List of usage examples for weka.core Instances attribute
publicAttribute attribute(String name)
From source file:br.com.edu.arff.ConstructArff.java
public static void main(String[] args) throws Exception { FastVector atts;//from w w w. j a v a 2 s . c o m FastVector attsRel; FastVector attVals; FastVector attValsRel; Instances data; Instances dataRel; double[] vals; double[] valsRel; int i, j, cont; ConnectionLAK conexao = new ConnectionLAK(); ArrayList<String> uris; ArrayList<String> todos_topicos; ArrayList<Topicos> valores; uris = conexao.buscaURIS(); todos_topicos = conexao.BuscarTodosTopicos(); atts = new FastVector(); for (String topicos : todos_topicos) { atts.addElement(new Attribute(topicos)); } data = new Instances("Relacao", atts, 0); for (String uri : uris) { i = 0; vals = new double[data.numAttributes()]; valores = conexao.BuscarTopicos(uri); for (int t = 0; t < data.numAttributes(); t++) { for (Topicos topic : valores) { String comparacao = topic.getTopico(); String atributo = data.attribute(t).name(); if (comparacao.equals(atributo)) { vals[t] = topic.getValor(); break; } } } data.add(new Instance(1.0, vals)); } System.out.println(data); }
From source file:br.com.edu.arff.LoadArff.java
public ArrayList<Cluster> carregarArff(String caminho) throws FileNotFoundException, IOException { BufferedReader reader = new BufferedReader(new FileReader(caminho)); ArffReader arff = new ArffReader(reader); Instances data = arff.getData(); data.setClassIndex(data.numAttributes() - 1); Instance inst = null;// w ww. jav a2 s . co m Attribute att = data.attribute("Cluster"); ArrayList<String> uris; ArrayList<Cluster> lista = new ArrayList<Cluster>(); Fuseki fuseki = new Fuseki(); uris = fuseki.buscaURIS(); for (int i = 0; i <= data.numInstances() - 1; i++) { Cluster cluster = new Cluster(); String clusters = String.valueOf(data.get(i).stringValue(att)); cluster.setUri(uris.get(i)); cluster.setGrupo(clusters); lista.add(cluster); } // for (Cluster c : lista) { // System.out.println(c.getUri()); // System.out.println(c.getGrupo()); // } return lista; }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void EM_Init(Instances inst) throws Exception { int i, j, k;/*from www. ja va 2 s . co m*/ // run k means 10 times and choose best solution SimpleKMeans bestK = null; double bestSqE = Double.MAX_VALUE; for (i = 0; i < 10; i++) { SimpleKMeans sk = new SimpleKMeans(); sk.setSeed(m_rr.nextInt()); sk.setNumClusters(m_num_clusters); sk.setDisplayStdDevs(true); sk.buildClusterer(inst); if (sk.getSquaredError() < bestSqE) { bestSqE = sk.getSquaredError(); bestK = sk; } } // initialize with best k-means solution m_num_clusters = bestK.numberOfClusters(); m_weights = new double[inst.numInstances()][m_num_clusters]; m_model = new DiscreteEstimator[m_num_clusters][m_num_attribs]; m_modelNormal = new double[m_num_clusters][m_num_attribs][3]; m_priors = new double[m_num_clusters]; Instances centers = bestK.getClusterCentroids(); Instances stdD = bestK.getClusterStandardDevs(); double[][][] nominalCounts = bestK.getClusterNominalCounts(); double[] clusterSizes = bestK.getClusterSizes(); for (i = 0; i < m_num_clusters; i++) { Instance center = centers.instance(i); for (j = 0; j < m_num_attribs; j++) { if (inst.attribute(j).isNominal()) { m_model[i][j] = new DiscreteEstimator(m_theInstances.attribute(j).numValues(), true); for (k = 0; k < inst.attribute(j).numValues(); k++) { m_model[i][j].addValue(k, nominalCounts[i][j][k]); } } else { double minStdD = (m_minStdDevPerAtt != null) ? m_minStdDevPerAtt[j] : m_minStdDev; double mean = (center.isMissing(j)) ? inst.meanOrMode(j) : center.value(j); m_modelNormal[i][j][0] = mean; double stdv = (stdD.instance(i).isMissing(j)) ? ((m_maxValues[j] - m_minValues[j]) / (2 * m_num_clusters)) : stdD.instance(i).value(j); if (stdv < minStdD) { stdv = inst.attributeStats(j).numericStats.stdDev; if (Double.isInfinite(stdv)) { stdv = minStdD; } if (stdv < minStdD) { stdv = minStdD; } } if (stdv <= 0) { stdv = m_minStdDev; } m_modelNormal[i][j][1] = stdv; m_modelNormal[i][j][2] = 1.0; } } } for (j = 0; j < m_num_clusters; j++) { // m_priors[j] += 1.0; m_priors[j] = clusterSizes[j]; } Utils.normalize(m_priors); }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void M(Instances inst) throws Exception { int i, j, l;//w w w .ja v a 2 s . co m new_estimators(); for (i = 0; i < m_num_clusters; i++) { for (j = 0; j < m_num_attribs; j++) { for (l = 0; l < inst.numInstances(); l++) { Instance in = inst.instance(l); if (!in.isMissing(j)) { if (inst.attribute(j).isNominal()) { m_model[i][j].addValue(in.value(j), in.weight() * m_weights[l][i]); } else { m_modelNormal[i][j][0] += (in.value(j) * in.weight() * m_weights[l][i]); m_modelNormal[i][j][2] += in.weight() * m_weights[l][i]; m_modelNormal[i][j][1] += (in.value(j) * in.value(j) * in.weight() * m_weights[l][i]); } } } } } // calcualte mean and std deviation for numeric attributes for (j = 0; j < m_num_attribs; j++) { if (!inst.attribute(j).isNominal()) { for (i = 0; i < m_num_clusters; i++) { if (m_modelNormal[i][j][2] <= 0) { m_modelNormal[i][j][1] = Double.MAX_VALUE; // m_modelNormal[i][j][0] = 0; m_modelNormal[i][j][0] = m_minStdDev; } else { // variance m_modelNormal[i][j][1] = (m_modelNormal[i][j][1] - (m_modelNormal[i][j][0] * m_modelNormal[i][j][0] / m_modelNormal[i][j][2])) / (m_modelNormal[i][j][2]); if (m_modelNormal[i][j][1] < 0) { m_modelNormal[i][j][1] = 0; } // std dev double minStdD = (m_minStdDevPerAtt != null) ? m_minStdDevPerAtt[j] : m_minStdDev; m_modelNormal[i][j][1] = Math.sqrt(m_modelNormal[i][j][1]); if ((m_modelNormal[i][j][1] <= minStdD)) { m_modelNormal[i][j][1] = inst.attributeStats(j).numericStats.stdDev; if ((m_modelNormal[i][j][1] <= minStdD)) { m_modelNormal[i][j][1] = minStdD; } } if ((m_modelNormal[i][j][1] <= 0)) { m_modelNormal[i][j][1] = m_minStdDev; } if (Double.isInfinite(m_modelNormal[i][j][1])) { m_modelNormal[i][j][1] = m_minStdDev; } // mean m_modelNormal[i][j][0] /= m_modelNormal[i][j][2]; } } } } }
From source file:br.ufrn.ia.core.clustering.SimpleKMeansIaProject.java
License:Open Source License
public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0;//www .j a v a 2 s . com m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_FullMissingCounts = new int[instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = new double[instances.numAttributes()]; } m_FullNominalCounts = new int[instances.numAttributes()][0]; m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false); for (int i = 0; i < instances.numAttributes(); i++) { m_FullMissingCounts[i] = instances.attributeStats(i).missingCount; if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(instances.variance(i)); } if (m_FullMissingCounts[i] == instances.numInstances()) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing // as mean } } else { m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts; if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most // common value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int[instances.numInstances()]; if (m_PreserveOrder) m_Assignments = clusterAssignments; m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap initC = new HashMap(); DecisionTableHashKey hk = null; Instances initInstances = null; if (m_PreserveOrder) initInstances = new Instances(instances); else initInstances = instances; for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j + 1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } m_NumClusters = m_ClusterCentroids.numInstances(); // removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances[] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()]; while (!converged) { emptyClusterCount = 0; m_Iterations++; converged = true; for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, true); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid(i, tempI[i], true); } } if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index++] = tempI[k]; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (m_Iterations == m_MaxIterations) converged = true; if (!converged) { m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new int[m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double[] vals2 = new double[instances.numAttributes()]; for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(tempI[i].variance(j)); } else { vals2[j] = Utils.missingValue(); } } m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].numInstances(); } }
From source file:br.ufrn.ia.core.clustering.SimpleKMeansIaProject.java
License:Open Source License
protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) { double[] vals = new double[members.numAttributes()]; // used only for Manhattan Distance Instances sortedMembers = null;/*ww w . j a va 2 s . com*/ int middle = 0; boolean dataIsEven = false; if (m_DistanceFunction instanceof ManhattanDistance) { middle = (members.numInstances() - 1) / 2; dataIsEven = ((members.numInstances() % 2) == 0); if (m_PreserveOrder) { sortedMembers = members; } else { sortedMembers = new Instances(members); } } for (int j = 0; j < members.numAttributes(); j++) { // in case of Euclidian distance the centroid is the mean point // in case of Manhattan distance the centroid is the median point // in both cases, if the attribute is nominal, the centroid is the // mode if (m_DistanceFunction instanceof EuclideanDistance || members.attribute(j).isNominal()) { vals[j] = members.meanOrMode(j); } else if (m_DistanceFunction instanceof ManhattanDistance) { // singleton special case if (members.numInstances() == 1) { vals[j] = members.instance(0).value(j); } else { sortedMembers.kthSmallestValue(j, middle + 1); vals[j] = sortedMembers.instance(middle).value(j); if (dataIsEven) { sortedMembers.kthSmallestValue(j, middle + 2); vals[j] = (vals[j] + sortedMembers.instance(middle + 1).value(j)) / 2; } } } if (updateClusterInfo) { m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount; m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts; if (members.attribute(j).isNominal()) { if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils .maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) { vals[j] = Utils.missingValue(); // mark mode as missing } } else { if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) { vals[j] = Utils.missingValue(); // mark mean as missing } } } } if (updateClusterInfo) m_ClusterCentroids.add(new DenseInstance(1.0, vals)); return vals; }
From source file:c4.pkg5crossv.Preview.java
/** * method to write arff data into s.o.p. * @throws IOException /*from w w w . j a v a2 s .c o m*/ */ public static void showData() throws IOException { String source = MainWindow.browsedFileLabel.getText(); Instances data = DataLoad.loadData(source.replace("\\", "/")); data.setClassIndex(data.numAttributes() - 1); String field = ""; for (int i = 0; i < data.numAttributes(); i++) { // Print the current attribute. System.out.print(data.attribute(i).name() + ": "); previewTextArea.append("\n" + data.attribute(i).name() + ": "); // Print the values associated with the current attribute. double[] values = data.attributeToDoubleArray(i); System.out.println(Arrays.toString(values)); previewTextArea.append(Arrays.toString(values)); } }
From source file:cba.AprioriItemSet.java
License:Open Source License
/** * Converts the header info of the given set of instances into a set * of item sets (singletons). The ordering of values in the header file * determines the lexicographic order.//w ww .j av a 2 s.c om * * @param instances the set of instances whose header info is to be used * @return a set of item sets, each containing a single item * @exception Exception if singletons can't be generated successfully */ public static FastVector singletons(Instances instances, boolean treatZeroAsMissing) throws Exception { FastVector setOfItemSets = new FastVector(); ItemSet current; for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) throw new Exception("Can't handle numeric attributes!"); int j = (treatZeroAsMissing) ? 1 : 0; for (; j < instances.attribute(i).numValues(); j++) { current = new AprioriItemSet(instances.numInstances()); current.setTreatZeroAsMissing(treatZeroAsMissing); current.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) current.m_items[k] = -1; current.m_items[i] = j; setOfItemSets.addElement(current); } } return setOfItemSets; }
From source file:cba.ItemSet.java
License:Open Source License
/** * Converts the header info of the given set of instances into a set * of item sets (singletons). The ordering of values in the header file * determines the lexicographic order./* ww w .ja v a 2 s . co m*/ * * @param instances the set of instances whose header info is to be used * @return a set of item sets, each containing a single item * @exception Exception if singletons can't be generated successfully */ public static FastVector singletons(Instances instances) throws Exception { FastVector setOfItemSets = new FastVector(); ItemSet current; for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) throw new Exception("Can't handle numeric attributes!"); for (int j = 0; j < instances.attribute(i).numValues(); j++) { current = new ItemSet(instances.numInstances()); current.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) current.m_items[k] = -1; current.m_items[i] = j; setOfItemSets.addElement(current); } } return setOfItemSets; }
From source file:cba.ItemSet.java
License:Open Source License
/** * Returns the contents of an item set as a string. * * @param instances contains the relevant header information * @return string describing the item set *///from w w w . j a va 2s . c om public String toString(Instances instances) { StringBuffer text = new StringBuffer(); for (int i = 0; i < instances.numAttributes(); i++) if (m_items[i] != -1) { text.append(instances.attribute(i).name() + '='); text.append(instances.attribute(i).value(m_items[i]) + ' '); } text.append(m_counter); return text.toString(); }