Example usage for weka.core Instances attribute

List of usage examples for weka.core Instances attribute

Introduction

In this page you can find the example usage for weka.core Instances attribute.

Prototype

publicAttribute attribute(String name) 

Source Link

Document

Returns an attribute given its name.

Usage

From source file:cerebro.Id3.java

License:Open Source License

/**
 * Method for building an Id3 tree./*from  www . jav a 2  s. c  o  m*/
 *
 * @param data the training data
 * @exception Exception if decision tree can't be built successfully
 */
private void makeTree(Instances data) throws Exception {

    // Check if no instances have reached this node.
    if (data.numInstances() == 0) {
        m_Attribute = null;
        m_ClassValue = Instance.missingValue();
        m_Distribution = new double[data.numClasses()];
        return;
    }

    // Compute attribute with maximum information gain.
    double[] infoGains = new double[data.numAttributes()];
    Enumeration attEnum = data.enumerateAttributes();
    while (attEnum.hasMoreElements()) {
        Attribute att = (Attribute) attEnum.nextElement();
        infoGains[att.index()] = computeInfoGain(data, att);
    }
    m_Attribute = data.attribute(Utils.maxIndex(infoGains));

    // Make leaf if information gain is zero.
    // Otherwise create successors.
    if (Utils.eq(infoGains[m_Attribute.index()], 0)) {
        m_Attribute = null;
        m_Distribution = new double[data.numClasses()];
        Enumeration instEnum = data.enumerateInstances();
        while (instEnum.hasMoreElements()) {
            Instance inst = (Instance) instEnum.nextElement();
            m_Distribution[(int) inst.classValue()]++;
        }
        Utils.normalize(m_Distribution);
        m_ClassValue = Utils.maxIndex(m_Distribution);
        m_ClassAttribute = data.classAttribute();
    } else {
        Instances[] splitData = splitData(data, m_Attribute);
        m_Successors = new Id3[m_Attribute.numValues()];
        for (int j = 0; j < m_Attribute.numValues(); j++) {
            m_Successors[j] = new Id3();
            m_Successors[j].makeTree(splitData[j]);
        }
    }
}

From source file:cezeri.feature.selection.FeatureSelectionInfluence.java

public static Influence[] getMostDiscriminativeFeature(String filePath, Classifier model) {
    Influence[] ret = null;/*from  w  w  w.j  a va2  s.  c o  m*/
    try {
        Instances data = DataSource.read(filePath);
        ret = new Influence[data.numAttributes() - 1];
        data.setClassIndex(data.numAttributes() - 1);
        // other options
        int seed = 1;
        int folds = 10;
        // randomize data
        Instances randData = new Instances(data);
        Random rand = new Random(seed);
        randData.randomize(rand);
        Evaluation evalBase = getEvaluation(randData, model, folds);
        double accBase = evalBase.correct() / evalBase.numInstances() * 100;
        double nf = randData.numAttributes();

        for (int j = 0; j < nf - 1; j++) {
            ret[j] = new Influence();
            String str = randData.attribute(j).name();
            Attribute att = randData.attribute(j);
            randData.deleteAttributeAt(j);
            Evaluation evalTemp = getEvaluation(randData, model, folds);
            double accTemp = evalTemp.correct() / evalTemp.numInstances() * 100;
            double tempInfluence = accBase - accTemp;
            ret[j].attributeName = str;
            ret[j].infVal = tempInfluence;
            randData.insertAttributeAt(att, j);
        }
        sortInfluenceArray(ret);
    } catch (Exception ex) {
        Logger.getLogger(FeatureSelectionInfluence.class.getName()).log(Level.SEVERE, null, ex);
    }
    return ret;
}

From source file:cezeri.utils.FactoryInstance.java

public static String[] getOriginalClasses(Instances data) {
    Attribute att = data.attribute(data.classIndex());
    String[] ret = new String[data.numClasses()];
    Enumeration enu = att.enumerateValues();
    int q = 0;/*  w  ww  . ja v  a  2  s  .  c  o  m*/
    while (enu.hasMoreElements()) {
        ret[q++] = (String) enu.nextElement();
    }
    return ret;
}

From source file:cezeri.utils.FactoryInstance.java

public static String[] getAttributeList(Instances data) {
    int n = data.numAttributes();
    String[] ret = new String[n];
    for (int i = 0; i < n; i++) {
        ret[i] = data.attribute(i).name();
    }//  w w  w  .j  a  va2s .  c om
    return ret;
}

From source file:cezeri.utils.FactoryInstance.java

public static String[] getAttributeListExceptClassAttribute(Instances data) {
    int n = data.numAttributes();
    String[] ret = new String[n - 1];
    String classAtt = data.classAttribute().name();
    int k = 0;//from www  . j a va  2  s  .c o  m
    for (int i = 0; i < n; i++) {
        if (!classAtt.equals(data.attribute(i).name())) {
            ret[k++] = data.attribute(i).name();
        }

    }
    return ret;
}

From source file:cezeri.utils.FactoryInstance.java

public static Instances getSubsetData(Instances data, String[] attList) {
    Instances temp = new Instances(data);
    for (int i = 0; i < data.numAttributes(); i++) {
        if (!temp.attribute(0).equals(temp.classAttribute())) {
            temp.deleteAttributeAt(0);// w  w  w.  j  av a  2  s . c o  m
        }
    }
    double[][] m = new double[attList.length + 1][data.numInstances()];
    for (int i = 0; i < attList.length; i++) {
        int n = attList.length - 1 - i;
        String str = attList[n];
        Attribute t = data.attribute(str);
        double[] d = data.attributeToDoubleArray(t.index());
        m[n] = d;
        temp.insertAttributeAt(t, 0);
    }
    m[attList.length] = data.attributeToDoubleArray(data.classIndex());
    m = CMatrix.getInstance(m).transpose().get2DArrayDouble();

    FastVector att = new FastVector();
    for (int i = 0; i < temp.numAttributes(); i++) {
        att.addElement(temp.attribute(i));
    }
    Instances ret = new Instances(temp.relationName(), att, m.length);
    for (int i = 0; i < m.length; i++) {
        Instance ins = new Instance(m[0].length);
        for (int j = 0; j < m[0].length; j++) {
            ins.setValue(j, m[i][j]);
        }
        ret.add(ins);
    }
    ret.setClassIndex(temp.classIndex());

    return ret;
}

From source file:ChiSquare.ChiSquaredAttributeEval.java

License:Open Source License

/**
 * Initializes a chi-squared attribute evaluator.
 * Discretizes all attributes that are numeric.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully/*from www .j av  a  2s .com*/
 */
public void buildEvaluator(Instances data) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute chi-squared values
    m_ChiSquareds = new double[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != classIndex) {
            m_ChiSquareds[i] = ContingencyTables.chiVal(ContingencyTables.reduceMatrix(counts[i]), false);
        }
    }
}

From source file:clases.GestorFichero.java

public static void asignarClase(Instances data) {
    for (int i = 0; i < data.numAttributes(); i++) {
        System.out.println(data.attribute(i).name());
        if (data.attribute(i).name().equals(" class")) {
            data.setClassIndex(i);/*from ww  w. j  av  a  2s. c  om*/
            break;
        }
    }
}

From source file:clases.Preproceso.java

public static Instances filterRemoveAttribute(Instances data, List<String> indices) {
    String ind = "";
    boolean a = false;
    for (String atrib : indices) {
        for (int i = 0; i < data.numAttributes(); i++) {
            if (data.attribute(i).name().equals(atrib)) {
                /*            if(!a)
                ind=""+i;// ww w. j a  v  a  2 s. c  o m
                            else*/
                ind = ind + "," + i;
                break;
            }
        }
    }
    Remove rm = new Remove();
    rm.setAttributeIndices(ind.substring(1, ind.length()));

    try {
        rm.setInputFormat(data);
        return Filter.useFilter(data, rm);
    } catch (Exception ex) {
        Logger.getLogger(Preproceso.class.getName()).log(Level.SEVERE, null, ex);
        return null;
    }
}

From source file:classification.classifiers.LDA.java

License:Open Source License

/**
 * Modification on Dr. Wolfgang Lenhard's code.
 * This was necessary because this classifier had to implements
 * "buildClassifier" and "classifyInstance" to be like a classifier of WEKA(R).
 * /*from   w  ww .ja v  a 2s.  co  m*/
 * @param data
 * @throws Exception
 */
public void buildClassifier(Instances data) throws Exception {
    int n = data.numInstances();
    int a = data.numAttributes();
    int k = data.numClasses();
    int[] g = new int[n];

    double[][] d = new double[n][a];
    for (int i = 0; i < n; i++) {
        double[] d_i = data.instance(i).toDoubleArray();
        d[i] = d_i;

        /**
         * To print the attribute with the correspondent double
         *
         * System.out.print("\n"); for(int j=0; j<a; j++){
         * System.out.print(data.instance(i).stringValue(data.attribute(j))
         * + " = ");
         * System.out.print(data.instance(i).value(data.attribute(j)) +
         * ";  "); } System.out.print("\n"); /
         **/
    }

    // Gives the number of objects belonging to class i in the trainingSet.
    int classIndex = a - 1;
    valueClass = new double[k];

    data.setClassIndex(classIndex);

    for (int i = 0; i < k; i++) {
        // Reference class
        String refClass = data.classAttribute().value(i);
        //
        // System.out.println("refClass: " + refClass + " ");

        for (int j = 0; j < n; j++) {
            // Object class
            String objectClass = data.instance(j).stringValue(classIndex);
            //
            // System.out.println("objectClass: " + objectClass + " - value:
            // " + data.instance(j).value(data.attribute(classIndex)));

            // Building two vectors of classes, one in int format and
            // another in double format.
            if (objectClass == refClass) {

                // Object class as a double
                valueClass[i] = data.instance(j).value(data.attribute(classIndex));
                // Object class as an int
                g[j] = i;

                //
                // System.out.println("value of class (int): " + g[j] + "
                // ___ value (double): " + valueClass[i]);
            }
        }

    }

    this.BuildLDA(d, g, true);
}