List of usage examples for weka.core Instances add
@Override public boolean add(Instance instance)
From source file:wekimini.DataManager.java
public Instance[] getClassifiableInstancesForAllOutputs(double[] vals) { double data[] = new double[numMetaData + numInputs + numOutputs]; System.arraycopy(vals, 0, data, numMetaData, vals.length); /* for (int i = 0; i < numFeatures; i++) { data[numMetaData + i] = d[i];//from w w w . jav a 2 s . com } */ Instance[] is = new Instance[numOutputs]; for (int i = 0; i < numOutputs; i++) { is[i] = new Instance(1.0, data); Instances tmp = new Instances(dummyInstances); tmp.add(is[i]); try { tmp = Filter.useFilter(tmp, outputFilters[i]); tmp.setClassIndex(tmp.numAttributes() - 1); is[i] = tmp.firstInstance(); } catch (Exception ex) { logger.log(Level.SEVERE, "Could not filter"); Logger.getLogger(DataManager.class.getName()).log(Level.SEVERE, null, ex); } tmp.setClassIndex(tmp.numAttributes() - 1); } return is; }
From source file:wekimini.kadenze.LoadableInstanceMaker.java
public Instance convertInputsToInstance(double[] vals) { double data[] = new double[numMetaData + numInputs + numOutputs]; System.arraycopy(vals, 0, data, numMetaData, vals.length); Instance instance = new Instance(1.0, data); Instances tmp = new Instances(dummyInstances); tmp.add(instance); try {/*from w ww .j ava 2 s. c om*/ tmp = Filter.useFilter(tmp, outputFilter); tmp.setClassIndex(tmp.numAttributes() - 1); instance = tmp.firstInstance(); } catch (Exception ex) { logger.log(Level.SEVERE, "Could not filter"); Logger.getLogger(DataManager.class.getName()).log(Level.SEVERE, null, ex); } tmp.setClassIndex(tmp.numAttributes() - 1); return instance; }
From source file:wekimini.kadenze.LoadableInstanceMaker.java
public Instance convertInputsToInstance(double val) { double data[] = new double[numMetaData + numInputs + numOutputs]; data[numMetaData] = val; Instance instance = new Instance(1.0, data); Instances tmp = new Instances(dummyInstances); tmp.add(instance); try {//from ww w.j a v a 2 s . c o m tmp = Filter.useFilter(tmp, outputFilter); tmp.setClassIndex(tmp.numAttributes() - 1); instance = tmp.firstInstance(); } catch (Exception ex) { logger.log(Level.SEVERE, "Could not filter"); Logger.getLogger(DataManager.class.getName()).log(Level.SEVERE, null, ex); } tmp.setClassIndex(tmp.numAttributes() - 1); return instance; }
From source file:wekimini.learning.LinearRegressionAttributeTransformer.java
@Override public Instances transformedData(Instances data) throws Exception { Instances output; output = new Instances(exampleInstances); for (int i = 0; i < data.numInstances(); i++) { Instance converted = convertInstance(data.instance(i)); output.add(converted); }/*from w w w.j ava 2s. com*/ return output; }
From source file:Windows.windowGenerating.java
/** * Metoda zamienia liste zbiorw na instance. Pierwsza ptla tworzy list * wartoci jakie mog przybiera atrybut.//from w ww . ja v a2 s . c o m * * @param atr lista atryburw * @param s lista zawierajaca kombinajcie uzupenionych danych * @return * */ public static Instances setToInstances(List<Set<String>> atr, Set<List<String>> s) { ArrayList<Attribute> lAtrib = new ArrayList<>(); for (int i = 0; i < atr.size(); i++) { FastVector labels = new FastVector(); //Utworzenie obiektu kolekcji wartosci nowego atrybutu symbolicznego Set<String> setValuesAtr = atr.get(i); Iterator ite = setValuesAtr.iterator(); while (ite.hasNext()) { Object e = ite.next(); labels.addElement(e); } Attribute attrib = new Attribute(listOfHeather.get(i), labels); lAtrib.add(attrib); } Instances dataNewObj = new Instances("Nowa tablica", lAtrib, 0); for (int i = 0; i < numOfNewInstance; i++) { Instance n = new DenseInstance(lAtrib.size()); dataNewObj.add(n); } System.out.println(dataNewObj.numInstances() + " jest instancji nowo wygenerowanych"); int iteratorek = 0; Iterator iter = s.iterator(); while (iter.hasNext()) { Instance instance = dataNewObj.instance(iteratorek); //Pobranie obiektu o podanym numerze List<String> str = (List<String>) iter.next(); for (int j = 0; j < dataNewObj.numAttributes(); j++) { instance.setValue(j, str.get(j)); } iteratorek++; } return dataNewObj; }
From source file:wtute.engine.AnalysisEngine.java
public void train() throws Exception { Instances trainingInstances = createInstances("TRAINING INS"); for (int i = 0; i < data.numInstances(); i++) { Instance instance = convertInstance(data.instance(i)); instance.setDataset(trainingInstances); trainingInstances.add(instance); }/*from ww w . ja v a2s . c o m*/ System.out.println(data); J48 classifier = new J48(); try { //classifier training code classifier.buildClassifier(trainingInstances); //storing the trained classifier to a file for future use weka.core.SerializationHelper.write("J48.model", classifier); } catch (Exception ex) { System.out.println("Exception in training the classifier."); } }