Example usage for java.lang Math atan2

List of usage examples for java.lang Math atan2

Introduction

In this page you can find the example usage for java.lang Math atan2.

Prototype

@HotSpotIntrinsicCandidate
public static double atan2(double y, double x) 

Source Link

Document

Returns the angle theta from the conversion of rectangular coordinates ( x ,  y ) to polar coordinates (r, theta).

Usage

From source file:itdelatrisu.opsu.Utils.java

public static float[] mirrorPoint(float x, float y) {
    double dx = x - displayContainer.width / 2d;
    double dy = y - displayContainer.height / 2d;
    double ang = Math.atan2(dy, dx);
    double d = -Math.sqrt(dx * dx + dy * dy);
    return new float[] { (float) (displayContainer.width / 2d + Math.cos(ang) * d),
            (float) (displayContainer.height / 2d + Math.sin(ang) * d) };
}

From source file:Matrix.java

/**
 *  Rotation  about an arbitrary Axis/*  w  ww . j  a v  a2  s  .co m*/
 *  @param alpha the angle of the rotation
 *  @param p1 first axis point
 *  @param p2 second axis point
 *  @return the rotation matrix
 */
public static float[] matrixRotate(float alpha, float[] p1, float[] p2) {
    alpha = alpha * PI / 180f;

    float a1 = p1[0];
    float a2 = p1[1];
    float a3 = p1[2];

    //Compute the vector defines by point p1 and p2
    float v1 = p2[0] - a1;
    float v2 = p2[1] - a2;
    float v3 = p2[2] - a3;

    double theta = Math.atan2(v2, v1);
    double phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);

    float cosAlpha, sinAlpha, sinPhi2;
    float cosTheta, sinTheta, cosPhi2;
    float cosPhi, sinPhi, cosTheta2, sinTheta2;

    cosPhi = (float) Math.cos(phi);
    cosTheta = (float) Math.cos(theta);
    cosTheta2 = (float) cosTheta * cosTheta;
    sinPhi = (float) Math.sin(phi);
    sinTheta = (float) Math.sin(theta);
    sinTheta2 = (float) sinTheta * sinTheta;

    sinPhi2 = (float) sinPhi * sinPhi;
    cosPhi2 = (float) cosPhi * cosPhi;

    cosAlpha = (float) Math.cos(alpha);
    sinAlpha = (float) Math.sin(alpha);

    float c = (float) 1.0 - cosAlpha;

    float r11, r12, r13, r14, r21, r22, r23, r24, r31, r32, r33, r34;
    r11 = cosTheta2 * (cosAlpha * cosPhi2 + sinPhi2) + cosAlpha * sinTheta2;
    r12 = sinAlpha * cosPhi + c * sinPhi2 * cosTheta * sinTheta;
    r13 = sinPhi * (cosPhi * cosTheta * c - sinAlpha * sinTheta);

    r21 = sinPhi2 * cosTheta * sinTheta * c - sinAlpha * cosPhi;
    r22 = sinTheta2 * (cosAlpha * cosPhi2 + sinPhi2) + cosAlpha * cosTheta2;
    r23 = sinPhi * (cosPhi * sinTheta * c + sinAlpha * cosTheta);

    r31 = sinPhi * (cosPhi * cosTheta * c + sinAlpha * sinTheta);
    r32 = sinPhi * (cosPhi * sinTheta * c - sinAlpha * cosTheta);
    r33 = cosAlpha * sinPhi2 + cosPhi2;

    r14 = a1 - a1 * r11 - a2 * r21 - a3 * r31;
    r24 = a2 - a1 * r12 - a2 * r22 - a3 * r32;
    r34 = a3 - a1 * r13 - a2 * r23 - a3 * r33;

    float[] m2 = { r11, r12, r13, 0f, r21, r22, r23, 0f, r31, r32, r33, 0f, r14, r24, r34, 1f };
    return m2;
}

From source file:org.eclipse.dawnsci.analysis.dataset.roi.fitting.EllipseCoordinatesFunction.java

/**
 * least-squares using algebraic cost function
 * <p>/*from www  .j  a v a  2  s . c om*/
 * This uses the method in "Numerically stable direct least squares fitting of ellipses"
 * by R. Halir and J. Flusser, Proceedings of the 6th International Conference in Central Europe
 * on Computer Graphics and Visualization. WSCG '98. CZ, Pilsen 1998, pp 125-132. 
 * <p>
 * @param ix
 * @param iy
 * @return geometric parameters
 */
private static double[] quickfit(IDataset ix, IDataset iy) {
    Dataset x = DatasetUtils.convertToDataset(ix);
    Dataset y = DatasetUtils.convertToDataset(iy);
    final Dataset xx = Maths.square(x);
    final Dataset yy = Maths.square(y);
    final Dataset xxx = Maths.multiply(xx, x);
    final Dataset yyy = Maths.multiply(yy, y);
    final Dataset xy = Maths.multiply(x, y);

    Matrix S1 = new Matrix(3, 3);
    S1.set(0, 0, LinearAlgebra.dotProduct(xx, xx).getDouble());
    S1.set(0, 1, LinearAlgebra.dotProduct(xxx, y).getDouble());
    S1.set(0, 2, LinearAlgebra.dotProduct(xx, yy).getDouble());

    S1.set(1, 0, S1.get(0, 1));
    S1.set(1, 1, S1.get(0, 2));
    S1.set(1, 2, LinearAlgebra.dotProduct(x, yyy).getDouble());

    S1.set(2, 0, S1.get(0, 2));
    S1.set(2, 1, S1.get(1, 2));
    S1.set(2, 2, LinearAlgebra.dotProduct(yy, yy).getDouble());

    Matrix S2 = new Matrix(3, 3);
    S2.set(0, 0, ((Number) xxx.sum()).doubleValue());
    S2.set(0, 1, LinearAlgebra.dotProduct(xx, y).getDouble());
    S2.set(0, 2, ((Number) xx.sum()).doubleValue());

    S2.set(1, 0, S2.get(0, 1));
    S2.set(1, 1, LinearAlgebra.dotProduct(x, yy).getDouble());
    S2.set(1, 2, ((Number) xy.sum()).doubleValue());

    S2.set(2, 0, S2.get(1, 1));
    S2.set(2, 1, ((Number) yyy.sum()).doubleValue());
    S2.set(2, 2, ((Number) yy.sum()).doubleValue());

    Matrix S3 = new Matrix(3, 3);
    S3.set(0, 0, S2.get(0, 2));
    S3.set(0, 1, S2.get(1, 2));
    S3.set(0, 2, ((Number) x.sum()).doubleValue());

    S3.set(1, 0, S3.get(0, 1));
    S3.set(1, 1, S2.get(2, 2));
    S3.set(1, 2, ((Number) y.sum()).doubleValue());

    S3.set(2, 0, S3.get(0, 2));
    S3.set(2, 1, S3.get(1, 2));
    S3.set(2, 2, x.getSize());

    Matrix T = S3.solve(S2.transpose()).uminus();

    Matrix M = S1.plus(S2.times(T));

    Matrix Cinv = new Matrix(new double[] { 0, 0, 0.5, 0, -1.0, 0, 0.5, 0, 0 }, 3);
    Matrix Mp = Cinv.times(M);

    //      System.err.println("M " + Arrays.toString(Mp.getRowPackedCopy()));
    Matrix V = Mp.eig().getV();
    //      System.err.println("V " + Arrays.toString(V.getRowPackedCopy()));
    double[][] mv = V.getArray();
    ArrayRealVector v1 = new ArrayRealVector(mv[0]);
    ArrayRealVector v2 = new ArrayRealVector(mv[1]);
    ArrayRealVector v3 = new ArrayRealVector(mv[2]);

    v1.mapMultiplyToSelf(4);

    ArrayRealVector v = v1.ebeMultiply(v3).subtract(v2.ebeMultiply(v2));
    double[] varray = v.getDataRef();
    int i = 0;
    for (; i < 3; i++) {
        if (varray[i] > 0)
            break;
    }
    if (i == 3) {
        throw new IllegalArgumentException("Could not find solution that satifies constraint");
    }

    v = new ArrayRealVector(new double[] { mv[0][i], mv[1][i], mv[2][i] });
    varray = v.getDataRef();
    final double ca = varray[0];
    final double cb = varray[1];
    final double cc = varray[2];
    Array2DRowRealMatrix mt = new Array2DRowRealMatrix(T.getArray(), false);
    varray = mt.operate(varray);
    final double cd = varray[0];
    final double ce = varray[1];
    final double cf = varray[2];

    //      System.err.println(String.format("Algebraic: %g, %g, %g, %g, %g, %g", ca, cb, cc, cd, ce, cf));
    final double disc = cb * cb - 4. * ca * cc;
    if (disc >= 0) {
        throw new IllegalArgumentException("Solution is not an ellipse");
    }

    if (cb == 0) {
        throw new IllegalArgumentException("Solution is a circle");
    }

    double[] qparameters = new double[PARAMETERS];
    qparameters[3] = (2. * cc * cd - cb * ce) / disc;
    qparameters[4] = (2. * ca * ce - cb * cd) / disc;

    final double sqrt = Math.sqrt((ca - cc) * (ca - cc) + cb * cb);
    qparameters[0] = -2. * (ca * ce * ce + cc * cd * cd + cf * cb * cb - cb * cd * ce - 4. * ca * cc * cf)
            / disc;
    qparameters[1] = qparameters[0] / (ca + cc + sqrt);
    qparameters[0] /= (ca + cc - sqrt);
    qparameters[0] = Math.sqrt(qparameters[0]);
    qparameters[1] = Math.sqrt(qparameters[1]);
    if (cb == 0) {
        qparameters[2] = 0.;
    } else {
        qparameters[2] = 0.5 * Math.atan2(cb, ca - cc);
    }
    if (qparameters[0] < qparameters[1]) {
        final double t = qparameters[0];
        qparameters[0] = qparameters[1];
        qparameters[1] = t;
    } else {
        qparameters[2] += Math.PI * 0.5;
    }

    return qparameters;
}

From source file:itdelatrisu.opsu.Utils.java

public static float[] mirrorPoint(float x, float y, float degrees) {
    double dx = x - displayContainer.width / 2d;
    double dy = y - displayContainer.height / 2d;
    double ang = Math.atan2(dy, dx) + (degrees * Math.PI / 180d);
    double d = Math.sqrt(dx * dx + dy * dy);
    return new float[] { (float) (displayContainer.width / 2d + Math.cos(ang) * d),
            (float) (displayContainer.height / 2d + Math.sin(ang) * d) };
}

From source file:org.mdc.chess.ChessBoard.java

private void drawMoveHints(Canvas canvas) {
    if ((moveHints == null) || blindMode) {
        return;/*from ww  w.j  av  a2  s .c o  m*/
    }
    float h = (float) (sqSize / 2.0);
    float d = (float) (sqSize / 8.0);
    double v = 35 * Math.PI / 180;
    double cosv = Math.cos(v);
    double sinv = Math.sin(v);
    double tanv = Math.tan(v);
    int n = Math.min(moveMarkPaint.size(), moveHints.size());
    for (int i = 0; i < n; i++) {
        Move m = moveHints.get(i);
        if ((m == null) || (m.from == m.to)) {
            continue;
        }
        float x0 = getXCrd(Position.getX(m.from)) + h;
        float y0 = getYCrd(Position.getY(m.from)) + h;
        float x1 = getXCrd(Position.getX(m.to)) + h;
        float y1 = getYCrd(Position.getY(m.to)) + h;

        float x2 = (float) (Math.hypot(x1 - x0, y1 - y0) + d);
        float y2 = 0;
        float x3 = (float) (x2 - h * cosv);
        float y3 = (float) (y2 - h * sinv);
        float x4 = (float) (x3 - d * sinv);
        float y4 = (float) (y3 + d * cosv);
        float x5 = (float) (x4 + (-d / 2 - y4) / tanv);
        float y5 = -d / 2;
        float x6 = 0;
        float y6 = y5 / 2;
        Path path = new Path();
        path.moveTo(x2, y2);
        path.lineTo(x3, y3);
        //          path.lineTo(x4, y4);
        path.lineTo(x5, y5);
        path.lineTo(x6, y6);
        path.lineTo(x6, -y6);
        path.lineTo(x5, -y5);
        //          path.lineTo(x4, -y4);
        path.lineTo(x3, -y3);
        path.close();
        Matrix mtx = new Matrix();
        mtx.postRotate((float) (Math.atan2(y1 - y0, x1 - x0) * 180 / Math.PI));
        mtx.postTranslate(x0, y0);
        path.transform(mtx);
        Paint p = moveMarkPaint.get(i);
        canvas.drawPath(path, p);
    }
}

From source file:uk.ac.diamond.scisoft.analysis.fitting.AngleDerivativeFunction.java

/**
 * least-squares using algebraic cost function
 * <p>/*ww w .  jav  a2s  .c o  m*/
 * This uses the method in "Numerically stable direct least squares fitting of ellipses"
 * by R. Halir and J. Flusser, Proceedings of the 6th International Conference in Central Europe
 * on Computer Graphics and Visualization. WSCG '98. CZ, Pilsen 1998, pp 125-132. 
 * <p>
 * @param x
 * @param y
 * @return geometric parameters
 */
private static double[] quickfit(AbstractDataset x, AbstractDataset y) {
    final AbstractDataset xx = Maths.square(x);
    final AbstractDataset yy = Maths.square(y);
    final AbstractDataset xxx = Maths.multiply(xx, x);
    final AbstractDataset yyy = Maths.multiply(yy, y);
    final AbstractDataset xy = Maths.multiply(x, y);

    Matrix S1 = new Matrix(3, 3);
    S1.set(0, 0, LinearAlgebra.dotProduct(xx, xx).getDouble());
    S1.set(0, 1, LinearAlgebra.dotProduct(xxx, y).getDouble());
    S1.set(0, 2, LinearAlgebra.dotProduct(xx, yy).getDouble());

    S1.set(1, 0, S1.get(0, 1));
    S1.set(1, 1, S1.get(0, 2));
    S1.set(1, 2, LinearAlgebra.dotProduct(x, yyy).getDouble());

    S1.set(2, 0, S1.get(0, 2));
    S1.set(2, 1, S1.get(1, 2));
    S1.set(2, 2, LinearAlgebra.dotProduct(yy, yy).getDouble());

    Matrix S2 = new Matrix(3, 3);
    S2.set(0, 0, ((Number) xxx.sum()).doubleValue());
    S2.set(0, 1, LinearAlgebra.dotProduct(xx, y).getDouble());
    S2.set(0, 2, ((Number) xx.sum()).doubleValue());

    S2.set(1, 0, S2.get(0, 1));
    S2.set(1, 1, LinearAlgebra.dotProduct(x, yy).getDouble());
    S2.set(1, 2, ((Number) xy.sum()).doubleValue());

    S2.set(2, 0, S2.get(1, 1));
    S2.set(2, 1, ((Number) yyy.sum()).doubleValue());
    S2.set(2, 2, ((Number) yy.sum()).doubleValue());

    Matrix S3 = new Matrix(3, 3);
    S3.set(0, 0, S2.get(0, 2));
    S3.set(0, 1, S2.get(1, 2));
    S3.set(0, 2, ((Number) x.sum()).doubleValue());

    S3.set(1, 0, S3.get(0, 1));
    S3.set(1, 1, S2.get(2, 2));
    S3.set(1, 2, ((Number) y.sum()).doubleValue());

    S3.set(2, 0, S3.get(0, 2));
    S3.set(2, 1, S3.get(1, 2));
    S3.set(2, 2, x.getSize());

    Matrix T = S3.solve(S2.transpose()).uminus();

    Matrix M = S1.plus(S2.times(T));

    Matrix Cinv = new Matrix(new double[] { 0, 0, 0.5, 0, -1.0, 0, 0.5, 0, 0 }, 3);
    Matrix Mp = Cinv.times(M);

    //      System.err.println("M " + Arrays.toString(Mp.getRowPackedCopy()));
    Matrix V = Mp.eig().getV();
    //      System.err.println("V " + Arrays.toString(V.getRowPackedCopy()));
    double[][] mv = V.getArray();
    ArrayRealVector v1 = new ArrayRealVector(mv[0]);
    ArrayRealVector v2 = new ArrayRealVector(mv[1]);
    ArrayRealVector v3 = new ArrayRealVector(mv[2]);

    v1.mapMultiplyToSelf(4);

    ArrayRealVector v = v1.ebeMultiply(v3).subtract(v2.ebeMultiply(v2));
    double[] varray = v.getData();
    int i = 0;
    for (; i < 3; i++) {
        if (varray[i] > 0)
            break;
    }
    if (i == 3) {
        throw new IllegalArgumentException("Could not find solution that satifies constraint");
    }

    v = new ArrayRealVector(new double[] { mv[0][i], mv[1][i], mv[2][i] });
    varray = v.getDataRef();
    final double ca = varray[0];
    final double cb = varray[1];
    final double cc = varray[2];
    Array2DRowRealMatrix mt = new Array2DRowRealMatrix(T.getArray(), false);
    varray = mt.operate(varray);
    final double cd = varray[0];
    final double ce = varray[1];
    final double cf = varray[2];

    //      System.err.println(String.format("Algebraic: %g, %g, %g, %g, %g, %g", ca, cb, cc, cd, ce, cf));
    final double disc = cb * cb - 4. * ca * cc;
    if (disc >= 0) {
        throw new IllegalArgumentException("Solution is not an ellipse");
    }

    if (cb == 0) {
        throw new IllegalArgumentException("Solution is a circle");
    }

    double[] qparameters = new double[PARAMETERS];
    qparameters[3] = (2. * cc * cd - cb * ce) / disc;
    qparameters[4] = (2. * ca * ce - cb * cd) / disc;

    final double sqrt = Math.sqrt((ca - cc) * (ca - cc) + cb * cb);
    qparameters[0] = -2. * (ca * ce * ce + cc * cd * cd + cf * cb * cb - cb * cd * ce - 4. * ca * cc * cf)
            / disc;
    qparameters[1] = qparameters[0] / (ca + cc + sqrt);
    qparameters[0] /= (ca + cc - sqrt);
    qparameters[0] = Math.sqrt(qparameters[0]);
    qparameters[1] = Math.sqrt(qparameters[1]);
    if (cb == 0) {
        qparameters[2] = 0.;
    } else {
        qparameters[2] = 0.5 * Math.atan2(cb, ca - cc);
    }
    if (qparameters[0] < qparameters[1]) {
        final double t = qparameters[0];
        qparameters[0] = qparameters[1];
        qparameters[1] = t;
    } else {
        qparameters[2] += Math.PI * 0.5;
    }

    return qparameters;
}

From source file:org.esa.beam.framework.datamodel.TiePointGrid.java

/**
 * Computes the interpolated sample for the pixel located at (x,y) given as floating point co-ordinates. <p/>
 * <p/>/*from  www  . j a v a  2  s. c  o  m*/
 * If the pixel co-odinates given by (x,y) are not covered by this tie-point grid, the method extrapolates.
 *
 * @param x The X co-ordinate of the pixel location, given in the pixel co-ordinates of the data product to which
 *          this tie-pint grid belongs to.
 * @param y The Y co-ordinate of the pixel location, given in the pixel co-ordinates of the data product to which
 *          this tie-pint grid belongs to.
 *
 * @throws ArrayIndexOutOfBoundsException if the co-ordinates are not in bounds
 */
public final float getPixelFloat(final float x, final float y) {
    if (discontinuity != DISCONT_NONE) {
        if (isDiscontNotInit()) {
            initDiscont();
        }
        final float v = (float) (MathUtils.RTOD
                * Math.atan2(sinGrid.getPixelFloat(x, y), cosGrid.getPixelFloat(x, y)));
        return (v < 0.0 && discontinuity == DISCONT_AT_360) ? 360.0F + v : v; // = 180 + (180 - abs(v))
    }
    final float fi = (x - offsetX) / subSamplingX;
    final float fj = (y - offsetY) / subSamplingY;
    final int i = MathUtils.crop((int) fi, 0, rasterWidthMinus2);
    final int j = MathUtils.crop((int) fj, 0, rasterHeightMinus2);
    return interpolate(fi - i, fj - j, i, j);
}

From source file:net.bsrc.cbod.opencv.OpenCV.java

/**
 * @param p1 source//ww  w .  j a v  a 2s . c om
 * @param p2 target
 * @return
 */
public static double getAngle(Point p1, Point p2) {

    double angle = Math.toDegrees(Math.atan2((p2.y - p1.y), (p2.x - p1.x)));

    if (p2.y < p1.y) {
        angle = angle * (-1);
    } else {
        angle = 360 - angle;
    }

    return angle;
}

From source file:tarea1.controlador.java

public void seleccionOpcion(int z) throws IOException, Exception {
    switch (z) {//from ww w  . j a  v a2  s.c  o  m
    case 1: {
        //ELEGIR UN ARCHIVO//
        //EN CASO DE QUERER CAMBIAR EL TIPO DE ARCHIVO.
        FileNameExtensionFilter filter = new FileNameExtensionFilter("Image Files", "bmp");
        JFileChooser abrir = new JFileChooser();
        abrir.setFileSelectionMode(JFileChooser.FILES_ONLY);
        abrir.setFileFilter(filter);
        abrir.setCurrentDirectory(new File(System.getProperty("user.home")));
        int result = abrir.showOpenDialog(inicio);
        if (result == JFileChooser.APPROVE_OPTION) {
            // se seleciona el archivo de imagen original
            File selectedFile = abrir.getSelectedFile();
            ruta = selectedFile.getAbsolutePath();
            System.out.println("El archivo es: " + ruta); //ruta
            img = ImageIO.read(new File(ruta)); //se lee el archivo
            rotate = false;
            zoomv = false;
            escalav = false;
            brillos = false;
            contrastes = false;
            undoDelete = false;
            undoIndex = 0;
            Change();
            inicio.setTitle("PDI: Tarea 3 -" + ruta);

        }
    }
        break;//end case 1

    case 2: //imagen en negativo
    {

        //se crea un buffer
        BufferedImage imagenNegativa = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        //se convierten los colores a negativo y se va guardando en el buffer
        for (int y = 0; y < alto; y++) {
            for (int x = 0; x < ancho; x++) {
                int p = img.getRGB(x, y);
                //obtenermos el valor r g b a de cada pixel
                // int a = (p>>24)&0xff;
                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;
                //se resta el rbg
                r = truncate(255 - r);
                g = truncate(255 - g);
                b = truncate(255 - b);
                //se guarda el rgb
                p = (r << 16) | (g << 8) | b;
                imagenNegativa.setRGB(x, y, p);
            }
        }
        //PARA LOS ROTACIONES
        img = imagenNegativa;

        ancho = img.getWidth();
        alto = img.getHeight();
        //se crea un buffer
        imagenNegativa = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        //se convierten los colores a negativo y se va guardando en el buffer
        for (int y = 0; y < alto; y++) {
            for (int x = 0; x < ancho; x++) {
                int p = original.getRGB(x, y);
                //obtenermos el valor r g b a de cada pixel
                int a = (p >> 24) & 0xff;
                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;
                //se resta el rbg
                r = 255 - r;
                g = 255 - g;
                b = 255 - b;
                //se guarda el rgb
                p = (a << 24) | (r << 16) | (g << 8) | b;
                imagenNegativa.setRGB(x, y, p);
            }
        }
        img = imagenNegativa;

        Change();
    }
        break;//end case 2

    case 3: //flip imagen vertical
    {

        //buffer para la imagen
        BufferedImage mirrorimgV = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        //recorremos pixel a pixel tooooooooooooodo el buffer
        for (int i = 0; i < alto; i++) {
            for (int izquierda = 0, derecha = ancho - 1; izquierda < alto; izquierda++, derecha--) {
                int p = img.getRGB(izquierda, i);
                mirrorimgV.setRGB(derecha, i, p);
            }
        }
        img = mirrorimgV;
        Change();

    }
        break;//end case 3

    case 4://flip imagen horizontal
    {

        BufferedImage mirrorimgH = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);

        for (int i = 0; i < ancho; i++) {
            for (int arriba = 0, abajo = alto - 1; arriba < alto; arriba++, abajo--) {
                int p = img.getRGB(i, arriba);
                mirrorimgH.setRGB(i, abajo, p);
            }
        }
        img = mirrorimgH;
        Change();

    }
        break;//end case 4

    case 5: { //boton de reset

        //RESET
        File f = null;
        //leer image
        try {
            f = new File(ruta);
            rotate = false;
            zoomv = false;
            escalav = false;
            brillos = false;
            contrastes = false;
            undoDelete = false;
            undoIndex = 0;
            img = ImageIO.read(f);
        } catch (IOException e) {
            System.out.println(e);
        }

        Change();

    }
        break; //end case 5

    case 6: { //leer en formato binario

        FileNameExtensionFilter filter = new FileNameExtensionFilter("Image Files", "bmp");
        JFileChooser abrir = new JFileChooser();
        abrir.setFileSelectionMode(JFileChooser.FILES_ONLY);
        abrir.setFileFilter(filter);
        //abrir.setCurrentDirectory(new File(System.getProperty("user.home")));
        abrir.setCurrentDirectory(new File(System.getProperty("user.dir")));
        int result = abrir.showOpenDialog(inicio);
        if (result == JFileChooser.APPROVE_OPTION) {

            try {
                File selectedFile = abrir.getSelectedFile();
                ruta = selectedFile.getAbsolutePath();

                FileInputStream is = null;

                is = new FileInputStream(ruta);
                bmp.read(is);
                System.out.println("aqui");
                MemoryImageSource mis = bmp.crearImageSource();
                System.out.println("hola");
                Image im = Toolkit.getDefaultToolkit().createImage(mis);
                //Para poder colorcarlo en el label
                //Image image = createImage(new MemoryImageSource(bmp.crearImageSource()));
                BufferedImage newImage = new BufferedImage(im.getWidth(null), im.getHeight(null),
                        BufferedImage.TYPE_INT_RGB);
                //obtenemos la imagen que si se puede desplgar
                Graphics2D g = newImage.createGraphics();
                g.drawImage(im, 0, 0, null);
                g.dispose();

                img = newImage;
                rotate = false;
                zoomv = false;
                escalav = false;
                brillos = false;
                contrastes = false;
                undoDelete = false;
                undoIndex = 0;
                Change();

                //add img info
                inicio.setTitle("PDI: Tarea 3 -" + ruta);
                //dimensiones, profundidad de bits, Mb ocupados
                content = ("Size: " + (bmp.tamArchivo) / 1000 + "kb\nDimension: " + bmp.ancho + " x " + bmp.alto
                        + "\nBpp: " + bmp.bitsPorPixel + "bits");
                ancho = bmp.ancho;
                alto = bmp.alto;

            } catch (Exception ex) {
                Logger.getLogger(controlador.class.getName()).log(Level.SEVERE, null, ex);
            }

        } //end approval if
    }
        break; //end case 6

    //girar CW
    case 7: {

        BufferedImage new_Image = new BufferedImage(alto, ancho, BufferedImage.TYPE_INT_RGB);
        for (int i = 0; i < ancho; i++) {
            for (int j = 0; j < alto; j++) {
                int p = img.getRGB(i, j);
                new_Image.setRGB(alto - j - 1, i, p);

            }
        }

        img = new_Image;
        Change();

    }
        break;//end case 7

    //girar CCW
    case 8: {

        BufferedImage new_Image = new BufferedImage(alto, ancho, BufferedImage.TYPE_INT_RGB);
        for (int i = 0; i < ancho; i++) {
            for (int j = 0; j < alto; j++) {
                int p = img.getRGB(i, j);
                new_Image.setRGB(j, ancho - i - 1, p);

            }
        }

        img = new_Image;
        Change();

    }
        break;//end case 8

    case 9: { //Guardar Imagen

        FileNameExtensionFilter filter = new FileNameExtensionFilter("Image Files", "bmp");
        JFileChooser fileChooser = new JFileChooser();
        fileChooser.setFileFilter(filter);
        fileChooser.setDialogTitle("Save");
        fileChooser.setCurrentDirectory(new File(System.getProperty("user.home")));
        int userSelection = fileChooser.showSaveDialog(inicio);
        if (userSelection == JFileChooser.APPROVE_OPTION) {
            File fileToSave = fileChooser.getSelectedFile();
            System.out.println("Save as file: " + fileToSave.getAbsolutePath() + ".bmp");
            System.out.println("Save as: " + fileToSave.getName());
            bmp.saveMyLifeTonight(fileToSave, img);
        }
    }
        break;

    case 10: {
        //free rotation
        double anguloCartesiano = inicio.optionr;
        double aux;
        if (rotate == false) {
            original = img;
        }
        //para la ilusion de rotar sobre la "misma imagen"
        if (anguloCartesiano < 0) {

            aux = anguloCartesiano;
            anguloCartesiano = anguloCartesiano + angulo;
            angulo = anguloCartesiano;

        } else if (anguloCartesiano > 0) {

            aux = anguloCartesiano;
            anguloCartesiano = angulo + anguloCartesiano;
            angulo = anguloCartesiano;

        }

        anguloCartesiano = anguloCartesiano * Math.PI / 180;

        //CC coordinates
        int x, y;
        double distance, anguloPolar;
        int pisoX, techoX, pisoY, techoY;
        double rasterX, rasterY;
        // colores de los pixeles
        Color colorTL = null, colorTR, colorBL, colorBR = null;
        // interpolaciones
        double intX, intY;
        double rojoT, verdeT, azulT;
        double rojoB, verdeB, azulB;

        int centroX, centroY;

        centroX = original.getWidth() / 2;
        centroY = original.getHeight() / 2;

        BufferedImage imagenRotada = new BufferedImage(original.getWidth(), original.getHeight(),
                BufferedImage.TYPE_INT_ARGB);//fondo transparente

        for (int i = 0; i < original.getHeight(); ++i)
            for (int j = 0; j < original.getWidth(); ++j) {
                // convert raster to Cartesian
                x = j - centroX;
                y = centroY - i;

                // convert Cartesian to polar
                distance = Math.sqrt(x * x + y * y);
                anguloPolar = 0.0;
                if (x == 0) {
                    if (y == 0) {
                        // centre of image, no rotation needed
                        imagenRotada.setRGB(j, i, original.getRGB(j, i));

                        continue;
                    } else if (y < 0)
                        anguloPolar = 1.5 * Math.PI;
                    else
                        anguloPolar = 0.5 * Math.PI;
                } else
                    anguloPolar = Math.atan2((double) y, (double) x);

                // 
                anguloPolar -= anguloCartesiano;

                //polr a carte
                rasterX = distance * Math.cos(anguloPolar);
                rasterY = distance * Math.sin(anguloPolar);

                // cartesiano a raster
                rasterX = rasterX + (double) centroX;
                rasterY = (double) centroY - rasterY;

                pisoX = (int) (Math.floor(rasterX));
                pisoY = (int) (Math.floor(rasterY));
                techoX = (int) (Math.ceil(rasterX));
                techoY = (int) (Math.ceil(rasterY));

                // check bounds /// AQUIWWIUEI
                if (pisoX < 0 || techoX < 0 || pisoX >= original.getWidth() || techoX >= original.getWidth()
                        || pisoY < 0 || techoY < 0 || pisoY >= original.getHeight()
                        || techoY >= original.getHeight())
                    continue;

                intX = rasterX - (double) pisoX;
                intY = rasterY - (double) pisoY;

                colorTL = new Color(original.getRGB(pisoX, pisoY));
                colorTR = new Color(original.getRGB(techoX, pisoY));
                colorBL = new Color(original.getRGB(pisoX, techoY));
                colorBR = new Color(original.getRGB(techoX, techoY));

                // interpolacion horizontal top
                rojoT = (1 - intX) * colorTL.getRed() + intX * colorTR.getRed();
                verdeT = (1 - intX) * colorTL.getGreen() + intX * colorTR.getGreen();
                azulT = (1 - intX) * colorTL.getBlue() + intX * colorTR.getBlue();
                // interpolacion horizontal bot
                rojoB = (1 - intX) * colorBL.getRed() + intX * colorBR.getRed();
                verdeB = (1 - intX) * colorBL.getGreen() + intX * colorBR.getGreen();
                azulB = (1 - intX) * colorBL.getBlue() + intX * colorBR.getBlue();
                // interpolacion vertical
                int p = original.getRGB(j, i);
                int a = (p >> 24) & 0xff;
                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;
                r = truncate(Math.round((1 - intY) * rojoT + intY * rojoB));
                g = truncate(Math.round((1 - intY) * verdeT + intY * verdeB));
                b = truncate(Math.round((1 - intY) * azulT + intY * azulB));
                p = (a << 24) | (r << 16) | (g << 8) | b;
                imagenRotada.setRGB(j, i, p);

            }
        img = imagenRotada;
        rotate = true;
        inicio.jLabel3.setBounds(0, 0, ancho, alto);
        ImageIcon icon = new ImageIcon(img);
        inicio.jLabel3.setIcon(icon);

    }
        break; //case 10

    case 11: { //histogram

        //para recorrer todos los valores y obtener los samples
        /*
        for (y) {
            for (x) {
               pixel = raster.getDataElements(x, y, pixel);
            }
        }
                            */
        int BINS = 256;
        HistogramDataset dataset = new HistogramDataset();
        Raster raster = img.getRaster();

        double[] r = new double[ancho * alto];
        ChartPanel panelB = null;
        ChartPanel panelG = null;
        ChartPanel panelR = null;
        ChartPanel panel;

        if (bmp.bitsPorPixel == 1) {

            r = raster.getSamples(0, 0, ancho, alto, 0, r);
            ColorModel ColorM = img.getColorModel();

            dataset.addSeries("Grey", r, BINS);

            //de aqui para abajo es el plotting
            // chart all
            JFreeChart chart = ChartFactory.createHistogram("Histogram", "Value", "Count", dataset,
                    PlotOrientation.VERTICAL, true, true, false);
            XYPlot plot = (XYPlot) chart.getPlot();
            XYBarRenderer renderer = (XYBarRenderer) plot.getRenderer();
            renderer.setBarPainter(new StandardXYBarPainter());

            Paint[] paintArray = { new Color(0x80ff0000, true) };
            plot.setDrawingSupplier(
                    new DefaultDrawingSupplier(paintArray, DefaultDrawingSupplier.DEFAULT_FILL_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_SHAPE_SEQUENCE));
            panel = new ChartPanel(chart);
            panel.setMouseWheelEnabled(true);

        } else {

            r = raster.getSamples(0, 0, ancho, alto, 0, r);
            dataset.addSeries("Red", r, BINS);
            r = raster.getSamples(0, 0, ancho, alto, 1, r);
            dataset.addSeries("Green", r, BINS);
            r = raster.getSamples(0, 0, ancho, alto, 2, r);
            dataset.addSeries("Blue", r, BINS);

            //de aqui para abajo es el plotting
            // chart all
            JFreeChart chart = ChartFactory.createHistogram("Histogram", "Value", "Count", dataset,
                    PlotOrientation.VERTICAL, true, true, false);
            XYPlot plot = (XYPlot) chart.getPlot();
            XYBarRenderer renderer = (XYBarRenderer) plot.getRenderer();
            renderer.setBarPainter(new StandardXYBarPainter());
            // translucent red, green & blue
            Paint[] paintArray = { new Color(0x80ff0000, true), new Color(0x8000ff00, true),
                    new Color(0x800000ff, true) };
            plot.setDrawingSupplier(
                    new DefaultDrawingSupplier(paintArray, DefaultDrawingSupplier.DEFAULT_FILL_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_SHAPE_SEQUENCE));
            panel = new ChartPanel(chart);
            panel.setMouseWheelEnabled(true);

            //CHART Red
            HistogramDataset datasetR = new HistogramDataset();
            r = raster.getSamples(0, 0, ancho, alto, 0, r);
            datasetR.addSeries("Red", r, BINS);
            JFreeChart chartR = ChartFactory.createHistogram("Histogram B", "Value", "Count", datasetR,
                    PlotOrientation.VERTICAL, true, true, false);
            XYPlot plotR = (XYPlot) chartR.getPlot();
            XYBarRenderer rendererR = (XYBarRenderer) plotR.getRenderer();
            rendererR.setBarPainter(new StandardXYBarPainter());
            // translucent red, green & blue
            Paint[] paintArrayR = { new Color(0x80ff0000, true)

            };
            plotR.setDrawingSupplier(
                    new DefaultDrawingSupplier(paintArrayR, DefaultDrawingSupplier.DEFAULT_FILL_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_SHAPE_SEQUENCE));
            panelR = new ChartPanel(chartR);
            panelR.setMouseWheelEnabled(true);

            //CHART GREEN

            HistogramDataset datasetG = new HistogramDataset();
            r = raster.getSamples(0, 0, ancho, alto, 1, r);
            datasetG.addSeries("Green", r, BINS);
            JFreeChart chartG = ChartFactory.createHistogram("Histogram G ", "Value", "Count", datasetG,
                    PlotOrientation.VERTICAL, true, true, false);
            XYPlot plotG = (XYPlot) chartG.getPlot();
            XYBarRenderer rendererG = (XYBarRenderer) plotG.getRenderer();
            rendererG.setBarPainter(new StandardXYBarPainter());
            // translucent red, green & blue
            Paint[] paintArrayG = { new Color(0x8000ff00, true)

            };
            plotG.setDrawingSupplier(
                    new DefaultDrawingSupplier(paintArrayG, DefaultDrawingSupplier.DEFAULT_FILL_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_SHAPE_SEQUENCE));
            panelG = new ChartPanel(chartG);
            panelG.setMouseWheelEnabled(true);

            //CHART BLUE

            HistogramDataset datasetB = new HistogramDataset();
            r = raster.getSamples(0, 0, ancho, alto, 2, r);
            datasetB.addSeries("Blue", r, BINS);
            JFreeChart chartB = ChartFactory.createHistogram("Histogram B ", "Value", "Count", datasetB,
                    PlotOrientation.VERTICAL, true, true, false);
            XYPlot plotB = (XYPlot) chartB.getPlot();
            XYBarRenderer rendererB = (XYBarRenderer) plotB.getRenderer();
            rendererB.setBarPainter(new StandardXYBarPainter());
            // translucent red, green & blue
            Paint[] paintArrayB = { new Color(0x800000ff, true)

            };
            plotB.setDrawingSupplier(
                    new DefaultDrawingSupplier(paintArrayB, DefaultDrawingSupplier.DEFAULT_FILL_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_PAINT_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_OUTLINE_STROKE_SEQUENCE,
                            DefaultDrawingSupplier.DEFAULT_SHAPE_SEQUENCE));
            panelB = new ChartPanel(chartB);
            panelB.setMouseWheelEnabled(true);

        }

        //JTabbedPane jtp=new JTabbedPane();
        if (!viewH) {

            inicio.jTabbedPane1.addTab("Histogram", panel);
            inicio.jTabbedPane1.addTab("Histogram R", panelR);
            inicio.jTabbedPane1.addTab("Histogram G", panelG);
            inicio.jTabbedPane1.addTab("Histogram B", panelB);
            viewH = true;
        } else {
            inicio.jTabbedPane1.remove(inicio.jTabbedPane1.indexOfTab("Histogram"));
            inicio.jTabbedPane1.remove(inicio.jTabbedPane1.indexOfTab("Histogram R"));
            inicio.jTabbedPane1.remove(inicio.jTabbedPane1.indexOfTab("Histogram G"));
            inicio.jTabbedPane1.remove(inicio.jTabbedPane1.indexOfTab("Histogram B"));
            viewH = false;
        }

    }
        break;

    case 12: {
        //BRILLO
        int dif = inicio.brillo;

        if (brillos == false) {
            original = img;
        }
        int ancho = img.getWidth();
        int alto = img.getHeight();
        //se crea un buffer
        BufferedImage brillito = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        //se convierten los colores a negativo y se va guardando en el buffer
        for (int y = 0; y < alto; y++) {
            for (int x = 0; x < ancho; x++) {
                int p = original.getRGB(x, y);
                //obtenemos el valor r g b a de cada pixel
                int a = (p >> 24) & 0xff;
                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;
                //se resta el rbg
                r = truncate(r + dif);
                g = truncate(g + dif);
                b = truncate(b + dif);
                //se guarda el rgb
                p = (r << 16) | (g << 8) | b;
                brillito.setRGB(x, y, p);
            }
        }
        img = brillito;
        brillos = true;
        inicio.jLabel3.setBounds(0, 0, ancho, alto);
        ImageIcon icon = new ImageIcon(img);
        inicio.jLabel3.setIcon(icon);

    }
        break; //end case 12

    case 13: {
        //CONTRAST
        double dif = inicio.contraste;
        double level = Math.pow(((100.0 + dif) / 100.0), 2.0);

        if (contrastes == false) {
            original = img;
        }
        int ancho = original.getWidth();
        int alto = original.getHeight();
        BufferedImage contraste = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);

        for (int y = 0; y < alto; y++) {
            for (int x = 0; x < ancho; x++) {
                int p = original.getRGB(x, y);
                int a = (p >> 24) & 0xff;
                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;

                b = truncate((int) ((((((double) b / 255.0) - 0.5) * level) + 0.5) * 255.0));
                g = truncate((int) ((((((double) g / 255.0) - 0.5) * level) + 0.5) * 255.0));
                r = truncate((int) ((((((double) r / 255.0) - 0.5) * level) + 0.5) * 255.0));

                p = (r << 16) | (g << 8) | b;
                contraste.setRGB(x, y, p);
            }
        }
        img = contraste;
        contrastes = true;
        inicio.jLabel3.setBounds(0, 0, ancho, alto);
        ImageIcon icon = new ImageIcon(img);
        inicio.jLabel3.setIcon(icon);

    }
        break;// case 13

    case 14: {
        //UMBRALIZACION
        double u = inicio.umbral;
        if (inicio.jCheckBox1.isSelected()) {

            int ancho = img.getWidth();
            int alto = img.getHeight();

            BufferedImage contraste = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);

            for (int y = 0; y < alto; y++) {
                for (int x = 0; x < ancho; x++) {
                    int p = img.getRGB(x, y);

                    int a = (p >> 24) & 0xff;
                    int r = (p >> 16) & 0xff;
                    int g = (p >> 8) & 0xff;
                    int b = p & 0xff;

                    double mediana = (double) (r + b + g);
                    mediana /= 3;
                    int med = (int) Math.round(mediana);

                    b = med;
                    g = med;
                    r = med;

                    if (r <= u)
                        r = 0;
                    else
                        r = 255;

                    if (g <= u)
                        g = 0;
                    else
                        g = 255;

                    if (b <= u)
                        b = 0;
                    else
                        b = 255;

                    p = (r << 16) | (g << 8) | b;
                    contraste.setRGB(x, y, p);
                }
            }
            img = contraste;
            Change();
        }

    }
        break;

    case 15: {
        BufferedImage equalized = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        int r, g, b, a;
        int pixel = 0;

        //look up table rgb 
        int[] rhist = new int[256];
        int[] ghist = new int[256];
        int[] bhist = new int[256];

        for (int i = 0; i < rhist.length; i++)
            rhist[i] = 0;
        for (int i = 0; i < ghist.length; i++)
            ghist[i] = 0;
        for (int i = 0; i < bhist.length; i++)
            bhist[i] = 0;

        for (int i = 0; i < img.getWidth(); i++) {
            for (int j = 0; j < img.getHeight(); j++) {

                int red = new Color(img.getRGB(i, j)).getRed();
                int green = new Color(img.getRGB(i, j)).getGreen();
                int blue = new Color(img.getRGB(i, j)).getBlue();
                rhist[red]++;
                ghist[green]++;
                bhist[blue]++;

            }
        }

        //histograma color
        ArrayList<int[]> imageHist = new ArrayList<int[]>();
        imageHist.add(rhist);
        imageHist.add(ghist);
        imageHist.add(bhist);
        //lookup table
        ArrayList<int[]> imgLT = new ArrayList<int[]>();
        // llenar 
        rhist = new int[256];
        ghist = new int[256];
        bhist = new int[256];

        for (int i = 0; i < rhist.length; i++)
            rhist[i] = 0;
        for (int i = 0; i < ghist.length; i++)
            ghist[i] = 0;
        for (int i = 0; i < bhist.length; i++)
            bhist[i] = 0;

        long rojosT = 0;
        long verdesT = 0;
        long azulT = 0;

        // 
        float factorDeEscala = (float) (255.0 / (ancho * alto));

        for (int i = 0; i < rhist.length; i++) {
            rojosT += imageHist.get(0)[i];
            int valor = (int) (rojosT * factorDeEscala);
            if (valor > 255) {
                rhist[i] = 255;
            } else
                rhist[i] = valor;

            verdesT += imageHist.get(1)[i];
            int valg = (int) (verdesT * factorDeEscala);
            if (valg > 255) {
                ghist[i] = 255;
            } else
                ghist[i] = valg;

            azulT += imageHist.get(2)[i];
            int valb = (int) (azulT * factorDeEscala);
            if (valb > 255) {
                bhist[i] = 255;
            } else
                bhist[i] = valb;
        }

        imgLT.add(rhist);
        imgLT.add(ghist);
        imgLT.add(bhist);

        for (int i = 0; i < ancho; i++) {
            for (int j = 0; j < alto; j++) {

                // colores
                a = new Color(img.getRGB(i, j)).getAlpha();
                r = new Color(img.getRGB(i, j)).getRed();
                g = new Color(img.getRGB(i, j)).getGreen();
                b = new Color(img.getRGB(i, j)).getBlue();

                // nuevos valoooooores
                r = imgLT.get(0)[r];
                g = imgLT.get(1)[g];
                b = imgLT.get(2)[b];

                // rgb otra vez
                pixel = colorToRGB(a, r, g, b);

                //imagen final
                equalized.setRGB(i, j, pixel);

            }
        }

        img = equalized;
        Change();

    }
        break;

    case 16: {
        //zoom 
        double du = inicio.zoom;
        double u = du / 100;

        if (zoomv == false) {
            original = img;
        }
        BufferedImage zoom = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);

        for (int i = 0; i < zoom.getHeight(); ++i)
            for (int j = 0; j < zoom.getWidth(); ++j) {
                //nearest
                if (tipo == 1) {

                    int ax = (int) (Math.floor(i / u));
                    int ay = (int) (Math.floor(j / u));

                    int p = original.getRGB(ax, ay);
                    zoom.setRGB(i, j, p);
                }

                //bilinear
                if (tipo == 2) {

                }

                //no loss
                if (tipo == 0) {

                    int ax = (int) (i / u);
                    int ay = (int) (j / u);

                    int p = original.getRGB(ax, ay);
                    zoom.setRGB(i, j, p);
                }

            }
        img = zoom;
        zoomv = true;
        inicio.jLabel3.setBounds(0, 0, ancho, alto);
        ImageIcon icon = new ImageIcon(img);
        inicio.jLabel3.setIcon(icon);

    }
        break;

    case 17: {
        //escala
        double du = inicio.escala;
        double u = du / 100;

        if (escalav == false) {
            original = img;
        }
        int escalaX = (int) (ancho * u);
        int escalaY = (int) (alto * u);
        BufferedImage escala = new BufferedImage(escalaX, escalaY, BufferedImage.TYPE_INT_RGB);

        for (int i = 0; i < escala.getHeight(); ++i)
            for (int j = 0; j < escala.getWidth(); ++j) {
                //R(x,y):= A(x/ax, y/ay) 
                //R(x,y):= A(Floor x/10 ,Floor /10)

                //nearest
                if (tipo == 1) {

                    int ax = (int) (Math.floor(i / u));
                    int ay = (int) (Math.floor(j / u));

                    int p = original.getRGB(ax, ay);
                    escala.setRGB(i, j, p);
                }

                //bilinear
                if (tipo == 2) {

                }

                //no loss
                if (tipo == 0) {

                    int ax = (int) (i / u);
                    int ay = (int) (j / u);

                    int p = original.getRGB(ax, ay);
                    escala.setRGB(i, j, p);
                }

            }

        img = escala;
        escalav = true;
        inicio.jLabel3.setBounds(0, 0, ancho, alto);
        ImageIcon icon = new ImageIcon(img);
        inicio.jLabel3.setIcon(icon);
        content = ("Dimension: " + img.getWidth() + " x " + img.getHeight() + "\nBpp: " + bmp.bitsPorPixel
                + "bits");

    }
        break;

    case 18://prewitt both
    {

        BufferedImage aux = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        aux = img;
        BufferedImage y, x;

        float[][] arraya = { { -1, 0, 1 }, { -1, 0, 1 }, { -1, 0, 1 } };
        float[][] arrayb = { { -2, -1, 0, 1, 2 }, { -2, -1, 0, 1, 2 }, { -2, -1, 0, 1, 2 }, { -2, -1, 0, 1, 2 },
                { -2, -1, 0, 1, 2 }, };

        float[][] arrayc = { { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 },
                { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 },
                { -3, -2, -1, 0, 1, 2, 3 }, };

        float[][] array = { { -1, -1, -1 }, { 0, 0, 0 }, { 1, 1, 1 } };
        float[][] array2 = { { -2, -2, -2, -2, -2 }, { -1, -1, -1, -1, -1 }, { 0, 0, 0, 0, 0 },
                { 1, 1, 1, 1, 1 }, { 2, 2, 2, 2, 2 }, };
        float[][] array3 = { { -3, -3, -3, -3, -3, -3, -3 }, { -2, -2, -2, -2, -2, -2, -2 },
                { -1, -1, -1, -1, -1, -1, -1 }, { 0, 0, 0, 0, 0, 0, 0 }, { 1, 1, 1, 1, 1, 1, 1 },
                { 2, 2, 2, 2, 2, 2, 2 }, { 3, 3, 3, 3, 3, 3, 3 }, };
        if (inicio.size == 7) {
            y = generalKernel(array3, 7);
            img = aux;
            x = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(array2, 5);
            img = aux;
            x = generalKernel(arrayb, 5);
        } else {
            y = generalKernel(array, 3);
            img = aux;
            x = generalKernel(arraya, 3);
        }

        for (int i = 0; i < ancho; i++) {
            for (int j = 0; j < alto; j++) {

                int p = x.getRGB(i, j);
                int p2 = y.getRGB(i, j);
                //obtenemos el valor r g b a de cada pixel

                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;

                int r2 = (p2 >> 16) & 0xff;
                int g2 = (p2 >> 8) & 0xff;
                int b2 = p2 & 0xff;
                //process
                int resR = truncate(Math.sqrt(Math.pow(r, 2) + Math.pow(r2, 2)));
                int resG = truncate(Math.sqrt(Math.pow(g, 2) + Math.pow(g2, 2)));
                int resB = truncate(Math.sqrt(Math.pow(b, 2) + Math.pow(b2, 2)));

                //se guarda el rgb
                p = (resR << 16) | (resG << 8) | resB;
                img.setRGB(i, j, p);

            }
            Change();
        }
    }
        break;

    case 19://prewitt x
    {

        BufferedImage x;

        float[][] arraya = { { -1, 0, 1 }, { -1, 0, 1 }, { -1, 0, 1 } };
        float[][] arrayb = { { -2, -1, 0, 1, 2 }, { -2, -1, 0, 1, 2 }, { -2, -1, 0, 1, 2 }, { -2, -1, 0, 1, 2 },
                { -2, -1, 0, 1, 2 }, };

        float[][] arrayc = { { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 },
                { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 }, { -3, -2, -1, 0, 1, 2, 3 },
                { -3, -2, -1, 0, 1, 2, 3 }, };

        if (inicio.size == 7) {
            x = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            x = generalKernel(arrayb, 5);
        } else {
            x = generalKernel(arraya, 3);
        }
        img = x;
        Change();

    }
        break;

    case 20://prewitt y
    {

        BufferedImage y;

        float[][] array = { { -1, -1, -1 }, { 0, 0, 0 }, { 1, 1, 1 } };
        float[][] array2 = { { -2, -2, -2, -2, -2 }, { -1, -1, -1, -1, -1 }, { 0, 0, 0, 0, 0 },
                { 1, 1, 1, 1, 1 }, { 2, 2, 2, 2, 2 }, };
        float[][] array3 = { { -3, -3, -3, -3, -3, -3, -3 }, { -2, -2, -2, -2, -2, -2, -2 },
                { -1, -1, -1, -1, -1, -1, -1 }, { 0, 0, 0, 0, 0, 0, 0 }, { 1, 1, 1, 1, 1, 1, 1 },
                { 2, 2, 2, 2, 2, 2, 2 }, { 3, 3, 3, 3, 3, 3, 3 }, };

        if (inicio.size == 7) {
            y = generalKernel(array3, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(array2, 5);
        } else {
            y = generalKernel(array, 3);
        }

        img = y;
        Change();

    }
        break;

    case 21://Sobel x
    {

        BufferedImage x;
        float[][] arraya = { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } };

        float[][] arrayb = { { -5, -4, 0, 4, 5 }, { -8, -10, 0, 10, 8 }, { -10, -20, 0, 20, 10 },
                { -8, -10, 0, 10, 8 }, { -5, -4, 0, 4, 5 }, };

        float[][] arrayc = { { 3, 2, 1, 0, -1, -2, -3 }, { 4, 3, 2, 0, -2, -3, -4 }, { 5, 4, 3, 0, -3, -4, -5 },
                { 6, 5, 4, 0, -4, -5, -6 }, { 5, 4, 3, 0, -3, -4, -5 }, { 4, 3, 2, 0, -2, -3, -4 },
                { 3, 2, 1, 0, -1, -2, -3 }, };

        if (inicio.size == 7) {
            x = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            x = generalKernel(arrayb, 5);
        } else {
            x = generalKernel(arraya, 3);
        }
        img = x;
        Change();

    }
        break;

    case 22://sobel y
    {

        BufferedImage y;

        float[][] array1 = { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } };

        float[][] array2 = { { 5, 8, 10, 8, 5 }, { 4, 10, 20, 10, 4 }, { 0, 0, 0, 0, 0 },
                { -4, -10, -20, -10, -4 }, { -5, -8, -10, -8, -5 }, };

        float[][] array3 = { { 3, 4, 5, 6, 5, 4, 3 }, { 2, 3, 4, 5, 4, 3, 2 }, { 1, 2, 3, 4, 3, 2, 1 },
                { 0, 0, 0, 0, 0, 0, 0 }, { -1, -2, -3, -4, -3, -2, -1 }, { -2, -3, -4, -5, -4, -3, -2 },
                { -3, -4, -5, -6, -5, -4, -3 }, };

        if (inicio.size == 7) {
            y = generalKernel(array3, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(array2, 5);
        } else {
            y = generalKernel(array1, 3);
        }

        img = y;
        Change();

    }
        break;

    case 23://sobel both
    {

        BufferedImage aux = new BufferedImage(ancho, alto, BufferedImage.TYPE_INT_RGB);
        aux = img;
        BufferedImage y, x;

        float[][] arraya = { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } };

        float[][] arrayb = { { -5, -4, 0, 4, 5 }, { -8, -10, 0, 10, 8 }, { -10, -20, 0, 20, 10 },
                { -8, -10, 0, 10, 8 }, { -5, -4, 0, 4, 5 }, };

        float[][] arrayc = { { 3, 2, 1, 0, -1, -2, -3 }, { 4, 3, 2, 0, -2, -3, -4 }, { 5, 4, 3, 0, -3, -4, -5 },
                { 6, 5, 4, 0, -4, -5, -6 }, { 5, 4, 3, 0, -3, -4, -5 }, { 4, 3, 2, 0, -2, -3, -4 },
                { 3, 2, 1, 0, -1, -2, -3 }, };

        float[][] array1 = { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } };

        float[][] array2 = { { 5, 8, 10, 8, 5 }, { 4, 10, 20, 10, 4 }, { 0, 0, 0, 0, 0 },
                { -4, -10, -20, -10, -4 }, { -5, -8, -10, -8, -5 }, };

        float[][] array3 = { { 3, 4, 5, 6, 5, 4, 3 }, { 2, 3, 4, 5, 4, 3, 2 }, { 1, 2, 3, 4, 3, 2, 1 },
                { 0, 0, 0, 0, 0, 0, 0 }, { -1, -2, -3, -4, -3, -2, -1 }, { -2, -3, -4, -5, -4, -3, -2 },
                { -3, -4, -5, -6, -5, -4, -3 }, };
        if (inicio.size == 7) {
            y = generalKernel(array3, 7);
            img = aux;
            x = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(array2, 5);
            img = aux;
            x = generalKernel(arrayb, 5);
        } else {
            y = generalKernel(array1, 3);
            img = aux;
            x = generalKernel(arraya, 3);
        }

        for (int i = 0; i < ancho; i++) {
            for (int j = 0; j < alto; j++) {

                int p = x.getRGB(i, j);
                int p2 = y.getRGB(i, j);
                //obtenermos el valor r g b a de cada pixel

                int r = (p >> 16) & 0xff;
                int g = (p >> 8) & 0xff;
                int b = p & 0xff;

                int r2 = (p2 >> 16) & 0xff;
                int g2 = (p2 >> 8) & 0xff;
                int b2 = p2 & 0xff;
                //process
                int resR = truncate(Math.sqrt(Math.pow(r, 2) + Math.pow(r2, 2)));
                int resG = truncate(Math.sqrt(Math.pow(g, 2) + Math.pow(g2, 2)));
                int resB = truncate(Math.sqrt(Math.pow(b, 2) + Math.pow(b2, 2)));

                //se guarda el rgb
                p = (resR << 16) | (resG << 8) | resB;
                img.setRGB(i, j, p);

            }
            Change();
        }
    }
        break;

    case 24://Gauss 
    {

        BufferedImage y;

        float[][] arraya = { { 1 / 16f, 1 / 8f, 1 / 16f }, { 1 / 8f, 1 / 4f, 1 / 8f },
                { 1 / 16f, 1 / 8f, 1 / 16f }, };
        float[][] arrayb = { { 1 / 273f, 4 / 273f, 7 / 273f, 4 / 273f, 1 / 273f },
                { 4 / 273f, 16 / 273f, 26 / 273f, 16 / 273f, 4 / 273f },
                { 7 / 273f, 26 / 273f, 41 / 273f, 26 / 273f, 7 / 273f },
                { 4 / 273f, 16 / 273f, 26 / 273f, 16 / 273f, 4 / 273f },
                { 1 / 273f, 4 / 273f, 7 / 273f, 4 / 273f, 1 / 273f }, };

        float[][] arrayc = {
                { 0.00000067f, 0.00002292f, 0.00019117f, 0.00038771f, 0.00019117f, 0.00002292f, 0.00000067f },
                { 0.00002292f, 0.00078634f, 0.00655965f, 0.01330373f, 0.00655965f, 0.00078633f, 0.00002292f },
                { 0.00019117f, 0.00655965f, 0.05472157f, 0.11098164f, 0.05472157f, 0.00655965f, 0.00019117f },
                { 0.00038771f, 0.01330373f, 0.11098164f, 0.22508352f, 0.11098164f, 0.01330373f, 0.00038771f },
                { 0.00019117f, 0.00655965f, 0.05472157f, 0.11098164f, 0.05472157f, 0.00655965f, 0.00019117f },
                { 0.00002292f, 0.00078634f, 0.00655965f, 0.01330373f, 0.00655965f, 0.00078633f, 0.00002292f },
                { 0.00000067f, 0.00002292f, 0.00019117f, 0.00038771f, 0.00019117f, 0.00002292f, 0.00000067f } };

        if (inicio.size == 7) {
            y = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(arrayb, 5);
        } else {
            y = generalKernel(arraya, 3);
        }

        img = y;
        Change();

    }
        break;

    case 25: {

        BufferedImage y;

        float[][] arraya = { { 1 / 9f, 1 / 9f, 1 / 9f }, { 1 / 9f, 1 / 9f, 1 / 9f },
                { 1 / 9f, 1 / 9f, 1 / 9f }, };
        float[][] arrayb = { { 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f },
                { 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f },
                { 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f },
                { 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f },
                { 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f, 1 / 25f }, };
        float[][] arrayc = { { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f },
                { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f },
                { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f },
                { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f },
                { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f },
                { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f },
                { 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f, 1 / 49f }, };
        if (inicio.size == 7) {
            y = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(arrayb, 5);
        } else {
            y = generalKernel(arraya, 3);
        }

        img = y;
        Change();

    }
        break;

    case 26://sharpen 
    {

        BufferedImage y;

        float[][] arraya = { { -1, -1, -1 }, { -1, 9, -1 }, { -1, -1, -1 }, };
        float[][] arrayb = { { -1, -1, -1, -1, -1 }, { -1, -1, -1, -1, -1 }, { -1, -1, 26, -1, -1 },
                { -1, -1, -1, -1, -1 }, { -1, -1, -1, -1, -1 }, };
        float[][] arrayc = { { -1, -1, -1, -1, -1, -1, -1 }, { -1, -2, -2, -2, -2, -2, -1 },
                { -1, -2, -3, -3, -3, -2, -1 }, { -1, -2, -3, 81, -3, -2, -1 }, { -1, -2, -3, -3, -3, -2, -1 },
                { -1, -2, -2, -2, -2, -2, -1 }, { -1, -1, -1, -1, -1, -1, -1 }, };
        if (inicio.size == 7) {
            y = generalKernel(arrayc, 7);
        } else if (inicio.size == 5) {
            y = generalKernel(arrayb, 5);
        } else {
            y = generalKernel(arraya, 3);
        }

        img = y;
        Change();

    }
        break;
    case 27: {

        kernel = new Kernel();
        kernel.show();
        kernel.setTitle("Kernel");
        kernel.setVisible(true);
        kernel.setLocationRelativeTo(null);
        kernel.setResizable(false);
        kernel.pack();

    }
        break;

    case 28: //valores
    {

        float[][] floatdata = new float[kernel.dim][kernel.dim];
        for (int i = 0; i < kernel.dim; i++) {
            for (int j = 0; j < kernel.dim; j++) {
                floatdata[i][j] = floatValue(kernel.tableData[i][j]);
            }
        }
        kernel.dispose();
        BufferedImage y;
        y = generalKernel(floatdata, kernel.dim);
        img = y;

        Change();

    }
        break;

    case 29://motion blur
    {
        BufferedImage y;

        float[][] array = { { 1 / 9f, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1 / 9f, 0, 0, 0, 0, 0, 0, 0 },
                { 0, 0, 1 / 9f, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 1 / 9f, 0, 0, 0, 0, 0 },
                { 0, 0, 0, 0, 1 / 9f, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 1 / 9f, 0, 0, 0 },
                { 0, 0, 0, 0, 0, 0, 1 / 9f, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 1 / 9f, 0 },
                { 0, 0, 0, 0, 0, 0, 0, 0, 1 / 9f }, };

        /*
        float[][] arrayb = {
            {1/3f, 0, 0},
            {0, 1/3f, 0},
            {0, 0, 1/3f},
         };*/

        y = generalKernel(array, 9);

        img = y;
        Change();

    }
        break;

    } //end switch

}

From source file:graph.eventhandlers.MyEditingGraphMousePlugin.java

/**
 * code lifted from PluggableRenderer to move an edge shape into an
 * arbitrary position/*from   w  w  w . j a v a2  s .co m*/
 */
private void transformEdgeShape(Point2D down, Point2D out) {
    float x1 = (float) down.getX();
    float y1 = (float) down.getY();
    float x2 = (float) out.getX();
    float y2 = (float) out.getY();

    AffineTransform xform = AffineTransform.getTranslateInstance(x1, y1);

    float dx = x2 - x1;
    float dy = y2 - y1;
    float thetaRadians = (float) Math.atan2(dy, dx);
    xform.rotate(thetaRadians);
    float dist = (float) Math.sqrt(dx * dx + dy * dy);
    xform.scale(dist / rawEdge.getBounds().getWidth(), 1.0);
    edgeShape = xform.createTransformedShape(rawEdge);
}