List of usage examples for weka.core Instances classIndex
publicint classIndex()
From source file:cotraining.copy.Evaluation_D.java
License:Open Source License
/** * Evaluates a classifier with the options given in an array of * strings. <p/>/*from ww w. j a v a 2 s . c o m*/ * * Valid options are: <p/> * * -t name of training file <br/> * Name of the file with the training data. (required) <p/> * * -T name of test file <br/> * Name of the file with the test data. If missing a cross-validation * is performed. <p/> * * -c class index <br/> * Index of the class attribute (1, 2, ...; default: last). <p/> * * -x number of folds <br/> * The number of folds for the cross-validation (default: 10). <p/> * * -no-cv <br/> * No cross validation. If no test file is provided, no evaluation * is done. <p/> * * -split-percentage percentage <br/> * Sets the percentage for the train/test set split, e.g., 66. <p/> * * -preserve-order <br/> * Preserves the order in the percentage split instead of randomizing * the data first with the seed value ('-s'). <p/> * * -s seed <br/> * Random number seed for the cross-validation and percentage split * (default: 1). <p/> * * -m file with cost matrix <br/> * The name of a file containing a cost matrix. <p/> * * -l filename <br/> * Loads classifier from the given file. In case the filename ends with * ".xml",a PMML file is loaded or, if that fails, options are loaded from XML. <p/> * * -d filename <br/> * Saves classifier built from the training data into the given file. In case * the filename ends with ".xml" the options are saved XML, not the model. <p/> * * -v <br/> * Outputs no statistics for the training data. <p/> * * -o <br/> * Outputs statistics only, not the classifier. <p/> * * -i <br/> * Outputs detailed information-retrieval statistics per class. <p/> * * -k <br/> * Outputs information-theoretic statistics. <p/> * * -p range <br/> * Outputs predictions for test instances (or the train instances if no test * instances provided and -no-cv is used), along with the attributes in the specified range * (and nothing else). Use '-p 0' if no attributes are desired. <p/> * * -distribution <br/> * Outputs the distribution instead of only the prediction * in conjunction with the '-p' option (only nominal classes). <p/> * * -r <br/> * Outputs cumulative margin distribution (and nothing else). <p/> * * -g <br/> * Only for classifiers that implement "Graphable." Outputs * the graph representation of the classifier (and nothing * else). <p/> * * -xml filename | xml-string <br/> * Retrieves the options from the XML-data instead of the command line. <p/> * * @param classifier machine learning classifier * @param options the array of string containing the options * @throws Exception if model could not be evaluated successfully * @return a string describing the results */ public static String evaluateModel(Classifier classifier, String[] options) throws Exception { Instances train = null, tempTrain, test = null, template = null; int seed = 1, folds = 10, classIndex = -1; boolean noCrossValidation = false; String trainFileName, testFileName, sourceClass, classIndexString, seedString, foldsString, objectInputFileName, objectOutputFileName, attributeRangeString; boolean noOutput = false, printClassifications = false, trainStatistics = true, printMargins = false, printComplexityStatistics = false, printGraph = false, classStatistics = false, printSource = false; StringBuffer text = new StringBuffer(); DataSource trainSource = null, testSource = null; ObjectInputStream objectInputStream = null; BufferedInputStream xmlInputStream = null; CostMatrix costMatrix = null; StringBuffer schemeOptionsText = null; Range attributesToOutput = null; long trainTimeStart = 0, trainTimeElapsed = 0, testTimeStart = 0, testTimeElapsed = 0; String xml = ""; String[] optionsTmp = null; Classifier classifierBackup; Classifier classifierClassifications = null; boolean printDistribution = false; int actualClassIndex = -1; // 0-based class index String splitPercentageString = ""; int splitPercentage = -1; boolean preserveOrder = false; boolean trainSetPresent = false; boolean testSetPresent = false; String thresholdFile; String thresholdLabel; StringBuffer predsBuff = null; // predictions from cross-validation // help requested? if (Utils.getFlag("h", options) || Utils.getFlag("help", options)) { // global info requested as well? boolean globalInfo = Utils.getFlag("synopsis", options) || Utils.getFlag("info", options); throw new Exception("\nHelp requested." + makeOptionString(classifier, globalInfo)); } try { // do we get the input from XML instead of normal parameters? xml = Utils.getOption("xml", options); if (!xml.equals("")) options = new XMLOptions(xml).toArray(); // is the input model only the XML-Options, i.e. w/o built model? optionsTmp = new String[options.length]; for (int i = 0; i < options.length; i++) optionsTmp[i] = options[i]; String tmpO = Utils.getOption('l', optionsTmp); //if (Utils.getOption('l', optionsTmp).toLowerCase().endsWith(".xml")) { if (tmpO.endsWith(".xml")) { // try to load file as PMML first boolean success = false; try { //PMMLModel pmmlModel = PMMLFactory.getPMMLModel(tmpO); //if (pmmlModel instanceof PMMLClassifier) { //classifier = ((PMMLClassifier)pmmlModel); // success = true; //} } catch (IllegalArgumentException ex) { success = false; } if (!success) { // load options from serialized data ('-l' is automatically erased!) XMLClassifier xmlserial = new XMLClassifier(); Classifier cl = (Classifier) xmlserial.read(Utils.getOption('l', options)); // merge options optionsTmp = new String[options.length + cl.getOptions().length]; System.arraycopy(cl.getOptions(), 0, optionsTmp, 0, cl.getOptions().length); System.arraycopy(options, 0, optionsTmp, cl.getOptions().length, options.length); options = optionsTmp; } } noCrossValidation = Utils.getFlag("no-cv", options); // Get basic options (options the same for all schemes) classIndexString = Utils.getOption('c', options); if (classIndexString.length() != 0) { if (classIndexString.equals("first")) classIndex = 1; else if (classIndexString.equals("last")) classIndex = -1; else classIndex = Integer.parseInt(classIndexString); } trainFileName = Utils.getOption('t', options); objectInputFileName = Utils.getOption('l', options); objectOutputFileName = Utils.getOption('d', options); testFileName = Utils.getOption('T', options); foldsString = Utils.getOption('x', options); if (foldsString.length() != 0) { folds = Integer.parseInt(foldsString); } seedString = Utils.getOption('s', options); if (seedString.length() != 0) { seed = Integer.parseInt(seedString); } if (trainFileName.length() == 0) { if (objectInputFileName.length() == 0) { throw new Exception("No training file and no object " + "input file given."); } if (testFileName.length() == 0) { throw new Exception("No training file and no test " + "file given."); } } else if ((objectInputFileName.length() != 0) && ((!(classifier instanceof UpdateableClassifier)) || (testFileName.length() == 0))) { throw new Exception("Classifier not incremental, or no " + "test file provided: can't " + "use both train and model file."); } try { if (trainFileName.length() != 0) { trainSetPresent = true; trainSource = new DataSource(trainFileName); } if (testFileName.length() != 0) { testSetPresent = true; testSource = new DataSource(testFileName); } if (objectInputFileName.length() != 0) { if (objectInputFileName.endsWith(".xml")) { // if this is the case then it means that a PMML classifier was // successfully loaded earlier in the code objectInputStream = null; xmlInputStream = null; } else { InputStream is = new FileInputStream(objectInputFileName); if (objectInputFileName.endsWith(".gz")) { is = new GZIPInputStream(is); } // load from KOML? if (!(objectInputFileName.endsWith(".koml") && KOML.isPresent())) { objectInputStream = new ObjectInputStream(is); xmlInputStream = null; } else { objectInputStream = null; xmlInputStream = new BufferedInputStream(is); } } } } catch (Exception e) { throw new Exception("Can't open file " + e.getMessage() + '.'); } if (testSetPresent) { template = test = testSource.getStructure(); if (classIndex != -1) { test.setClassIndex(classIndex - 1); } else { if ((test.classIndex() == -1) || (classIndexString.length() != 0)) test.setClassIndex(test.numAttributes() - 1); } actualClassIndex = test.classIndex(); } else { // percentage split splitPercentageString = Utils.getOption("split-percentage", options); if (splitPercentageString.length() != 0) { if (foldsString.length() != 0) throw new Exception("Percentage split cannot be used in conjunction with " + "cross-validation ('-x')."); splitPercentage = Integer.parseInt(splitPercentageString); if ((splitPercentage <= 0) || (splitPercentage >= 100)) throw new Exception("Percentage split value needs be >0 and <100."); } else { splitPercentage = -1; } preserveOrder = Utils.getFlag("preserve-order", options); if (preserveOrder) { if (splitPercentage == -1) throw new Exception("Percentage split ('-percentage-split') is missing."); } // create new train/test sources if (splitPercentage > 0) { testSetPresent = true; Instances tmpInst = trainSource.getDataSet(actualClassIndex); if (!preserveOrder) tmpInst.randomize(new Random(seed)); int trainSize = tmpInst.numInstances() * splitPercentage / 100; int testSize = tmpInst.numInstances() - trainSize; Instances trainInst = new Instances(tmpInst, 0, trainSize); Instances testInst = new Instances(tmpInst, trainSize, testSize); trainSource = new DataSource(trainInst); testSource = new DataSource(testInst); template = test = testSource.getStructure(); if (classIndex != -1) { test.setClassIndex(classIndex - 1); } else { if ((test.classIndex() == -1) || (classIndexString.length() != 0)) test.setClassIndex(test.numAttributes() - 1); } actualClassIndex = test.classIndex(); } } if (trainSetPresent) { template = train = trainSource.getStructure(); if (classIndex != -1) { train.setClassIndex(classIndex - 1); } else { if ((train.classIndex() == -1) || (classIndexString.length() != 0)) train.setClassIndex(train.numAttributes() - 1); } actualClassIndex = train.classIndex(); if ((testSetPresent) && !test.equalHeaders(train)) { throw new IllegalArgumentException("Train and test file not compatible!"); } } if (template == null) { throw new Exception("No actual dataset provided to use as template"); } costMatrix = handleCostOption(Utils.getOption('m', options), template.numClasses()); classStatistics = Utils.getFlag('i', options); noOutput = Utils.getFlag('o', options); trainStatistics = !Utils.getFlag('v', options); printComplexityStatistics = Utils.getFlag('k', options); printMargins = Utils.getFlag('r', options); printGraph = Utils.getFlag('g', options); sourceClass = Utils.getOption('z', options); printSource = (sourceClass.length() != 0); printDistribution = Utils.getFlag("distribution", options); thresholdFile = Utils.getOption("threshold-file", options); thresholdLabel = Utils.getOption("threshold-label", options); // Check -p option try { attributeRangeString = Utils.getOption('p', options); } catch (Exception e) { throw new Exception(e.getMessage() + "\nNOTE: the -p option has changed. " + "It now expects a parameter specifying a range of attributes " + "to list with the predictions. Use '-p 0' for none."); } if (attributeRangeString.length() != 0) { printClassifications = true; noOutput = true; if (!attributeRangeString.equals("0")) attributesToOutput = new Range(attributeRangeString); } if (!printClassifications && printDistribution) throw new Exception("Cannot print distribution without '-p' option!"); // if no training file given, we don't have any priors if ((!trainSetPresent) && (printComplexityStatistics)) throw new Exception("Cannot print complexity statistics ('-k') without training file ('-t')!"); // If a model file is given, we can't process // scheme-specific options if (objectInputFileName.length() != 0) { Utils.checkForRemainingOptions(options); } else { // Set options for classifier if (classifier instanceof OptionHandler) { for (int i = 0; i < options.length; i++) { if (options[i].length() != 0) { if (schemeOptionsText == null) { schemeOptionsText = new StringBuffer(); } if (options[i].indexOf(' ') != -1) { schemeOptionsText.append('"' + options[i] + "\" "); } else { schemeOptionsText.append(options[i] + " "); } } } ((OptionHandler) classifier).setOptions(options); } } Utils.checkForRemainingOptions(options); } catch (Exception e) { throw new Exception("\nWeka exception: " + e.getMessage() + makeOptionString(classifier, false)); } // Setup up evaluation objects Evaluation_D trainingEvaluation = new Evaluation_D(new Instances(template, 0), costMatrix); Evaluation_D testingEvaluation = new Evaluation_D(new Instances(template, 0), costMatrix); // disable use of priors if no training file given if (!trainSetPresent) testingEvaluation.useNoPriors(); if (objectInputFileName.length() != 0) { // Load classifier from file if (objectInputStream != null) { classifier = (Classifier) objectInputStream.readObject(); // try and read a header (if present) Instances savedStructure = null; try { savedStructure = (Instances) objectInputStream.readObject(); } catch (Exception ex) { // don't make a fuss } if (savedStructure != null) { // test for compatibility with template if (!template.equalHeaders(savedStructure)) { throw new Exception("training and test set are not compatible"); } } objectInputStream.close(); } else if (xmlInputStream != null) { // whether KOML is available has already been checked (objectInputStream would null otherwise)! classifier = (Classifier) KOML.read(xmlInputStream); xmlInputStream.close(); } } // backup of fully setup classifier for cross-validation classifierBackup = Classifier.makeCopy(classifier); // Build the classifier if no object file provided if ((classifier instanceof UpdateableClassifier) && (testSetPresent || noCrossValidation) && (costMatrix == null) && (trainSetPresent)) { // Build classifier incrementally trainingEvaluation.setPriors(train); testingEvaluation.setPriors(train); trainTimeStart = System.currentTimeMillis(); if (objectInputFileName.length() == 0) { classifier.buildClassifier(train); } Instance trainInst; while (trainSource.hasMoreElements(train)) { trainInst = trainSource.nextElement(train); trainingEvaluation.updatePriors(trainInst); testingEvaluation.updatePriors(trainInst); ((UpdateableClassifier) classifier).updateClassifier(trainInst); } trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; } else if (objectInputFileName.length() == 0) { // Build classifier in one go tempTrain = trainSource.getDataSet(actualClassIndex); trainingEvaluation.setPriors(tempTrain); testingEvaluation.setPriors(tempTrain); trainTimeStart = System.currentTimeMillis(); classifier.buildClassifier(tempTrain); trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; } // backup of fully trained classifier for printing the classifications if (printClassifications) classifierClassifications = Classifier.makeCopy(classifier); // Save the classifier if an object output file is provided if (objectOutputFileName.length() != 0) { OutputStream os = new FileOutputStream(objectOutputFileName); // binary if (!(objectOutputFileName.endsWith(".xml") || (objectOutputFileName.endsWith(".koml") && KOML.isPresent()))) { if (objectOutputFileName.endsWith(".gz")) { os = new GZIPOutputStream(os); } ObjectOutputStream objectOutputStream = new ObjectOutputStream(os); objectOutputStream.writeObject(classifier); if (template != null) { objectOutputStream.writeObject(template); } objectOutputStream.flush(); objectOutputStream.close(); } // KOML/XML else { BufferedOutputStream xmlOutputStream = new BufferedOutputStream(os); if (objectOutputFileName.endsWith(".xml")) { XMLSerialization xmlSerial = new XMLClassifier(); xmlSerial.write(xmlOutputStream, classifier); } else // whether KOML is present has already been checked // if not present -> ".koml" is interpreted as binary - see above if (objectOutputFileName.endsWith(".koml")) { KOML.write(xmlOutputStream, classifier); } xmlOutputStream.close(); } } // If classifier is drawable output string describing graph if ((classifier instanceof Drawable) && (printGraph)) { return ((Drawable) classifier).graph(); } // Output the classifier as equivalent source if ((classifier instanceof Sourcable) && (printSource)) { return wekaStaticWrapper((Sourcable) classifier, sourceClass); } // Output model if (!(noOutput || printMargins)) { if (classifier instanceof OptionHandler) { if (schemeOptionsText != null) { text.append("\nOptions: " + schemeOptionsText); text.append("\n"); } } text.append("\n" + classifier.toString() + "\n"); } if (!printMargins && (costMatrix != null)) { text.append("\n=== Evaluation Cost Matrix ===\n\n"); text.append(costMatrix.toString()); } // Output test instance predictions only if (printClassifications) { DataSource source = testSource; predsBuff = new StringBuffer(); // no test set -> use train set if (source == null && noCrossValidation) { source = trainSource; predsBuff.append("\n=== Predictions on training data ===\n\n"); } else { predsBuff.append("\n=== Predictions on test data ===\n\n"); } if (source != null) { /* return printClassifications(classifierClassifications, new Instances(template, 0), source, actualClassIndex + 1, attributesToOutput, printDistribution); */ printClassifications(classifierClassifications, new Instances(template, 0), source, actualClassIndex + 1, attributesToOutput, printDistribution, predsBuff); // return predsText.toString(); } } // Compute error estimate from training data if ((trainStatistics) && (trainSetPresent)) { if ((classifier instanceof UpdateableClassifier) && (testSetPresent) && (costMatrix == null)) { // Classifier was trained incrementally, so we have to // reset the source. trainSource.reset(); // Incremental testing train = trainSource.getStructure(actualClassIndex); testTimeStart = System.currentTimeMillis(); Instance trainInst; while (trainSource.hasMoreElements(train)) { trainInst = trainSource.nextElement(train); trainingEvaluation.evaluateModelOnce((Classifier) classifier, trainInst); } testTimeElapsed = System.currentTimeMillis() - testTimeStart; } else { testTimeStart = System.currentTimeMillis(); trainingEvaluation.evaluateModel(classifier, trainSource.getDataSet(actualClassIndex)); testTimeElapsed = System.currentTimeMillis() - testTimeStart; } // Print the results of the training evaluation if (printMargins) { return trainingEvaluation.toCumulativeMarginDistributionString(); } else { if (!printClassifications) { text.append("\nTime taken to build model: " + Utils.doubleToString(trainTimeElapsed / 1000.0, 2) + " seconds"); if (splitPercentage > 0) text.append("\nTime taken to test model on training split: "); else text.append("\nTime taken to test model on training data: "); text.append(Utils.doubleToString(testTimeElapsed / 1000.0, 2) + " seconds"); if (splitPercentage > 0) text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training" + " split ===\n", printComplexityStatistics)); else text.append(trainingEvaluation.toSummaryString("\n\n=== Error on training" + " data ===\n", printComplexityStatistics)); if (template.classAttribute().isNominal()) { if (classStatistics) { text.append("\n\n" + trainingEvaluation.toClassDetailsString()); } if (!noCrossValidation) text.append("\n\n" + trainingEvaluation.toMatrixString()); } } } } // Compute proper error estimates if (testSource != null) { // Testing is on the supplied test data testSource.reset(); test = testSource.getStructure(test.classIndex()); Instance testInst; while (testSource.hasMoreElements(test)) { testInst = testSource.nextElement(test); testingEvaluation.evaluateModelOnceAndRecordPrediction((Classifier) classifier, testInst); } if (splitPercentage > 0) { if (!printClassifications) { text.append("\n\n" + testingEvaluation.toSummaryString("=== Error on test split ===\n", printComplexityStatistics)); } } else { if (!printClassifications) { text.append("\n\n" + testingEvaluation.toSummaryString("=== Error on test data ===\n", printComplexityStatistics)); } } } else if (trainSource != null) { if (!noCrossValidation) { // Testing is via cross-validation on training data Random random = new Random(seed); // use untrained (!) classifier for cross-validation classifier = Classifier.makeCopy(classifierBackup); if (!printClassifications) { testingEvaluation.crossValidateModel(classifier, trainSource.getDataSet(actualClassIndex), folds, random); if (template.classAttribute().isNumeric()) { text.append("\n\n\n" + testingEvaluation.toSummaryString("=== Cross-validation ===\n", printComplexityStatistics)); } else { text.append("\n\n\n" + testingEvaluation.toSummaryString( "=== Stratified " + "cross-validation ===\n", printComplexityStatistics)); } } else { predsBuff = new StringBuffer(); predsBuff.append("\n=== Predictions under cross-validation ===\n\n"); testingEvaluation.crossValidateModel(classifier, trainSource.getDataSet(actualClassIndex), folds, random, predsBuff, attributesToOutput, new Boolean(printDistribution)); /* if (template.classAttribute().isNumeric()) { text.append("\n\n\n" + testingEvaluation. toSummaryString("=== Cross-validation ===\n", printComplexityStatistics)); } else { text.append("\n\n\n" + testingEvaluation. toSummaryString("=== Stratified " + "cross-validation ===\n", printComplexityStatistics)); } */ } } } if (template.classAttribute().isNominal()) { if (classStatistics && !noCrossValidation && !printClassifications) { text.append("\n\n" + testingEvaluation.toClassDetailsString()); } if (!noCrossValidation && !printClassifications) text.append("\n\n" + testingEvaluation.toMatrixString()); } // predictions from cross-validation? if (predsBuff != null) { text.append("\n" + predsBuff); } if ((thresholdFile.length() != 0) && template.classAttribute().isNominal()) { int labelIndex = 0; if (thresholdLabel.length() != 0) labelIndex = template.classAttribute().indexOfValue(thresholdLabel); if (labelIndex == -1) throw new IllegalArgumentException("Class label '" + thresholdLabel + "' is unknown!"); ThresholdCurve tc = new ThresholdCurve(); Instances result = tc.getCurve(testingEvaluation.predictions(), labelIndex); DataSink.write(thresholdFile, result); } return text.toString(); }
From source file:cotraining.copy.Evaluation_D.java
License:Open Source License
/** * Prints the header for the predictions output into a supplied StringBuffer * * @param test structure of the test set to print predictions for * @param attributesToOutput indices of the attributes to output * @param printDistribution prints the complete distribution for nominal * attributes, not just the predicted value * @param text the StringBuffer to print to *//*w w w . j av a 2 s. c o m*/ protected static void printClassificationsHeader(Instances test, Range attributesToOutput, boolean printDistribution, StringBuffer text) { // print header if (test.classAttribute().isNominal()) if (printDistribution) text.append(" inst# actual predicted error distribution"); else text.append(" inst# actual predicted error prediction"); else text.append(" inst# actual predicted error"); if (attributesToOutput != null) { attributesToOutput.setUpper(test.numAttributes() - 1); text.append(" ("); boolean first = true; for (int i = 0; i < test.numAttributes(); i++) { if (i == test.classIndex()) continue; if (attributesToOutput.isInRange(i)) { if (!first) text.append(","); text.append(test.attribute(i).name()); first = false; } } text.append(")"); } text.append("\n"); }
From source file:cotraining.copy.Evaluation_D.java
License:Open Source License
/** * Prints the predictions for the given dataset into a supplied StringBuffer * //from ww w . j a v a 2 s . c om * @param classifier the classifier to use * @param train the training data * @param testSource the test set * @param classIndex the class index (1-based), if -1 ot does not * override the class index is stored in the data * file (by using the last attribute) * @param attributesToOutput the indices of the attributes to output * @param printDistribution prints the complete distribution for nominal * classes, not just the predicted value * @param text StringBuffer to hold the printed predictions * @throws Exception if test file cannot be opened */ public static void printClassifications(Classifier classifier, Instances train, DataSource testSource, int classIndex, Range attributesToOutput, boolean printDistribution, StringBuffer text) throws Exception { if (testSource != null) { Instances test = testSource.getStructure(); if (classIndex != -1) { test.setClassIndex(classIndex - 1); } else { if (test.classIndex() == -1) test.setClassIndex(test.numAttributes() - 1); } // print the header printClassificationsHeader(test, attributesToOutput, printDistribution, text); // print predictions int i = 0; testSource.reset(); test = testSource.getStructure(test.classIndex()); while (testSource.hasMoreElements(test)) { Instance inst = testSource.nextElement(test); text.append(predictionText(classifier, inst, i, attributesToOutput, printDistribution)); i++; } } // return text.toString(); }
From source file:cyber009.udal.functions.StatisticalAnalysis.java
/** * // w ww . j a v a2 s .c o m * @param dataSet * @param classTarget * @return */ public double probabilityOfTargerClass(Instances dataSet, double classTarget) { AttributeStats classStats = dataSet.attributeStats(dataSet.classIndex()); double ptc = 0.0D; if (classStats.nominalCounts != null) { for (int i = 0; i < classStats.nominalCounts.length; i++) { if (new Double(dataSet.attribute(dataSet.classIndex()).value(i)) == classTarget) { ptc = (double) classStats.nominalCounts[i] / (double) classStats.totalCount; } } } return ptc; }
From source file:cyber009.udal.functions.StatisticalAnalysis.java
/** * /*w w w . ja v a 2s .c om*/ * @param classifier * @param trainingDataSet * @param unLabelDataSets * @param unLabelSet * @param classTarget * @return */ public double conditionalEntropy(Classifier classifier, Instances trainingDataSet, Instances unLabelDataSets, Instance unLabelSet, double classTarget) { double cEnt = 0.0D; double entropy = 0.0D; unLabelSet.setClassValue(classTarget); trainingDataSet.add(trainingDataSet.numInstances(), unLabelSet); AttributeStats classStats = trainingDataSet.attributeStats(trainingDataSet.classIndex()); for (Instance set : unLabelDataSets) { if (instanceCMPWithoutClass(set, unLabelSet) == true) continue; for (int i = 0; i < classStats.nominalCounts.length; i++) { double target = new Double(trainingDataSet.attribute(trainingDataSet.classIndex()).value(i)); set.setClassValue(target); entropy = posteriorDistribution(classifier, trainingDataSet, set, classTarget); //System.out.println("entropy:"+entropy); cEnt += -(entropy) * Math.log10(entropy); set.setClassMissing(); } } trainingDataSet.remove(trainingDataSet.numInstances() - 1); return cEnt; }
From source file:data.generation.target.utils.PrincipalComponents.java
License:Open Source License
/** * Return a summary of the analysis// www . ja v a2 s .c o m * @return a summary of the analysis. */ private String principalComponentsSummary() { StringBuffer result = new StringBuffer(); double cumulative = 0.0; Instances output = null; int numVectors = 0; try { output = setOutputFormat(); numVectors = (output.classIndex() < 0) ? output.numAttributes() : output.numAttributes() - 1; } catch (Exception ex) { } //tomorrow String corrCov = (m_center) ? "Covariance " : "Correlation "; result.append(corrCov + "matrix\n" + matrixToString(m_correlation) + "\n\n"); result.append("eigenvalue\tproportion\tcumulative\n"); for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { cumulative += m_eigenvalues[m_sortedEigens[i]]; result.append(Utils.doubleToString(m_eigenvalues[m_sortedEigens[i]], 9, 5) + "\t" + Utils.doubleToString((m_eigenvalues[m_sortedEigens[i]] / m_sumOfEigenValues), 9, 5) + "\t" + Utils.doubleToString((cumulative / m_sumOfEigenValues), 9, 5) + "\t" + output.attribute(m_numAttribs - i - 1).name() + "\n"); } result.append("\nEigenvectors\n"); for (int j = 1; j <= numVectors; j++) { result.append(" V" + j + '\t'); } result.append("\n"); for (int j = 0; j < m_numAttribs; j++) { for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { result.append(Utils.doubleToString(m_eigenvectors[j][m_sortedEigens[i]], 7, 4) + "\t"); } result.append(m_trainInstances.attribute(j).name() + '\n'); } if (m_transBackToOriginal) { result.append("\nPC space transformed back to original space.\n" + "(Note: can't evaluate attributes in the original " + "space)\n"); } return result.toString(); }
From source file:de.tudarmstadt.ukp.alignment.framework.combined.WekaMachineLearning.java
License:Apache License
/** * * This method creates a serialized WEKA model file from an .arff file containing the annotated gold standard * * * @param gs_arff the annotated gold standard in an .arff file * @param model output file for the model * @param output_eval if true, the evaluation of the trained classifier is printed (10-fold cross validation) * @throws Exception/*from w w w . j av a 2 s. c o m*/ */ public static void createModelFromGoldstandard(String gs_arff, String model, boolean output_eval) throws Exception { DataSource source = new DataSource(gs_arff); Instances data = source.getDataSet(); if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } Remove rm = new Remove(); rm.setAttributeIndices("1"); // remove ID attribute BayesNet bn = new BayesNet(); //Standard classifier; BNs proved most robust, but of course other classifiers are possible // meta-classifier FilteredClassifier fc = new FilteredClassifier(); fc.setFilter(rm); fc.setClassifier(bn); fc.buildClassifier(data); // build classifier SerializationHelper.write(model, fc); if (output_eval) { Evaluation eval = new Evaluation(data); eval.crossValidateModel(fc, data, 10, new Random(1)); System.out.println(eval.toSummaryString()); System.out.println(eval.toMatrixString()); System.out.println(eval.toClassDetailsString()); } }
From source file:de.tudarmstadt.ukp.alignment.framework.combined.WekaMachineLearning.java
License:Apache License
/** * * This method applies a serialized WEKA model file to an unlabeld .arff file for classification * * * @param input_arff the annotated gold standard in an .arff file * @param model output file for the model * @param output output file for evaluation of trained classifier (10-fold cross validation) * @throws Exception//from w ww.j a v a2s .c om */ public static void applyModelToUnlabeledArff(String input_arff, String model, String output) throws Exception { DataSource source = new DataSource(input_arff); Instances unlabeled = source.getDataSet(); if (unlabeled.classIndex() == -1) { unlabeled.setClassIndex(unlabeled.numAttributes() - 1); } Remove rm = new Remove(); rm.setAttributeIndices("1"); // remove ID attribute ObjectInputStream ois = new ObjectInputStream(new FileInputStream(model)); Classifier cls = (Classifier) ois.readObject(); ois.close(); // create copy Instances labeled = new Instances(unlabeled); // label instances for (int i = 0; i < unlabeled.numInstances(); i++) { double clsLabel = cls.classifyInstance(unlabeled.instance(i)); labeled.instance(i).setClassValue(clsLabel); } // save labeled data BufferedWriter writer = new BufferedWriter(new FileWriter(output)); writer.write(labeled.toString()); writer.newLine(); writer.flush(); writer.close(); }
From source file:de.ugoe.cs.cpdp.dataprocessing.CLAMIProcessor.java
License:Apache License
/** * <p>//from www .ja v a 2s. com * Applies the CLAMI processor to the data. The test data is also required, in order to * guarantee a consistent metric set. * </p> * * @param testdata * test data; the data is not modified, only metrics are dropped * @param data * data to which the CLAMI processor is applied */ public void applyCLAMI(Instances testdata, Instances data) { // first determine medians double[] medians = new double[data.numAttributes()]; // get medians for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { medians[j] = data.kthSmallestValue(j, (data.numInstances() + 1) >> 1); } } // now determine cluster number for each instance double[] clusterNumber = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { int countHighValues = 0; Instance currentInstance = data.get(i); for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { if (currentInstance.value(j) > medians[j]) { countHighValues++; } } } clusterNumber[i] = countHighValues; } // determine median of cluster number Median m = new Median(); double medianClusterNumber = m.evaluate(clusterNumber); // now we filter the metrics int[] numMetricViolations = new int[data.numAttributes()]; for (int j = 0; j < data.numAttributes(); j++) { int currentViolations = 0; for (int i = 0; i < data.numInstances(); i++) { Instance currentInstance = data.get(i); if (j != data.classIndex()) { if (clusterNumber[i] > medianClusterNumber) { // "buggy" if (currentInstance.value(j) <= medians[j]) { currentViolations++; } } else { // "not buggy" if (currentInstance.value(j) > medians[j]) { currentViolations++; } } } } numMetricViolations[j] = currentViolations; } SortedSet<Integer> distinctViolationCounts = new TreeSet<>(); for (int currentViolations : numMetricViolations) { distinctViolationCounts.add(currentViolations); } Iterator<Integer> violationCountInterator = distinctViolationCounts.iterator(); int violationCutoff = violationCountInterator.next(); // now we filter the data; // this is first tried with the metrics with fewest violations. if no buggy/bugfree // instances remain, this is repeated with the next metrics with second fewest violations, // and so on. // this part is a bit unclear from the description in the paper, but I confirmed with the // author that this is how they implemented it boolean[] cleanInstances = new boolean[data.numInstances()]; int numCleanBuggyInstances = 0; int numCleanBugfreeInstances = 0; do { violationCutoff = violationCountInterator.next(); cleanInstances = new boolean[data.numInstances()]; numCleanBuggyInstances = 0; numCleanBugfreeInstances = 0; for (int i = 0; i < data.numInstances(); i++) { int currentViolations = 0; Instance currentInstance = data.get(i); for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex() && numMetricViolations[j] == violationCutoff) { if (clusterNumber[i] > medianClusterNumber) { // "buggy" if (currentInstance.value(j) <= medians[j]) { currentViolations++; } } else { // "not buggy" if (currentInstance.value(j) > medians[j]) { currentViolations++; } } } } if (currentViolations == 0) { cleanInstances[i] = true; if (clusterNumber[i] > medianClusterNumber) { numCleanBuggyInstances++; } else { numCleanBugfreeInstances++; } } else { cleanInstances[i] = false; } } } while (numCleanBuggyInstances == 0 || numCleanBugfreeInstances == 0); // output some interesting information to provide insights into the CLAMI model Console.traceln(Level.FINE, "Selected Metrics and Median-threshold: "); for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex() && numMetricViolations[j] == violationCutoff) { Console.traceln(Level.FINE, "\t" + data.attribute(j).name() + ": " + medians[j]); } } // finally modify the instances // drop the metrics (also from the testdata) for (int j = data.numAttributes() - 1; j >= 0; j--) { if (j != data.classIndex() && numMetricViolations[j] != violationCutoff) { data.deleteAttributeAt(j); testdata.deleteAttributeAt(j); } } // drop the unclean instances for (int i = data.numInstances() - 1; i >= 0; i--) { if (!cleanInstances[i]) { data.delete(i); } else { // set the classification if (clusterNumber[i] > medianClusterNumber) { data.get(i).setClassValue(1.0d); } else { data.get(i).setClassValue(0.0d); } } } }
From source file:de.ugoe.cs.cpdp.dataprocessing.CLAProcessor.java
License:Apache License
/** * Applies the CLA processor the the data. * /*from w ww . j av a 2s .co m*/ * @param data * data to which the processor is applied */ public void applyCLA(Instances data) { // first determine medians double[] medians = new double[data.numAttributes()]; // get medians for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { medians[j] = data.kthSmallestValue(j, (data.numInstances() + 1) >> 1); } } // now determine cluster number for each instance double[] clusterNumber = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { int countHighValues = 0; Instance currentInstance = data.get(i); for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { if (currentInstance.value(j) > medians[j]) { countHighValues++; } } } clusterNumber[i] = countHighValues; } // determine median of cluster number Median m = new Median(); double medianClusterNumber = m.evaluate(Arrays.stream(clusterNumber).distinct().toArray()); // finally modify the instances // drop the unclean instances for (int i = data.numInstances() - 1; i >= 0; i--) { // set the classification if (clusterNumber[i] > medianClusterNumber) { data.get(i).setClassValue(1.0d); } else { data.get(i).setClassValue(0.0d); } } }