Example usage for javax.media.j3d TransformGroup TransformGroup

List of usage examples for javax.media.j3d TransformGroup TransformGroup

Introduction

In this page you can find the example usage for javax.media.j3d TransformGroup TransformGroup.

Prototype

public TransformGroup() 

Source Link

Document

Constructs and initializes a TransformGroup using an identity transform.

Usage

From source file:GearTest.java

public BranchGroup createGearBox(int toothCount) {
    Transform3D tempTransform = new Transform3D();

    // Create the root of the branch graph
    BranchGroup branchRoot = createBranchEnvironment();

    // Create a Transformgroup to scale all objects so they
    // appear in the scene.
    TransformGroup objScale = new TransformGroup();
    Transform3D t3d = new Transform3D();
    t3d.setScale(0.4);/*from  w  w  w  .  ja  va  2s. co m*/
    objScale.setTransform(t3d);
    branchRoot.addChild(objScale);

    // Create an Appearance.
    Appearance look = new Appearance();
    Color3f objColor = new Color3f(0.5f, 0.5f, 0.6f);
    Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
    look.setMaterial(new Material(objColor, black, objColor, white, 100.0f));

    // Create the transform group node and initialize it to the
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behavior code can modify it at runtime. Add it to the
    // root of the subgraph.
    TransformGroup gearboxTrans = new TransformGroup();
    gearboxTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    gearboxTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    objScale.addChild(gearboxTrans);

    // Create a bounds for the mouse behavior methods
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    // Define the shaft base information
    int shaftCount = 4;
    int secondsPerRevolution = 8000;

    // Create the Shaft(s)
    Shaft shafts[] = new Shaft[shaftCount];
    TransformGroup shaftTGs[] = new TransformGroup[shaftCount];
    Alpha shaftAlphas[] = new Alpha[shaftCount];
    RotationInterpolator shaftRotors[] = new RotationInterpolator[shaftCount];
    Transform3D shaftAxis[] = new Transform3D[shaftCount];

    // Note: the following arrays we're incorporated to make changing
    // the gearbox easier.
    float shaftRatios[] = new float[shaftCount];
    shaftRatios[0] = 1.0f;
    shaftRatios[1] = 0.5f;
    shaftRatios[2] = 0.75f;
    shaftRatios[3] = 5.0f;

    float shaftRadius[] = new float[shaftCount];
    shaftRadius[0] = 0.2f;
    shaftRadius[1] = 0.2f;
    shaftRadius[2] = 0.2f;
    shaftRadius[3] = 0.2f;

    float shaftLength[] = new float[shaftCount];
    shaftLength[0] = 1.8f;
    shaftLength[1] = 0.8f;
    shaftLength[2] = 0.8f;
    shaftLength[3] = 0.8f;

    float shaftDirection[] = new float[shaftCount];
    shaftDirection[0] = 1.0f;
    shaftDirection[1] = -1.0f;
    shaftDirection[2] = 1.0f;
    shaftDirection[3] = -1.0f;

    Vector3d shaftPlacement[] = new Vector3d[shaftCount];
    shaftPlacement[0] = new Vector3d(-0.75, -0.9, 0.0);
    shaftPlacement[1] = new Vector3d(0.75, -0.9, 0.0);
    shaftPlacement[2] = new Vector3d(0.75, 0.35, 0.0);
    shaftPlacement[3] = new Vector3d(-0.75, 0.60, -0.7);

    // Create the shafts.
    for (int i = 0; i < shaftCount; i++) {
        shafts[i] = new Shaft(shaftRadius[i], shaftLength[i], 25, look);
    }

    // Create a transform group node for placing each shaft
    for (int i = 0; i < shaftCount; i++) {
        shaftTGs[i] = new TransformGroup();
        gearboxTrans.addChild(shaftTGs[i]);
        shaftTGs[i].getTransform(tempTransform);
        tempTransform.setTranslation(shaftPlacement[i]);
        shaftTGs[i].setTransform(tempTransform);
        shaftTGs[i].addChild(shafts[i]);
    }

    // Add rotation interpolators to rotate the shaft in the appropriate
    // direction and at the appropriate rate
    for (int i = 0; i < shaftCount; i++) {
        shaftAlphas[i] = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0,
                (long) (secondsPerRevolution * shaftRatios[i]), 0, 0, 0, 0, 0);
        shaftAxis[i] = new Transform3D();
        shaftAxis[i].rotX(Math.PI / 2.0);
        shaftRotors[i] = new RotationInterpolator(shaftAlphas[i], shafts[i], shaftAxis[i], 0.0f,
                shaftDirection[i] * (float) Math.PI * 2.0f);
        shaftRotors[i].setSchedulingBounds(bounds);
        shaftTGs[i].addChild(shaftRotors[i]);
    }

    // Define the gear base information. Again, these arrays exist to
    // make the process of changing the GearBox via an editor faster
    int gearCount = 5;
    float valleyToCircularPitchRatio = .15f;
    float pitchCircleRadius = 1.0f;
    float addendum = 0.05f;
    float dedendum = 0.05f;
    float gearThickness = 0.3f;
    float toothTipThickness = 0.27f;

    // Create an array of gears and their associated information
    SpurGear gears[] = new SpurGear[gearCount];
    TransformGroup gearTGs[] = new TransformGroup[gearCount];

    int gearShaft[] = new int[gearCount];
    gearShaft[0] = 0;
    gearShaft[1] = 1;
    gearShaft[2] = 2;
    gearShaft[3] = 0;
    gearShaft[4] = 3;

    float ratio[] = new float[gearCount];
    ratio[0] = 1.0f;
    ratio[1] = 0.5f;
    ratio[2] = 0.75f;
    ratio[3] = 0.25f;
    ratio[4] = 1.25f;

    Vector3d placement[] = new Vector3d[gearCount];
    placement[0] = new Vector3d(0.0, 0.0, 0.0);
    placement[1] = new Vector3d(0.0, 0.0, 0.0);
    placement[2] = new Vector3d(0.0, 0.0, 0.0);
    placement[3] = new Vector3d(0.0, 0.0, -0.7);
    placement[4] = new Vector3d(0.0, 0.0, 0.0);

    // Create the gears.
    for (int i = 0; i < gearCount; i++) {
        gears[i] = new SpurGearThinBody(((int) ((float) toothCount * ratio[i])), pitchCircleRadius * ratio[i],
                shaftRadius[0], addendum, dedendum, gearThickness, toothTipThickness,
                valleyToCircularPitchRatio, look);
    }

    // Create a transform group node for arranging the gears on a shaft
    // and attach the gear to its associated shaft
    for (int i = 0; i < gearCount; i++) {
        gearTGs[i] = new TransformGroup();
        gearTGs[i].getTransform(tempTransform);
        tempTransform
                .rotZ((shaftDirection[gearShaft[i]] == -1.0) ? gears[i].getCircularPitchAngle() / -2.0f : 0.0f);
        tempTransform.setTranslation(placement[i]);
        gearTGs[i].setTransform(tempTransform);
        gearTGs[i].addChild(gears[i]);
        shafts[gearShaft[i]].addChild(gearTGs[i]);
    }

    // Have Java 3D perform optimizations on this scene graph.
    branchRoot.compile();

    return branchRoot;
}

From source file:ExSpotLight.java

public AnnotationArrow(float x, float y, float z, float x2, float y2, float z2) {
    super(x, y, z, x2, y2, z2);
    setLineWidth(lineWidth);/* w  w w.  ja v  a  2  s . c  om*/

    // Compute the length and direction of the line
    float deltaX = x2 - x;
    float deltaY = y2 - y;
    float deltaZ = z2 - z;

    float theta = -(float) Math.atan2(deltaZ, deltaX);
    float phi = (float) Math.atan2(deltaY, deltaX);
    if (deltaX < 0.0f) {
        phi = (float) Math.PI - phi;
    }

    // Compute a matrix to rotate a cone to point in the line's
    // direction, then place the cone at the line's endpoint.
    Matrix4f mat = new Matrix4f();
    Matrix4f mat2 = new Matrix4f();
    mat.setIdentity();

    // Move to the endpoint of the line
    mat2.setIdentity();
    mat2.setTranslation(new Vector3f(x2, y2, z2));
    mat.mul(mat2);

    // Spin around Y
    mat2.setIdentity();
    mat2.rotY(theta);
    mat.mul(mat2);

    // Tilt up or down around Z
    mat2.setIdentity();
    mat2.rotZ(phi);
    mat.mul(mat2);

    // Tilt cone to point right
    mat2.setIdentity();
    mat2.rotZ(-1.571f);
    mat.mul(mat2);

    arrowTrans = new TransformGroup();
    arrowTrans.setCapability(Group.ALLOW_CHILDREN_WRITE);
    Transform3D trans = new Transform3D(mat);
    arrowTrans.setTransform(trans);

    // Create an appearance
    arrowAppearance = new Appearance();
    arrowAppearance.setCapability(Appearance.ALLOW_COLORING_ATTRIBUTES_WRITE);

    getLineColor(arrowColor);
    coloringAttributes = new ColoringAttributes();
    coloringAttributes.setColor(arrowColor);
    coloringAttributes.setShadeModel(ColoringAttributes.SHADE_FLAT);
    arrowAppearance.setColoringAttributes(coloringAttributes);

    // Build a cone for the arrow head
    arrowHead = new Cone(arrowRadius, // base radius
            arrowLength, // height
            0, // don't generate normals
            radialDivisions, // divisions radially
            sideDivisions, // divisions vertically
            arrowAppearance); // appearance

    arrowTrans.addChild(arrowHead);
    addChild(arrowTrans);
}

From source file:LightTest.java

public Group createGeometry() {
    m_TransformGroup = new TransformGroup();
    m_TransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    m_TransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

    // create appearance and material for the Cone
    Appearance app = new Appearance();

    // create the Primitive and add to the parent BranchGroup
    m_Cone = new Cone(1, 10, Primitive.ENABLE_APPEARANCE_MODIFY | Primitive.GENERATE_NORMALS, app);
    m_TransformGroup.addChild(m_Cone);//w ww  .  ja  va 2 s . c  om

    Group superGroup = super.createGeometry();
    superGroup.addChild(m_TransformGroup);

    return superGroup;
}

From source file:FourByFour.java

/**
 * Create the scenegraph for the 3D view.
 *//*ww w  .j av a  2s. c om*/
public BranchGroup createScene3D() {

    // Define colors
    Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f red = new Color3f(0.80f, 0.20f, 0.2f);
    Color3f ambient = new Color3f(0.25f, 0.25f, 0.25f);
    Color3f diffuse = new Color3f(0.7f, 0.7f, 0.7f);
    Color3f specular = new Color3f(0.9f, 0.9f, 0.9f);
    Color3f ambientRed = new Color3f(0.2f, 0.05f, 0.0f);
    Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f);

    // Create the branch group
    BranchGroup branchGroup = new BranchGroup();

    // Create the bounding leaf node
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0);
    BoundingLeaf boundingLeaf = new BoundingLeaf(bounds);
    branchGroup.addChild(boundingLeaf);

    // Create the background
    Background bg = new Background(bgColor);
    bg.setApplicationBounds(bounds);
    branchGroup.addChild(bg);

    // Create the ambient light
    AmbientLight ambLight = new AmbientLight(white);
    ambLight.setInfluencingBounds(bounds);
    branchGroup.addChild(ambLight);

    // Create the directional light
    Vector3f dir = new Vector3f(-1.0f, -1.0f, -1.0f);
    DirectionalLight dirLight = new DirectionalLight(white, dir);
    dirLight.setInfluencingBounds(bounds);
    branchGroup.addChild(dirLight);

    // Create the pole appearance
    Material poleMaterial = new Material(ambient, black, diffuse, specular, 110.f);
    poleMaterial.setLightingEnable(true);
    Appearance poleAppearance = new Appearance();
    poleAppearance.setMaterial(poleMaterial);

    // Create the transform group node
    TransformGroup transformGroup = new TransformGroup();
    transformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    transformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    branchGroup.addChild(transformGroup);

    // Create the poles
    Poles poles = new Poles(poleAppearance);
    transformGroup.addChild(poles.getChild());

    // Add the position markers to the transform group
    transformGroup.addChild(positions.getChild());

    // Let the positions object know about the transform group
    positions.setTransformGroup(transformGroup);

    // Create the mouse pick and drag behavior node
    PickDragBehavior behavior = new PickDragBehavior(canvas2D, canvas3D, positions, branchGroup,
            transformGroup);
    behavior.setSchedulingBounds(bounds);
    transformGroup.addChild(behavior);

    return branchGroup;
}

From source file:KeyNavigateTest.java

protected Group createGeometryGroup(Appearance app, Vector3d position, Vector3d scale, String szTextureFile,
        String szSoundFile) {/*www . j  a  va 2 s  .com*/
    TransformGroup tg = new TransformGroup();
    tg.addChild(new Cone(5, 30));

    attachBehavior(new RandomWalkBehavior(getBehaviorTransformGroup(), m_CollisionDetector));

    return tg;
}

From source file:Demo3D.java

/**
 * Create the subgraph #32//  w w  w  .  ja va 2s  .co m
 * 
 * @return javax.media.j3d.TransformGroup trGr32_3 - the root of the
 *         subgraph #32
 */
public BranchGroup mySubGraph32() {
    // A BoundingSphere instance as general bounding region.
    boundsGen = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    // Create the first TransformGroup node trGr32_1 to:
    // 1) attach the Switch node with the five different earth's
    //    representations to the subgraph32
    // 2) attach a coordinate system to each earth's representation
    // 3) rotate each earth about its own y-axis.
    trGr32_1 = new TransformGroup();

    // With the ALLOW_TRANSFORM_WRITE capability, we allow the
    // modification of the TransformGroup's code by the behavior's
    // code at run time.
    trGr32_1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

    // SwitchBehavior is the class which controls the fonctioning of
    // the switchEarths node.

    switchBehavior = new SwitchBehavior(this);
    switchBehavior.setSchedulingBounds(boundsGen);
    trGr32_1.addChild(switchBehavior);

    // The Switch which allows the rendering of the five different
    // earth's representations.
    switchEarths = new Switch();
    // With the ALLOW_TRANSFORM_WRITE, ALLOW_SWITCH_WRITE and
    // ALLOW_CHILDREN_READ
    // capabilities we allow to get or set new capabilities.
    switchEarths.setCapability(Switch.ALLOW_SWITCH_READ);
    switchEarths.setCapability(Switch.ALLOW_SWITCH_WRITE);
    switchEarths.setCapability(Switch.ALLOW_CHILDREN_READ);

    // Attach the different earth's representations to the Switch node.
    // Increasing
    earth_Points = new Earth("points", 0.4f);
    switchEarths.addChild(earth_Points.myEarth()); // # 0

    earth_Lines = new Earth("lines", 0.4f);
    switchEarths.addChild(earth_Lines.myEarth()); // # 1

    earth_Polygons = new Earth("polygons", 0.4f);
    switchEarths.addChild(earth_Polygons.myEarth()); // # 2

    earth_Gouraud = new Earth("gouraud", 0.4f);
    switchEarths.addChild(earth_Gouraud.myEarth()); // # 3

    earth_Texture = new Earth("texture", 0.4f);
    switchEarths.addChild(earth_Texture.myEarth()); // # 4

    // Decreasing
    switchEarths.addChild(earth_Texture.myEarth()); // # 4
    switchEarths.addChild(earth_Gouraud.myEarth()); // # 3
    switchEarths.addChild(earth_Polygons.myEarth()); // # 2
    switchEarths.addChild(earth_Lines.myEarth()); // # 1
    switchEarths.addChild(earth_Points.myEarth()); // # 0

    // Attach the Switch node with the five different earth's
    // representations to the TransformGroup node trGr32_1.
    trGr32_1.addChild(switchEarths);

    // Create and attach a coordinate system to the TransformGroup node
    // trGr32_1, that is to each earth's representation.
    coordSyst = new CoordSyst(1.0f, 1.0f, 0.0f, // Color of the x-axis
            0.0f, 0.0f, 1.0f, // Color of the y-axis
            1.0f, 0.0f, 0.0f, // Color of the z-axis
            0.6f); // Lenght of the 3 axes
    trGr32_1.addChild(coordSyst);

    // Create the alpha(t) function for the earth's rotation about
    // its own y-axis.
    rotationAlpha_1 = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 10000, 0, 0, 0, 0, 0);
    // Create the earth's rotation about its own y-axis.
    rotator_1 = new RotationInterpolator(rotationAlpha_1, trGr32_1, new Transform3D(), 0.0f,
            (float) Math.PI * 2.0f);
    rotator_1.setSchedulingBounds(boundsGen);
    trGr32_1.addChild(rotator_1);

    // Create a Transform3D instance to execute the desired "static
    // translation" of the earth, that is the rotation radius around
    // the sun.
    transl = new Transform3D();
    vectTransl = new Vector3d(2.5, 0.0, 0.0);
    transl.set(vectTransl);

    // Create the second TransformGroup node trGr32_2 and attach the
    // "static translation" transl to it.
    trGr32_2 = new TransformGroup(transl);

    // Attach the trGr32_1 node to the trGr32_2 node.
    trGr32_2.addChild(trGr32_1);

    // Create the third TransformGroup node trGr32_3 for the earth's
    // rotation around the sun.
    trGr32_3 = new TransformGroup();

    // With the ALLOW_TRANSFORM_WRITE capability, we allow the
    // modification of the TransformGroup's code by the behavior's
    // code at run time.
    trGr32_3.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

    // Attach the trGr32_2 node to the trGr32_3 node.
    trGr32_3.addChild(trGr32_2);

    // Create the alpha(t) function for the earth's rotation around the sun.
    rotationAlpha_2 = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 20000, 0, 0, 0, 0, 0);

    // To restart correctly the rotation of the earth around the
    // sun after a detach/add process of the subgraph32 from the
    // BranchGroup node brGr3.
    rotationAlpha_2.setStartTime(System.currentTimeMillis());

    // Create the earth's rotation around the sun.
    rotator_2 = new RotationInterpolator(rotationAlpha_2, trGr32_3, new Transform3D(), 0.0f,
            (float) Math.PI * 2.0f);
    rotator_2.setSchedulingBounds(boundsGen);
    trGr32_3.addChild(rotator_2);

    // To allow the detaching of this subgraph32 from the
    // BranchGroup node brGr3.
    brGr32 = new BranchGroup();
    brGr32.setCapability(BranchGroup.ALLOW_DETACH);
    brGr32.addChild(trGr32_3);

    // Return the final version of the BranchGroup node brGr32.
    return brGr32;
}

From source file:KeyNavigateTest.java

public Group createObject(Appearance app, Vector3d position, Vector3d scale, String szTextureFile,
        String szSoundFile, String szCollisionSound) {
    m_TransformGroup = new TransformGroup();
    Transform3D t3d = new Transform3D();

    t3d.setScale(scale);//from w  w w . j a va2  s .c  o m
    t3d.setTranslation(position);

    m_TransformGroup.setTransform(t3d);

    m_BehaviorTransformGroup = new TransformGroup();

    if ((m_nFlags & GEOMETRY) == GEOMETRY)
        m_BehaviorTransformGroup
                .addChild(createGeometryGroup(app, position, scale, szTextureFile, szSoundFile));

    if ((m_nFlags & SOUND) == SOUND) {
        MediaContainer media = loadSoundFile(szSoundFile);
        PointSound pointSound = new PointSound(media, getSoundInitialGain(false), 0, 0, 0);
        setSoundAttributes(pointSound, false);
        m_BehaviorTransformGroup.addChild(pointSound);
    }

    if ((m_nFlags & COLLISION) == COLLISION) {
        m_BehaviorTransformGroup.setCapability(Node.ENABLE_COLLISION_REPORTING);
        m_BehaviorTransformGroup.setCollidable(true);
        m_BehaviorTransformGroup.setCollisionBounds(getGeometryBounds());

        if ((m_nFlags & COLLISION_SOUND) == COLLISION_SOUND) {
            MediaContainer collideMedia = loadSoundFile(szCollisionSound);

            m_CollideSound = new BackgroundSound(collideMedia, 1);
            setSoundAttributes(m_CollideSound, true);
            m_TransformGroup.addChild(m_CollideSound);
        }

        CollisionBehavior collision = new CollisionBehavior(m_BehaviorTransformGroup, this);
        collision.setSchedulingBounds(getGeometryBounds());

        m_BehaviorTransformGroup.addChild(collision);
    }

    m_TransformGroup.addChild(m_BehaviorTransformGroup);
    m_ParentGroup.addChild(m_TransformGroup);

    return m_BehaviorTransformGroup;
}

From source file:TransformExplorer.java

CoordSys(float axisLength) {
    super(Switch.CHILD_ALL);

    float coordSysLength = axisLength;
    float labelOffset = axisLength / 20.0f;
    float axisRadius = axisLength / 500.0f;
    float arrowRadius = axisLength / 125.0f;
    float arrowHeight = axisLength / 50.0f;
    float tickRadius = axisLength / 125.0f;
    float tickHeight = axisLength / 250.0f;

    // Set the Switch to allow changes
    setCapability(Switch.ALLOW_SWITCH_READ);
    setCapability(Switch.ALLOW_SWITCH_WRITE);

    // Set up an appearance to make the Axis have
    // grey ambient, black emmissive, grey diffuse and grey specular
    // coloring.//  w w w  .  j a v a2 s .co  m
    //Material material = new Material(grey, black, grey, white, 64);
    Material material = new Material(white, black, white, white, 64);
    Appearance appearance = new Appearance();
    appearance.setMaterial(material);

    // Create a shared group to hold one axis of the coord sys
    SharedGroup coordAxisSG = new SharedGroup();

    // create a cylinder for the central line of the axis
    Cylinder cylinder = new Cylinder(axisRadius, coordSysLength, appearance);
    // cylinder goes from -coordSysLength/2 to coordSysLength in y
    coordAxisSG.addChild(cylinder);

    // create the shared arrowhead
    Cone arrowHead = new Cone(arrowRadius, arrowHeight, appearance);
    SharedGroup arrowHeadSG = new SharedGroup();
    arrowHeadSG.addChild(arrowHead);

    // Create a TransformGroup to move the arrowhead to the top of the
    // axis
    // The arrowhead goes from -arrowHeight/2 to arrowHeight/2 in y.
    // Put it at the top of the axis, coordSysLength / 2
    tmpVector.set(0.0f, coordSysLength / 2 + arrowHeight / 2, 0.0f);
    tmpTrans.set(tmpVector);
    TransformGroup topTG = new TransformGroup();
    topTG.setTransform(tmpTrans);
    topTG.addChild(new Link(arrowHeadSG));
    coordAxisSG.addChild(topTG);

    // create the minus arrowhead
    // Create a TransformGroup to turn the cone upside down:
    // Rotate 180 degrees around Z axis
    tmpAxisAngle.set(0.0f, 0.0f, 1.0f, (float) Math.toRadians(180));
    tmpTrans.set(tmpAxisAngle);

    // Put the arrowhead at the bottom of the axis
    tmpVector.set(0.0f, -coordSysLength / 2 - arrowHeight / 2, 0.0f);
    tmpTrans.setTranslation(tmpVector);
    TransformGroup bottomTG = new TransformGroup();
    bottomTG.setTransform(tmpTrans);
    bottomTG.addChild(new Link(arrowHeadSG));
    coordAxisSG.addChild(bottomTG);

    // Now add "ticks" at 1, 2, 3, etc.

    // create a shared group for the tick
    Cylinder tick = new Cylinder(tickRadius, tickHeight, appearance);
    SharedGroup tickSG = new SharedGroup();
    tickSG.addChild(tick);

    // transform each instance and add it to the coord axis group
    int maxTick = (int) (coordSysLength / 2);
    int minTick = -maxTick;
    for (int i = minTick; i <= maxTick; i++) {
        if (i == 0)
            continue; // no tick at 0

        // use a TransformGroup to offset to the tick location
        TransformGroup tickTG = new TransformGroup();
        tmpVector.set(0.0f, (float) i, 0.0f);
        tmpTrans.set(tmpVector);
        tickTG.setTransform(tmpTrans);
        // then link to an instance of the Tick shared group
        tickTG.addChild(new Link(tickSG));
        // add the TransformGroup to the coord axis
        coordAxisSG.addChild(tickTG);
    }

    // add a Link to the axis SharedGroup to the coordSys
    addChild(new Link(coordAxisSG)); // Y axis

    // Create TransformGroups for the X and Z axes
    TransformGroup xAxisTG = new TransformGroup();
    // rotate 90 degrees around Z axis
    tmpAxisAngle.set(0.0f, 0.0f, 1.0f, (float) Math.toRadians(90));
    tmpTrans.set(tmpAxisAngle);
    xAxisTG.setTransform(tmpTrans);
    xAxisTG.addChild(new Link(coordAxisSG));
    addChild(xAxisTG); // X axis

    TransformGroup zAxisTG = new TransformGroup();
    // rotate 90 degrees around X axis
    tmpAxisAngle.set(1.0f, 0.0f, 0.0f, (float) Math.toRadians(90));
    tmpTrans.set(tmpAxisAngle);
    zAxisTG.setTransform(tmpTrans);
    zAxisTG.addChild(new Link(coordAxisSG));
    addChild(zAxisTG); // Z axis

    // Add the labels. First we need a Font3D for the Text3Ds
    // select the default font, plain style, 0.5 tall. Use null for
    // the extrusion so we get "flat" text since we will be putting it
    // into an oriented Shape3D
    Font3D f3d = new Font3D(new Font("Default", Font.PLAIN, 1), null);

    // set up the +X label
    Text3D plusXText = new Text3D(f3d, "+X", origin, Text3D.ALIGN_CENTER, Text3D.PATH_RIGHT);
    // orient around the local origin
    OrientedShape3D plusXTextShape = new OrientedShape3D(plusXText, appearance,
            OrientedShape3D.ROTATE_ABOUT_POINT, origin);
    // transform to scale down to 0.15 in height, locate at end of axis
    TransformGroup plusXTG = new TransformGroup();
    tmpVector.set(coordSysLength / 2 + labelOffset, 0.0f, 0.0f);
    tmpTrans.set(0.15f, tmpVector);
    plusXTG.setTransform(tmpTrans);
    plusXTG.addChild(plusXTextShape);
    addChild(plusXTG);

    // set up the -X label
    Text3D minusXText = new Text3D(f3d, "-X", origin, Text3D.ALIGN_CENTER, Text3D.PATH_RIGHT);
    // orient around the local origin
    OrientedShape3D minusXTextShape = new OrientedShape3D(minusXText, appearance,
            OrientedShape3D.ROTATE_ABOUT_POINT, origin);
    // transform to scale down to 0.15 in height, locate at end of axis
    TransformGroup minusXTG = new TransformGroup();
    tmpVector.set(-coordSysLength / 2 - labelOffset, 0.0f, 0.0f);
    tmpTrans.set(0.15f, tmpVector);
    minusXTG.setTransform(tmpTrans);
    minusXTG.addChild(minusXTextShape);
    addChild(minusXTG);

    // set up the +Y label
    Text3D plusYText = new Text3D(f3d, "+Y", origin, Text3D.ALIGN_CENTER, Text3D.PATH_RIGHT);
    // orient around the local origin
    OrientedShape3D plusYTextShape = new OrientedShape3D(plusYText, appearance,
            OrientedShape3D.ROTATE_ABOUT_POINT, origin);
    // transform to scale down to 0.15 in height, locate at end of axis
    TransformGroup plusYTG = new TransformGroup();
    tmpVector.set(0.0f, coordSysLength / 2 + labelOffset, 0.0f);
    tmpTrans.set(0.15f, tmpVector);
    plusYTG.setTransform(tmpTrans);
    plusYTG.addChild(plusYTextShape);
    addChild(plusYTG);

    // set up the -Y label
    Text3D minusYText = new Text3D(f3d, "-Y", origin, Text3D.ALIGN_CENTER, Text3D.PATH_RIGHT);
    // orient around the local origin
    OrientedShape3D minusYTextShape = new OrientedShape3D(minusYText, appearance,
            OrientedShape3D.ROTATE_ABOUT_POINT, origin);
    // transform to scale down to 0.15 in height, locate at end of axis
    TransformGroup minusYTG = new TransformGroup();
    tmpVector.set(0.0f, -coordSysLength / 2 - labelOffset, 0.0f);
    tmpTrans.set(0.15f, tmpVector);
    minusYTG.setTransform(tmpTrans);
    minusYTG.addChild(minusYTextShape);
    addChild(minusYTG);

    // set up the +Z label
    Text3D plusZText = new Text3D(f3d, "+Z", origin, Text3D.ALIGN_CENTER, Text3D.PATH_RIGHT);
    // orient around the local origin
    OrientedShape3D plusZTextShape = new OrientedShape3D(plusZText, appearance,
            OrientedShape3D.ROTATE_ABOUT_POINT, origin);
    // transform to scale down to 0.15 in height, locate at end of axis
    TransformGroup plusZTG = new TransformGroup();
    tmpVector.set(0.0f, 0.0f, coordSysLength / 2 + labelOffset);
    tmpTrans.set(0.15f, tmpVector);
    plusZTG.setTransform(tmpTrans);
    plusZTG.addChild(plusZTextShape);
    addChild(plusZTG);

    // set up the -Z label
    Text3D minusZText = new Text3D(f3d, "-Z", origin, Text3D.ALIGN_CENTER, Text3D.PATH_RIGHT);
    // orient around the local origin
    OrientedShape3D minusZTextShape = new OrientedShape3D(minusZText, appearance,
            OrientedShape3D.ROTATE_ABOUT_POINT, origin);
    // transform to scale down to 0.15 in height, locate at end of axis
    TransformGroup minusZTG = new TransformGroup();
    tmpVector.set(0.0f, 0.0f, -coordSysLength / 2 - labelOffset);
    tmpTrans.set(0.15f, tmpVector);
    minusZTG.setTransform(tmpTrans);
    minusZTG.addChild(minusZTextShape);
    addChild(minusZTG);
}

From source file:SplineInterpolatorTest.java

protected Group createGeometryGroup(Appearance app, Vector3d position, Vector3d scale, String szTextureFile,
        String szSoundFile) {/*w  w  w.j  av  a 2s.c o m*/
    TransformGroup tg = new TransformGroup();

    // we need to flip the helicopter model
    // 90 degrees about the X axis
    Transform3D t3d = new Transform3D();
    t3d.rotX(Math.toRadians(-90));
    tg.setTransform(t3d);

    try {
        tg.addChild(loadGeometryGroup("heli.obj", app));

        // create an Alpha object for the Interpolator
        Alpha alpha = new Alpha(-1, Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE,
                (long) Utils.getRandomNumber(0, 500), (long) Utils.getRandomNumber(0, 500),
                (long) Utils.getRandomNumber(20000, 5000), 4000, 100, (long) Utils.getRandomNumber(20000, 5000),
                5000, 50);

        attachSplinePathInterpolator(alpha, new Transform3D(),
                new URL(((Java3dApplet) m_Component).getWorkingDirectory(), "heli_spline.xls"));
    } catch (Exception e) {
        System.err.println(e.toString());
    }

    return tg;
}

From source file:TransformExplorer.java

RotAxis(float axisLength) {
    super(Switch.CHILD_NONE);
    setCapability(Switch.ALLOW_SWITCH_READ);
    setCapability(Switch.ALLOW_SWITCH_WRITE);

    // set up the proportions for the arrow
    float axisRadius = axisLength / 120.0f;
    float arrowRadius = axisLength / 50.0f;
    float arrowHeight = axisLength / 30.0f;

    // create the TransformGroup which will be used to orient the axis
    axisTG = new TransformGroup();
    axisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    axisTG.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    addChild(axisTG);//from   ww  w.j a v a2  s. c o  m

    // Set up an appearance to make the Axis have 
    // blue ambient, black emmissive, blue diffuse and white specular 
    // coloring.  
    Material material = new Material(blue, black, blue, white, 64);
    Appearance appearance = new Appearance();
    appearance.setMaterial(material);

    // create a cylinder for the central line of the axis
    Cylinder cylinder = new Cylinder(axisRadius, axisLength, appearance);
    // cylinder goes from -length/2 to length/2 in y
    axisTG.addChild(cylinder);

    // create a SharedGroup for the arrowHead
    Cone arrowHead = new Cone(arrowRadius, arrowHeight, appearance);
    SharedGroup arrowHeadSG = new SharedGroup();
    arrowHeadSG.addChild(arrowHead);

    // Create a TransformGroup to move the cone to the top of the 
    // cylinder
    tmpVector.set(0.0f, axisLength / 2 + arrowHeight / 2, 0.0f);
    tmpTrans.set(tmpVector);
    TransformGroup topTG = new TransformGroup();
    topTG.setTransform(tmpTrans);
    topTG.addChild(new Link(arrowHeadSG));
    axisTG.addChild(topTG);

    // create the bottom of the arrow
    // Create a TransformGroup to move the cone to the bottom of the 
    // axis so that its pushes into the bottom of the cylinder
    tmpVector.set(0.0f, -(axisLength / 2), 0.0f);
    tmpTrans.set(tmpVector);
    TransformGroup bottomTG = new TransformGroup();
    bottomTG.setTransform(tmpTrans);
    bottomTG.addChild(new Link(arrowHeadSG));
    axisTG.addChild(bottomTG);

    updateAxisTransform();
}