values, "wf", 1, true); //toknum // PoS tagger related attributes: lemmas and pos tags if (params.containsKey("lemmaNgrams") || (params.containsKey("pos") && !params.getProperty("pos").equalsIgnoreCase("0")) || params.containsKey("polarLexiconGeneral") || params.containsKey("polarLexiconDomain")) { ngrams = new LinkedList<String>(); if (params.containsKey("lemmaNgrams") && (!params.getProperty("lemmaNgrams").equalsIgnoreCase("0"))) { ngramDim = Integer.valueOf(params.getProperty("lemmaNgrams")); } else { ngramDim = 3; } LinkedList<String> posNgrams = new LinkedList<String>(); int posNgramDim = 0; if (params.containsKey("pos")) { posNgramDim = Integer.valueOf(params.getProperty("pos")); } for (Term t : nafinst.getTermsFromWFs(windowWFIds)) { //lemmas // && (!params.getProperty("lemmaNgrams").equalsIgnoreCase("0")) if ((params.containsKey("lemmaNgrams")) || params.containsKey("polarLexiconGeneral") || params.containsKey("polarLexiconDomain")) { if (!savePath.contains("_l" + ngramDim)) { savePath = savePath + "_l" + ngramDim; } String lemma = t.getLemma(); if (ngrams.size() >= ngramDim) { ngrams.removeFirst(); } ngrams.add(lemma); // add ngrams to the feature vector for (int i = 0; i < ngrams.size(); i++) { String ng = featureFromArray(ngrams.subList(0, i + 1), "lemma"); //if the current lemma is in the ngram list activate the feature in the vector if (params.containsKey("lemmaNgrams") && (!params.getProperty("lemmaNgrams").equalsIgnoreCase("0"))) { Attribute ngAtt = rsltdata.attribute(ng); if (ngAtt != null) { addNumericToFeatureVector(ng, values, 1); //tokNum } } ng = featureFromArray(ngrams.subList(0, i + 1), ""); if (params.containsKey("polarLexiconGeneral") || params.containsKey("polarLexiconDomain")) { checkPolarityLexicons(ng, values, tokNum, polNgrams); } //end polarity ngram checker } //end ngram checking } //pos tags if (params.containsKey("pos") && !params.getProperty("pos").equalsIgnoreCase("0")) { if (!savePath.contains("_p")) { savePath = savePath + "_p"; } if (posNgrams.size() >= posNgramDim) { posNgrams.removeFirst(); } posNgrams.add(t.getPos()); // add ngrams to the feature vector checkNgramFeatures(posNgrams, values, "pos", 1, false); } } //endFor //empty ngram list and add remaining ngrams to the feature list while (!ngrams.isEmpty()) { String ng = featureFromArray(ngrams, "lemma"); //if the current lemma is in the ngram list activate the feature in the vector if (rsltdata.attribute(ng) != null) { addNumericToFeatureVector(ng, values, 1); //tokNum } // polarity lexicons if (params.containsKey("polarLexiconGeneral") || params.containsKey("polarLexiconDomain")) { checkPolarityLexicons(ng, values, tokNum, polNgrams); } //end polarity ngram checker ngrams.removeFirst(); } //empty pos ngram list and add remaining pos ngrams to the feature list checkNgramFeatures(posNgrams, values, "pos", 1, true); } // add sentence length as a feature if (params.containsKey("sentenceLength") && (!params.getProperty("sentenceLength").equalsIgnoreCase("no"))) { values[rsltdata.attribute("sentenceLength").index()] = tokNum; } //create object for the current instance and associate it with the current train dataset. Instance inst = new SparseInstance(1.0, values); inst.setDataset(rsltdata); // add category attributte values String cat = trainExamples.get(oId).getCategory(); if (params.containsKey("categories") && params.getProperty("categories").compareTo("E&A") == 0) { if (cat.compareTo("NULL") == 0) { inst.setValue(rsltdata.attribute("entCat").index(), cat); inst.setValue(rsltdata.attribute("attCat").index(), cat); } else { String[] splitCat = cat.split("#"); inst.setValue(rsltdata.attribute("entCat").index(), splitCat[0]); inst.setValue(rsltdata.attribute("attCat").index(), splitCat[1]); } //inst.setValue(attIndexes.get("entAttCat"), cat); } else if (params.containsKey("categories") && params.getProperty("categories").compareTo("E#A") == 0) { inst.setValue(rsltdata.attribute("entAttCat").index(), cat); } if (params.containsKey("polarity") && params.getProperty("polarity").compareTo("yes") == 0) { // add class value as a double (Weka stores all values as doubles ) String pol = normalizePolarity(trainExamples.get(oId).getPolarity()); //System.err.println("Features::loadInstances - pol "+pol+" for oid "+oId+" - text:"+corpus.getOpinionSentence(oId)); if (pol != null && !pol.isEmpty()) { //System.err.println("polarity: _"+pol+"_"); inst.setValue(rsltdata.attribute("polarityCat"), pol); } else { inst.setMissing(rsltdata.attribute("polarityCat")); } } //add instance to train data rsltdata.add(inst); //store opinion Id and instance Id this.opInst.put(oId, instId); instId++; } System.err.println("Features : loadInstances() - training data ready total number of examples -> " + trainExamplesNum + " - " + rsltdata.numInstances()); if (save) { try { savePath = savePath + ".arff"; System.err.println("arff written to: " + savePath); ArffSaver saver = new ArffSaver(); saver.setInstances(rsltdata); saver.setFile(new File(savePath)); saver.writeBatch(); } catch (IOException e1) { e1.printStackTrace(); } catch (Exception e2) { e2.printStackTrace(); } } return rsltdata; }
From source file:elh.eus.absa.Features.java
License:Open Source License
/** * Function fills the attribute vectors for the instances existing in the Conll tabulated formatted corpus given. * Attribute vectors contain the features loaded by the creatFeatureSet() function. * /* w ww .jav a 2 s . co m*/ * @param boolean save : whether the Instances file should be saved to an arff file or not. * @return Weka Instances object containing the attribute vectors filled with the features specified * in the parameter file. */ public Instances loadInstancesTAB(boolean save, String prefix) { String savePath = params.getProperty("fVectorDir") + File.separator + "arff" + File.separator + "train_" + prefix; HashMap<String, Opinion> trainExamples = corpus.getOpinions(); int trainExamplesNum = trainExamples.size(); int bowWin = 0; if (params.containsKey("window")) { bowWin = Integer.parseInt(params.getProperty("window")); savePath = savePath + "_w" + bowWin; } //System.out.println("train examples: "+trainExamplesNum); //Create the Weka object for the training set Instances rsltdata = new Instances("train", atts, trainExamplesNum); // setting class attribute (last attribute in train data. //traindata.setClassIndex(traindata.numAttributes() - 1); System.err.println("Features: loadInstancesTAB() - featNum: " + this.featNum + " - trainset attrib num -> " + rsltdata.numAttributes() + " - "); System.out.println("Features: loadInstancesTAB() - featNum: " + this.featNum + " - trainset attrib num -> " + rsltdata.numAttributes() + " - "); int instId = 1; // fill the vectors for each training example for (String oId : trainExamples.keySet()) { //System.err.println("sentence: "+ corpus.getOpinionSentence(o.getId())); //value vector double[] values = new double[featNum]; // first element is the instanceId values[rsltdata.attribute("instanceId").index()] = instId; LinkedList<String> ngrams = new LinkedList<String>(); int ngramDim; try { ngramDim = Integer.valueOf(params.getProperty("wfngrams")); } catch (Exception e) { ngramDim = 0; } boolean polNgrams = false; if (params.containsKey("polNgrams")) { polNgrams = params.getProperty("polNgrams").equalsIgnoreCase("yes"); } String[] noWindow = corpus.getOpinionSentence(oId).split("\n"); //counter for opinion sentence token number. Used for computing relative values of the features int tokNum = noWindow.length; List<String> window = Arrays.asList(noWindow); Integer end = corpus.getOpinion(oId).getTo(); // apply window if window active (>0) and if the target is not null (to=0) if ((bowWin > 0) && (end > 0)) { Integer start = corpus.getOpinion(oId).getFrom(); Integer from = start - bowWin; if (from < 0) { from = 0; } Integer to = end + bowWin; if (to > noWindow.length - 1) { to = noWindow.length - 1; } window = Arrays.asList(Arrays.copyOfRange(noWindow, from, to)); } //System.out.println("Sentence: "+corpus.getOpinionSentence(oId)+" - target: "+corpus.getOpinion(oId).getTarget()+ // "\n window: from-> "+window.get(0).getForm()+" to-> "+window.get(window.size()-1)+" .\n"); //System.err.println(Arrays.toString(window.toArray())); // word form ngram related features for (String wf : window) { String[] fields = wf.split("\t"); String wfStr = normalize(fields[0], params.getProperty("normalization", "none")); // blank line means we found a sentence end. Empty n-gram list and reiniciate. if (wf.equals("")) { // add ngrams to the feature vector checkNgramFeatures(ngrams, values, "", 1, true); //toknum // since wf is empty no need to check for clusters and other features. continue; } if (params.containsKey("wfngrams") && ngramDim > 0) { if (!savePath.contains("_wf" + ngramDim)) { savePath = savePath + "_wf" + ngramDim; } //if the current word form is in the ngram list activate the feature in the vector if (ngrams.size() >= ngramDim) { ngrams.removeFirst(); } ngrams.add(wfStr); // add ngrams to the feature vector checkNgramFeatures(ngrams, values, "", 1, false); //toknum } // Clark cluster info corresponding to the current word form if (params.containsKey("clark") && attributeSets.get("ClarkCl").containsKey(wfStr)) { if (!savePath.contains("_cl")) { savePath = savePath + "_cl"; } values[rsltdata.attribute("ClarkClId_" + attributeSets.get("ClarkCl").get(wfStr)).index()]++; } // Clark cluster info corresponding to the current word form if (params.containsKey("brown") && attributeSets.get("BrownCl").containsKey(wfStr)) { if (!savePath.contains("_br")) { savePath = savePath + "_br"; } values[rsltdata.attribute("BrownClId_" + attributeSets.get("BrownCl").get(wfStr)).index()]++; } // Clark cluster info corresponding to the current word form if (params.containsKey("word2vec") && attributeSets.get("w2vCl").containsKey(wfStr)) { if (!savePath.contains("_w2v")) { savePath = savePath + "_w2v"; } values[rsltdata.attribute("w2vClId_" + attributeSets.get("w2vCl").get(wfStr)).index()]++; } } //empty ngram list and add remaining ngrams to the feature list checkNgramFeatures(ngrams, values, "", 1, true); //toknum // PoS tagger related attributes: lemmas and pos tags if (params.containsKey("lemmaNgrams") || (params.containsKey("pos") && !params.getProperty("pos").equalsIgnoreCase("0")) || params.containsKey("polarLexiconGeneral") || params.containsKey("polarLexiconDomain")) { ngrams = new LinkedList<String>(); if (params.containsKey("lemmaNgrams") && (!params.getProperty("lemmaNgrams").equalsIgnoreCase("0"))) { ngramDim = Integer.valueOf(params.getProperty("lemmaNgrams")); } else { ngramDim = 3; } LinkedList<String> posNgrams = new LinkedList<String>(); int posNgramDim = 0; if (params.containsKey("pos")) { posNgramDim = Integer.valueOf(params.getProperty("pos")); } for (String t : window) { //lemmas // && (!params.getProperty("lemmaNgrams").equalsIgnoreCase("0")) if ((params.containsKey("lemmaNgrams")) || params.containsKey("polarLexiconGeneral") || params.containsKey("polarLexiconDomain")) { if (!savePath.contains("_l" + ngramDim)) { savePath = savePath + "_l" + ngramDim; } //blank line means we found a sentence end. Empty n-gram list and reiniciate. if (t.equals("")) { // check both lemma n-grams and polarity lexicons, and add values to the feature vector checkNgramsAndPolarLexicons(ngrams, values, "lemma", 1, tokNum, true, polNgrams); //toknum // since t is empty no need to check for clusters and other features. continue; } String[] fields = t.split("\t"); if (fields.length < 2) { continue; } String lemma = normalize(fields[1], params.getProperty("normalization", "none")); if (ngrams.size() >= ngramDim) { ngrams.removeFirst(); } ngrams.add(lemma); // check both lemma n-grams and polarity lexicons, and add values to the feature vector checkNgramsAndPolarLexicons(ngrams, values, "lemma", 1, tokNum, false, polNgrams); } //pos tags if (params.containsKey("pos") && !params.getProperty("pos").equalsIgnoreCase("0")) { if (!savePath.contains("_p")) { savePath = savePath + "_p"; } if (posNgrams.size() >= posNgramDim) { posNgrams.removeFirst(); } String[] fields = t.split("\t"); if (fields.length < 3) { continue; } String pos = fields[2]; posNgrams.add(pos); // add ngrams to the feature vector checkNgramFeatures(posNgrams, values, "pos", 1, false); } } //endFor //empty ngram list and add remaining ngrams to the feature list // check both lemma n-grams and polarity lexicons, and add values to the feature vector checkNgramsAndPolarLexicons(ngrams, values, "", 1, tokNum, true, polNgrams); //empty pos ngram list and add remaining pos ngrams to the feature list checkNgramFeatures(posNgrams, values, "pos", 1, true); } // add sentence length as a feature if (params.containsKey("sentenceLength") && (!params.getProperty("sentenceLength").equalsIgnoreCase("no"))) { values[rsltdata.attribute("sentenceLength").index()] = tokNum; } // compute uppercase ratio before normalization (if needed) //double upRatio =0.0; //if (params.getProperty("upperCaseRatio", "no").equalsIgnoreCase("yes")) //{ // String upper = opNormalized.replaceAll("[a-z]", ""); // upRatio = (double)upper.length() / (double)opNormalized.length(); // values[rsltdata.attribute("upperCaseRation").index()] = upRatio; //} //create object for the current instance and associate it with the current train dataset. Instance inst = new SparseInstance(1.0, values); inst.setDataset(rsltdata); // add category attributte values String cat = trainExamples.get(oId).getCategory(); if (params.containsKey("categories") && params.getProperty("categories").compareTo("E&A") == 0) { if (cat.compareTo("NULL") == 0) { inst.setValue(rsltdata.attribute("entCat").index(), cat); inst.setValue(rsltdata.attribute("attCat").index(), cat); } else { String[] splitCat = cat.split("#"); inst.setValue(rsltdata.attribute("entCat").index(), splitCat[0]); inst.setValue(rsltdata.attribute("attCat").index(), splitCat[1]); } //inst.setValue(attIndexes.get("entAttCat"), cat); } else if (params.containsKey("categories") && params.getProperty("categories").compareTo("E#A") == 0) { inst.setValue(rsltdata.attribute("entAttCat").index(), cat); } if (params.containsKey("polarity") && params.getProperty("polarity").compareTo("yes") == 0) { // add class value as a double (Weka stores all values as doubles ) String pol = normalizePolarity(trainExamples.get(oId).getPolarity()); if (pol != null && !pol.isEmpty()) { inst.setValue(rsltdata.attribute("polarityCat"), pol); } else { //System.err.println("polarity: _"+pol+"_"); inst.setMissing(rsltdata.attribute("polarityCat")); } } //add instance to train data rsltdata.add(inst); //store opinion Id and instance Id this.opInst.put(oId, instId); instId++; } System.err.println("Features : loadInstancesTAB() - training data ready total number of examples -> " + trainExamplesNum + " - " + rsltdata.numInstances()); if (save) { try { savePath = savePath + ".arff"; System.err.println("arff written to: " + savePath); ArffSaver saver = new ArffSaver(); saver.setInstances(rsltdata); saver.setFile(new File(savePath)); saver.writeBatch(); } catch (IOException e1) { e1.printStackTrace(); } catch (Exception e2) { e2.printStackTrace(); } } return rsltdata; }