Java tutorial
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ package org.deeplearning4j.nn.conf.layers; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import lombok.ToString; import org.deeplearning4j.nn.api.Layer; import org.deeplearning4j.nn.api.ParamInitializer; import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.params.DefaultParamInitializer; import org.deeplearning4j.optimize.api.TrainingListener; import org.nd4j.linalg.activations.impl.ActivationSoftmax; import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.lossfunctions.ILossFunction; import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction; import java.util.Collection; import java.util.Map; /** * Output layer used for training via backpropagation based on labels and a specified loss function. Can be configured * for both classification and regression. Note that OutputLayer has parameters - it contains a fully-connected layer * (effectively contains a DenseLayer) internally. This allows the output size to be different to the layer input size. * OutputLayer is equivalent to ({@link DenseLayer} + {@link LossLayer}) */ @Data @NoArgsConstructor @ToString(callSuper = true) @EqualsAndHashCode(callSuper = true) public class OutputLayer extends BaseOutputLayer { protected OutputLayer(Builder builder) { super(builder); initializeConstraints(builder); } @Override public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) { LayerValidation.assertNInNOutSet("OutputLayer", getLayerName(), layerIndex, getNIn(), getNOut()); org.deeplearning4j.nn.layers.OutputLayer ret = new org.deeplearning4j.nn.layers.OutputLayer(conf, networkDataType); ret.setListeners(trainingListeners); ret.setIndex(layerIndex); ret.setParamsViewArray(layerParamsView); Map<String, INDArray> paramTable = initializer().init(conf, layerParamsView, initializeParams); ret.setParamTable(paramTable); ret.setConf(conf); return ret; } @Override public ParamInitializer initializer() { return DefaultParamInitializer.getInstance(); } public static class Builder extends BaseOutputLayer.Builder<Builder> { public Builder() { //Set default activation function to softmax (to match default loss function MCXENT) this.setActivationFn(new ActivationSoftmax()); } /** * @param lossFunction Loss function for the output layer */ public Builder(LossFunction lossFunction) { super.lossFunction(lossFunction); //Set default activation function to softmax (for consistent behaviour with no-arg constructor) this.setActivationFn(new ActivationSoftmax()); } /** * @param lossFunction Loss function for the output layer */ public Builder(ILossFunction lossFunction) { this.setLossFn(lossFunction); //Set default activation function to softmax (for consistent behaviour with no-arg constructor) this.setActivationFn(new ActivationSoftmax()); } @Override @SuppressWarnings("unchecked") public OutputLayer build() { return new OutputLayer(this); } } }