Example usage for weka.core Instances classIndex

List of usage examples for weka.core Instances classIndex

Introduction

In this page you can find the example usage for weka.core Instances classIndex.

Prototype


publicint classIndex() 

Source Link

Document

Returns the class attribute's index.

Usage

From source file:feature.InfoGainEval.java

License:Open Source License

/**
 * Initializes an information gain attribute evaluator. Discretizes all
 * attributes that are numeric.//w w w. j  a v  a2  s . c o m
 *
 * @param data
 *            set of instances serving as training data
 * @throws Exception
 *             if the evaluator has not been generated successfully
 */
public double computeInfoGain(Instances data, int att) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute info gains
    m_InfoGains = new double[data.numAttributes()];
    m_InfoGains[att] = (ContingencyTables.entropyOverColumns(counts[att])
            - ContingencyTables.entropyConditionedOnRows(counts[att]));

    return m_InfoGains[att];
}

From source file:feature.InfoGainEval.java

License:Open Source License

public void buildEvaluator(Instances data) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {//from  w  ww.j  a  v a2s .c  om
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute info gains
    m_InfoGains = new double[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != classIndex) {
            m_InfoGains[i] = (ContingencyTables.entropyOverColumns(counts[i])
                    - ContingencyTables.entropyConditionedOnRows(counts[i]));
        }
    }
}

From source file:ffnn.FFNN.java

public static Instances preprocess(Instances i) {
    try {/* ww w .  j  av  a2 s . c  o m*/
        Reorder rfilter = new Reorder();
        int classIdx = i.classIndex() + 1;
        String order;
        if (classIdx != 1) {
            order = "1";
            for (int j = 2; j <= i.numAttributes(); j++) {
                if (j != classIdx) {
                    order = order + "," + j;
                }
            }
        } else {
            order = "2";
            for (int j = 3; j <= i.numAttributes(); j++) {
                order = order + "," + j;
            }
        }
        order = order + "," + classIdx;
        rfilter.setAttributeIndices(order);
        rfilter.setInputFormat(i);
        i = Filter.useFilter(i, rfilter);

        StringToNominal stnfilter = new StringToNominal();
        stnfilter.setAttributeRange("first-last");
        stnfilter.setInputFormat(i);
        i = Filter.useFilter(i, stnfilter);

        NominalToBinary ntbfilter = new NominalToBinary();
        ntbfilter.setInputFormat(i);
        i = Filter.useFilter(i, ntbfilter);

        Normalize nfilter = new Normalize();
        nfilter.setInputFormat(i);
        i = Filter.useFilter(i, nfilter);
    } catch (Exception e) {
        System.out.println(e.toString());
    }
    return i;
}

From source file:ffnn.FFNNTubesAI.java

public static Instances filterNominalNumeric(Instances i) {
    NominalToBinary filter = new NominalToBinary();
    Instances temp_instances = new Instances(i);
    if (temp_instances.classIndex() > -1) { //Jika ada classs index
        temp_instances.setClassIndex(-1); //Unset
    }/*from   w  ww . j  a  va  2  s.  co m*/
    try {
        filter.setInputFormat(temp_instances);
        temp_instances = Filter.useFilter(temp_instances, filter);
    } catch (Exception ex) {
        Logger.getLogger(FFNN.class.getName()).log(Level.SEVERE, null, ex);
    }
    return temp_instances;
}

From source file:ffnn.FFNNTubesAI.java

@Override
public void buildClassifier(Instances i) throws Exception {
    Instance temp_instance = null;/*from  w ww  .j  av  a  2 s  . co  m*/
    RealMatrix error_output;
    RealMatrix error_hidden;
    RealMatrix input_matrix;
    RealMatrix hidden_matrix;
    RealMatrix output_matrix;
    Instances temp_instances;
    int r = 0;
    Scanner scan = new Scanner(System.in);

    output_layer = i.numDistinctValues(i.classIndex()); //3
    temp_instances = filterNominalNumeric(i);

    if (output_layer == 2) {
        Add filter = new Add();
        filter.setAttributeIndex("last");
        filter.setAttributeName("dummy");
        filter.setInputFormat(temp_instances);
        temp_instances = Filter.useFilter(temp_instances, filter);
        //            System.out.println(temp_instances);
        for (int j = 0; j < temp_instances.numInstances(); j++) {
            if (temp_instances.instance(j).value(temp_instances.numAttributes() - 2) == 0) {
                temp_instances.instance(j).setValue(temp_instances.numAttributes() - 2, 1);
                temp_instances.instance(j).setValue(temp_instances.numAttributes() - 1, 0);
            } else {
                temp_instances.instance(j).setValue(temp_instances.numAttributes() - 2, 0);
                temp_instances.instance(j).setValue(temp_instances.numAttributes() - 1, 1);
            }
        }
    }

    //temp_instances.randomize(temp_instances.getRandomNumberGenerator(1));
    //System.out.println(temp_instances);
    input_layer = temp_instances.numAttributes() - output_layer; //4
    hidden_layer = 0;
    while (hidden_layer < 1) {
        System.out.print("Hidden layer : ");
        hidden_layer = scan.nextInt();
    }
    int init_hidden = hidden_layer;
    error_hidden = new BlockRealMatrix(1, hidden_layer);
    error_output = new BlockRealMatrix(1, output_layer);
    input_matrix = new BlockRealMatrix(1, input_layer + 1); //Menambahkan bias

    buildWeight(input_layer, hidden_layer, output_layer);

    long last_time = System.nanoTime();
    double last_error_rate = 1;
    double best_error_rate = 1;

    double last_update = System.nanoTime();

    // brp iterasi
    //        for( long itr = 0; last_error_rate > 0.001; ++ itr ){
    for (long itr = 0; itr < 50000; ++itr) {
        if (r == 10) {
            break;
        }
        long time = System.nanoTime();
        if (time - last_time > 2000000000) {
            Evaluation eval = new Evaluation(i);
            eval.evaluateModel(this, i);

            double accry = eval.correct() / eval.numInstances();
            if (eval.errorRate() < last_error_rate) {
                last_update = System.nanoTime();
                if (eval.errorRate() < best_error_rate)
                    SerializationHelper.write(accry + "-" + time + ".model", this);
            }

            if (accry > 0)
                last_error_rate = eval.errorRate();

            // 2 minute without improvement restart
            if (time - last_update > 30000000000L) {
                last_update = System.nanoTime();
                learning_rate = random() * 0.05;
                hidden_layer = (int) (10 + floor(random() * 15));
                hidden_layer = (int) floor((hidden_layer / 25) * init_hidden);
                if (hidden_layer == 0) {
                    hidden_layer = 1;
                }
                itr = 0;
                System.out.println("RESTART " + learning_rate + " " + hidden_layer);
                buildWeight(input_layer, hidden_layer, output_layer);
                r++;
            }

            System.out.println(accry + " " + itr);
            last_time = time;
        }

        for (int j = 0; j < temp_instances.numInstances(); j++) {
            // foward !!
            temp_instance = temp_instances.instance(j);

            for (int k = 0; k < input_layer; k++) {
                input_matrix.setEntry(0, k, temp_instance.value(k));
            }
            input_matrix.setEntry(0, input_layer, 1.0); // bias

            hidden_matrix = input_matrix.multiply(weight1);
            for (int y = 0; y < hidden_layer; ++y) {
                hidden_matrix.setEntry(0, y, sig(hidden_matrix.getEntry(0, y)));
            }

            output_matrix = hidden_matrix.multiply(weight2).add(bias2);
            for (int y = 0; y < output_layer; ++y) {
                output_matrix.setEntry(0, y, sig(output_matrix.getEntry(0, y)));
            }

            // backward <<

            // error layer 2
            double total_err = 0;
            for (int k = 0; k < output_layer; k++) {
                double o = output_matrix.getEntry(0, k);
                double t = temp_instance.value(input_layer + k);
                double err = o * (1 - o) * (t - o);
                total_err += err * err;
                error_output.setEntry(0, k, err);
            }

            // back propagation layer 2
            for (int y = 0; y < hidden_layer; y++) {
                for (int x = 0; x < output_layer; ++x) {
                    double wold = weight2.getEntry(y, x);
                    double correction = learning_rate * error_output.getEntry(0, x)
                            * hidden_matrix.getEntry(0, y);
                    weight2.setEntry(y, x, wold + correction);
                }
            }

            for (int x = 0; x < output_layer; ++x) {
                double correction = learning_rate * error_output.getEntry(0, x); // anggap 1 inputnya
                bias2.setEntry(0, x, bias2.getEntry(0, x) + correction);
            }

            // error layer 1
            for (int k = 0; k < hidden_layer; ++k) {
                double o = hidden_matrix.getEntry(0, k);
                double t = 0;
                for (int x = 0; x < output_layer; ++x) {
                    t += error_output.getEntry(0, x) * weight2.getEntry(k, x);
                }
                double err = o * (1 - o) * t;
                error_hidden.setEntry(0, k, err);
            }

            // back propagation layer 1
            for (int y = 0; y < input_layer + 1; ++y) {
                for (int x = 0; x < hidden_layer; ++x) {
                    double wold = weight1.getEntry(y, x);
                    double correction = learning_rate * error_hidden.getEntry(0, x)
                            * input_matrix.getEntry(0, y);
                    weight1.setEntry(y, x, wold + correction);
                }
            }
        }
    }
}

From source file:ffnn.MultilayerPerceptron.java

License:Open Source License

/**
 * This function sets what the m_numeric flag to represent the passed class it
 * also performs the normalization of the attributes if applicable and sets up
 * the info to normalize the class. (note that regardless of the options it
 * will fill an array with the range and base, set to normalize all attributes
 * and the class to be between -1 and 1)
 * /* ww  w  .jav a2  s.c  om*/
 * @param inst the instances.
 * @return The modified instances. This needs to be done. If the attributes
 *         are normalized then deep copies will be made of all the instances
 *         which will need to be passed back out.
 */
private Instances setClassType(Instances inst) throws Exception {
    if (inst != null) {
        // x bounds
        m_attributeRanges = new double[inst.numAttributes()];
        m_attributeBases = new double[inst.numAttributes()];
        for (int noa = 0; noa < inst.numAttributes(); noa++) {
            double min = Double.POSITIVE_INFINITY;
            double max = Double.NEGATIVE_INFINITY;
            for (int i = 0; i < inst.numInstances(); i++) {
                if (!inst.instance(i).isMissing(noa)) {
                    double value = inst.instance(i).value(noa);
                    if (value < min) {
                        min = value;
                    }
                    if (value > max) {
                        max = value;
                    }
                }
            }
            m_attributeRanges[noa] = (max - min) / 2;
            m_attributeBases[noa] = (max + min) / 2;
        }

        if (m_normalizeAttributes) {
            for (int i = 0; i < inst.numInstances(); i++) {
                Instance currentInstance = inst.instance(i);
                double[] instance = new double[inst.numAttributes()];
                for (int noa = 0; noa < inst.numAttributes(); noa++) {
                    if (noa != inst.classIndex()) {
                        if (m_attributeRanges[noa] != 0) {
                            instance[noa] = (currentInstance.value(noa) - m_attributeBases[noa])
                                    / m_attributeRanges[noa];
                        } else {
                            instance[noa] = currentInstance.value(noa) - m_attributeBases[noa];
                        }
                    } else {
                        instance[noa] = currentInstance.value(noa);
                    }
                }
                inst.set(i, new DenseInstance(currentInstance.weight(), instance));
            }
        }

        if (inst.classAttribute().isNumeric()) {
            m_numeric = true;
        } else {
            m_numeric = false;
        }
    }
    return inst;
}

From source file:FFNN.MultiplePerceptron.java

public MultiplePerceptron(int itt, double learn, int numHLayer, Instances i) {
    listNodeHidden = new ArrayList<>();//inisialisasis listNodeHidden
    listNodeOutput = new ArrayList<>();
    itteration = itt;/*from  www  .j  av  a2 s . c o m*/
    learningRate = learn;
    numHiddenLayer = numHLayer;
    for (int hiddenLayer = 0; hiddenLayer < numHiddenLayer + 1; hiddenLayer++) {//buat neuron untuk hidden layer
        //ditambah 1 untuk neuron bias
        listNodeHidden.add(new Node(i.numAttributes()));

    }

    for (int numInstance = 0; numInstance < i.numClasses(); numInstance++) {//buat neuron untuk output
        listNodeOutput.add(new Node(listNodeHidden.size()));
    }
    target = new ArrayList<>();
    instancesToDouble = new double[i.numInstances()];
    for (int numIns = 0; numIns < i.numInstances(); numIns++) {
        instancesToDouble[numIns] = i.instance(numIns).toDoubleArray()[i.classIndex()];
    }
}

From source file:filters.MauiFilter.java

License:Open Source License

/**
 * Sets the format of the input instances.
 * /*from w w w.java 2 s.  c o  m*/
 * @param instanceInfo
 *            an Instances object containing the input instance structure
 *            (any instances contained in the object are ignored - only the
 *            structure is required).
 * @return true if the outputFormat may be collected immediately
 */
public boolean setInputFormat(Instances instanceInfo) throws Exception {

    if (instanceInfo.classIndex() >= 0) {
        throw new Exception("Don't know what do to if class index set!");
    }

    if (!instanceInfo.attribute(keyphrasesAtt).isString() || !instanceInfo.attribute(documentAtt).isString()) {
        throw new Exception("Keyphrase attribute and document attribute " + "need to be string attributes.");
    }

    phraseFilter = new MauiPhraseFilter();
    int[] arr = new int[1];
    arr[0] = documentAtt;
    phraseFilter.setAttributeIndicesArray(arr);
    phraseFilter.setInputFormat(instanceInfo);

    if (vocabularyName.equals("none")) {
        numbersFilter = new NumbersFilter();
        numbersFilter.setInputFormat(phraseFilter.getOutputFormat());
        super.setInputFormat(numbersFilter.getOutputFormat());
    } else {
        super.setInputFormat(phraseFilter.getOutputFormat());
    }

    return false;

}

From source file:function.LoadData.java

public static Instances getData(String filepath) throws Exception {
    DataSource source = new DataSource(filepath);
    Instances data = source.getDataSet();
    // setting class attribute if the data format does not provide this information
    // For example, the XRFF format saves the class attribute information as well
    if (data.classIndex() == -1) {
        data.setClassIndex(data.numAttributes() - 1);
    }/*w  ww. j  a  v a  2  s .  c  o m*/
    return data;
}

From source file:function.RemoveAtribut.java

public static Instances removeAttribut(Instances inst) throws IOException, Exception {
    Instances ret = null;/* w w w  .  ja va  2  s . co m*/
    Remove rem = new Remove();

    if (inst.classIndex() < 0) {
        ret = inst;
    } else {
        rem.setAttributeIndices("" + (inst.classIndex() + 1));
        rem.setInvertSelection(false);
        rem.setInputFormat(inst);
        ret = Filter.useFilter(inst, rem);
    }

    return ret;
}