List of usage examples for org.apache.hadoop.mapred JobConf setBoolean
public void setBoolean(String name, boolean value)
name
property to a boolean
. From source file:org.apache.pig.backend.hadoop.executionengine.tez.TezDagBuilder.java
License:Apache License
private Vertex newVertex(TezOperator tezOp, boolean isMap) throws IOException, ClassNotFoundException, InterruptedException { ProcessorDescriptor procDesc = ProcessorDescriptor.create(tezOp.getProcessorName()); // Pass physical plans to vertex as user payload. JobConf payloadConf = new JobConf(ConfigurationUtil.toConfiguration(pc.getProperties(), false)); // We do this so that dag.getCredentials(), job.getCredentials(), // job.getConfiguration().getCredentials() all reference the same Credentials object // Unfortunately there is no setCredentials() on Job payloadConf.setCredentials(dag.getCredentials()); // We won't actually use this job, but we need it to talk with the Load Store funcs @SuppressWarnings("deprecation") Job job = new Job(payloadConf); payloadConf = (JobConf) job.getConfiguration(); if (tezOp.sampleOperator != null) { payloadConf.set(PigProcessor.SAMPLE_VERTEX, tezOp.sampleOperator.getOperatorKey().toString()); }/*w ww . j a v a 2s . c om*/ if (tezOp.sortOperator != null) { payloadConf.set(PigProcessor.SORT_VERTEX, tezOp.sortOperator.getOperatorKey().toString()); } String tmp; long maxCombinedSplitSize = 0; if (!tezOp.combineSmallSplits() || pc.getProperties().getProperty(PigConfiguration.PIG_SPLIT_COMBINATION, "true").equals("false")) payloadConf.setBoolean(PigConfiguration.PIG_NO_SPLIT_COMBINATION, true); else if ((tmp = pc.getProperties().getProperty(PigConfiguration.PIG_MAX_COMBINED_SPLIT_SIZE, null)) != null) { try { maxCombinedSplitSize = Long.parseLong(tmp); } catch (NumberFormatException e) { log.warn( "Invalid numeric format for pig.maxCombinedSplitSize; use the default maximum combined split size"); } } if (maxCombinedSplitSize > 0) payloadConf.setLong("pig.maxCombinedSplitSize", maxCombinedSplitSize); payloadConf.set("pig.inputs", ObjectSerializer.serialize(tezOp.getLoaderInfo().getInp())); payloadConf.set("pig.inpSignatures", ObjectSerializer.serialize(tezOp.getLoaderInfo().getInpSignatureLists())); payloadConf.set("pig.inpLimits", ObjectSerializer.serialize(tezOp.getLoaderInfo().getInpLimits())); // Process stores LinkedList<POStore> stores = processStores(tezOp, payloadConf, job); payloadConf.set("pig.pigContext", ObjectSerializer.serialize(pc)); payloadConf.set("udf.import.list", ObjectSerializer.serialize(PigContext.getPackageImportList())); payloadConf.set("exectype", "TEZ"); payloadConf.setBoolean(MRConfiguration.MAPPER_NEW_API, true); payloadConf.setClass(MRConfiguration.INPUTFORMAT_CLASS, PigInputFormat.class, InputFormat.class); // Set parent plan for all operators in the Tez plan. new PhyPlanSetter(tezOp.plan).visit(); // Set the endOfAllInput flag on the physical plan if certain operators that // use this property (such as STREAM) are present in the plan. EndOfAllInputSetter.EndOfAllInputChecker checker = new EndOfAllInputSetter.EndOfAllInputChecker(tezOp.plan); checker.visit(); if (checker.isEndOfAllInputPresent()) { payloadConf.set(JobControlCompiler.END_OF_INP_IN_MAP, "true"); } // Configure the classes for incoming shuffles to this TezOp // TODO: Refactor out resetting input keys, PIG-3957 List<PhysicalOperator> roots = tezOp.plan.getRoots(); if (roots.size() == 1 && roots.get(0) instanceof POPackage) { POPackage pack = (POPackage) roots.get(0); List<PhysicalOperator> succsList = tezOp.plan.getSuccessors(pack); if (succsList != null) { succsList = new ArrayList<PhysicalOperator>(succsList); } byte keyType = pack.getPkgr().getKeyType(); tezOp.plan.remove(pack); payloadConf.set("pig.reduce.package", ObjectSerializer.serialize(pack)); setIntermediateOutputKeyValue(keyType, payloadConf, tezOp); POShuffleTezLoad newPack; newPack = new POShuffleTezLoad(pack); if (tezOp.isSkewedJoin()) { newPack.setSkewedJoins(true); } tezOp.plan.add(newPack); // Set input keys for POShuffleTezLoad. This is used to identify // the inputs that are attached to the POShuffleTezLoad in the // backend. Map<Integer, String> localRearrangeMap = new TreeMap<Integer, String>(); for (TezOperator pred : mPlan.getPredecessors(tezOp)) { if (tezOp.sampleOperator != null && tezOp.sampleOperator == pred) { // skip sample vertex input } else { String inputKey = pred.getOperatorKey().toString(); if (pred.isVertexGroup()) { pred = mPlan.getOperator(pred.getVertexGroupMembers().get(0)); } LinkedList<POLocalRearrangeTez> lrs = PlanHelper.getPhysicalOperators(pred.plan, POLocalRearrangeTez.class); for (POLocalRearrangeTez lr : lrs) { if (lr.isConnectedToPackage() && lr.getOutputKey().equals(tezOp.getOperatorKey().toString())) { localRearrangeMap.put((int) lr.getIndex(), inputKey); } } } } for (Map.Entry<Integer, String> entry : localRearrangeMap.entrySet()) { newPack.addInputKey(entry.getValue()); } if (succsList != null) { for (PhysicalOperator succs : succsList) { tezOp.plan.connect(newPack, succs); } } setIntermediateOutputKeyValue(pack.getPkgr().getKeyType(), payloadConf, tezOp); } else if (roots.size() == 1 && roots.get(0) instanceof POIdentityInOutTez) { POIdentityInOutTez identityInOut = (POIdentityInOutTez) roots.get(0); // TODO Need to fix multiple input key mapping TezOperator identityInOutPred = null; for (TezOperator pred : mPlan.getPredecessors(tezOp)) { if (!pred.isSampleAggregation()) { identityInOutPred = pred; break; } } identityInOut.setInputKey(identityInOutPred.getOperatorKey().toString()); } else if (roots.size() == 1 && roots.get(0) instanceof POValueInputTez) { POValueInputTez valueInput = (POValueInputTez) roots.get(0); LinkedList<String> scalarInputs = new LinkedList<String>(); for (POUserFunc userFunc : PlanHelper.getPhysicalOperators(tezOp.plan, POUserFunc.class)) { if (userFunc.getFunc() instanceof ReadScalarsTez) { scalarInputs.add(((ReadScalarsTez) userFunc.getFunc()).getTezInputs()[0]); } } // Make sure we don't find the scalar for (TezOperator pred : mPlan.getPredecessors(tezOp)) { if (!scalarInputs.contains(pred.getOperatorKey().toString())) { valueInput.setInputKey(pred.getOperatorKey().toString()); break; } } } JobControlCompiler.setOutputFormat(job); // set parent plan in all operators. currently the parent plan is really // used only when POStream, POSplit are present in the plan new PhyPlanSetter(tezOp.plan).visit(); // Serialize the execution plan payloadConf.set(PigProcessor.PLAN, ObjectSerializer.serialize(tezOp.plan)); UDFContext.getUDFContext().serialize(payloadConf); MRToTezHelper.processMRSettings(payloadConf, globalConf); if (!pc.inIllustrator) { for (POStore store : stores) { // unset inputs for POStore, otherwise, map/reduce plan will be unnecessarily deserialized store.setInputs(null); store.setParentPlan(null); } // We put them in the reduce because PigOutputCommitter checks the // ID of the task to see if it's a map, and if not, calls the reduce // committers. payloadConf.set(JobControlCompiler.PIG_MAP_STORES, ObjectSerializer.serialize(new ArrayList<POStore>())); payloadConf.set(JobControlCompiler.PIG_REDUCE_STORES, ObjectSerializer.serialize(stores)); } if (tezOp.isNeedEstimateParallelism()) { payloadConf.setBoolean(PigProcessor.ESTIMATE_PARALLELISM, true); log.info("Estimate quantile for sample aggregation vertex " + tezOp.getOperatorKey().toString()); } // Take our assembled configuration and create a vertex UserPayload userPayload = TezUtils.createUserPayloadFromConf(payloadConf); procDesc.setUserPayload(userPayload); Vertex vertex = Vertex.create(tezOp.getOperatorKey().toString(), procDesc, tezOp.getVertexParallelism(), isMap ? MRHelpers.getResourceForMRMapper(globalConf) : MRHelpers.getResourceForMRReducer(globalConf)); Map<String, String> taskEnv = new HashMap<String, String>(); MRHelpers.updateEnvBasedOnMRTaskEnv(globalConf, taskEnv, isMap); vertex.setTaskEnvironment(taskEnv); // All these classes are @InterfaceAudience.Private in Hadoop. Switch to Tez methods in TEZ-1012 // set the timestamps, public/private visibility of the archives and files ClientDistributedCacheManager.determineTimestampsAndCacheVisibilities(globalConf); // get DelegationToken for each cached file ClientDistributedCacheManager.getDelegationTokens(globalConf, job.getCredentials()); MRApps.setupDistributedCache(globalConf, localResources); vertex.addTaskLocalFiles(localResources); vertex.setTaskLaunchCmdOpts(isMap ? MRHelpers.getJavaOptsForMRMapper(globalConf) : MRHelpers.getJavaOptsForMRReducer(globalConf)); log.info("For vertex - " + tezOp.getOperatorKey().toString() + ": parallelism=" + tezOp.getVertexParallelism() + ", memory=" + vertex.getTaskResource().getMemory() + ", java opts=" + vertex.getTaskLaunchCmdOpts()); // Right now there can only be one of each of these. Will need to be // more generic when there can be more. for (POLoad ld : tezOp.getLoaderInfo().getLoads()) { // TODO: These should get the globalConf, or a merged version that // keeps settings like pig.maxCombinedSplitSize vertex.setLocationHint( VertexLocationHint.create(tezOp.getLoaderInfo().getInputSplitInfo().getTaskLocationHints())); vertex.addDataSource(ld.getOperatorKey().toString(), DataSourceDescriptor.create( InputDescriptor.create(MRInput.class.getName()) .setUserPayload(UserPayload.create(MRRuntimeProtos.MRInputUserPayloadProto.newBuilder() .setConfigurationBytes(TezUtils.createByteStringFromConf(payloadConf)) .setSplits(tezOp.getLoaderInfo().getInputSplitInfo().getSplitsProto()).build() .toByteString().asReadOnlyByteBuffer())), InputInitializerDescriptor.create(MRInputSplitDistributor.class.getName()), dag.getCredentials())); } for (POStore store : stores) { ArrayList<POStore> emptyList = new ArrayList<POStore>(); ArrayList<POStore> singleStore = new ArrayList<POStore>(); singleStore.add(store); Configuration outputPayLoad = new Configuration(payloadConf); outputPayLoad.set(JobControlCompiler.PIG_MAP_STORES, ObjectSerializer.serialize(emptyList)); outputPayLoad.set(JobControlCompiler.PIG_REDUCE_STORES, ObjectSerializer.serialize(singleStore)); OutputDescriptor storeOutDescriptor = OutputDescriptor.create(MROutput.class.getName()) .setUserPayload(TezUtils.createUserPayloadFromConf(outputPayLoad)); if (tezOp.getVertexGroupStores() != null) { OperatorKey vertexGroupKey = tezOp.getVertexGroupStores().get(store.getOperatorKey()); if (vertexGroupKey != null) { getPlan().getOperator(vertexGroupKey).getVertexGroupInfo() .setStoreOutputDescriptor(storeOutDescriptor); continue; } } vertex.addDataSink(store.getOperatorKey().toString(), new DataSinkDescriptor(storeOutDescriptor, OutputCommitterDescriptor.create(MROutputCommitter.class.getName()), dag.getCredentials())); } // LoadFunc and StoreFunc add delegation tokens to Job Credentials in // setLocation and setStoreLocation respectively. For eg: HBaseStorage // InputFormat add delegation token in getSplits and OutputFormat in // checkOutputSpecs. For eg: FileInputFormat and FileOutputFormat if (stores.size() > 0) { new PigOutputFormat().checkOutputSpecs(job); } // Set the right VertexManagerPlugin if (tezOp.getEstimatedParallelism() != -1) { if (tezOp.isGlobalSort() || tezOp.isSkewedJoin()) { // Set VertexManagerPlugin to PartitionerDefinedVertexManager, which is able // to decrease/increase parallelism of sorting vertex dynamically // based on the numQuantiles calculated by sample aggregation vertex vertex.setVertexManagerPlugin( VertexManagerPluginDescriptor.create(PartitionerDefinedVertexManager.class.getName())); log.info("Set VertexManagerPlugin to PartitionerDefinedParallelismVertexManager for vertex " + tezOp.getOperatorKey().toString()); } else { boolean containScatterGather = false; boolean containCustomPartitioner = false; for (TezEdgeDescriptor edge : tezOp.inEdges.values()) { if (edge.dataMovementType == DataMovementType.SCATTER_GATHER) { containScatterGather = true; } if (edge.partitionerClass != null) { containCustomPartitioner = true; } } if (containScatterGather && !containCustomPartitioner) { // Use auto-parallelism feature of ShuffleVertexManager to dynamically // reduce the parallelism of the vertex VertexManagerPluginDescriptor vmPluginDescriptor = VertexManagerPluginDescriptor .create(ShuffleVertexManager.class.getName()); Configuration vmPluginConf = ConfigurationUtil.toConfiguration(pc.getProperties(), false); vmPluginConf.setBoolean(ShuffleVertexManager.TEZ_SHUFFLE_VERTEX_MANAGER_ENABLE_AUTO_PARALLEL, true); if (vmPluginConf.getLong(InputSizeReducerEstimator.BYTES_PER_REDUCER_PARAM, InputSizeReducerEstimator.DEFAULT_BYTES_PER_REDUCER) != InputSizeReducerEstimator.DEFAULT_BYTES_PER_REDUCER) { vmPluginConf.setLong( ShuffleVertexManager.TEZ_SHUFFLE_VERTEX_MANAGER_DESIRED_TASK_INPUT_SIZE, vmPluginConf.getLong(InputSizeReducerEstimator.BYTES_PER_REDUCER_PARAM, InputSizeReducerEstimator.DEFAULT_BYTES_PER_REDUCER)); } vmPluginDescriptor.setUserPayload(TezUtils.createUserPayloadFromConf(vmPluginConf)); vertex.setVertexManagerPlugin(vmPluginDescriptor); log.info("Set auto parallelism for vertex " + tezOp.getOperatorKey().toString()); } } } // Reset udfcontext jobconf. It is not supposed to be set in the front end UDFContext.getUDFContext().addJobConf(null); return vertex; }
From source file:org.apache.solr.hadoop.MorphlineBasicMiniMRTest.java
License:Apache License
@Test public void mrRun() throws Exception { FileSystem fs = dfsCluster.getFileSystem(); Path inDir = fs.makeQualified(new Path("/user/testing/testMapperReducer/input")); fs.delete(inDir, true);/*from w ww .j a va2s . c om*/ String DATADIR = "/user/testing/testMapperReducer/data"; Path dataDir = fs.makeQualified(new Path(DATADIR)); fs.delete(dataDir, true); Path outDir = fs.makeQualified(new Path("/user/testing/testMapperReducer/output")); fs.delete(outDir, true); assertTrue(fs.mkdirs(inDir)); Path INPATH = new Path(inDir, "input.txt"); OutputStream os = fs.create(INPATH); Writer wr = new OutputStreamWriter(os, "UTF-8"); wr.write(DATADIR + "/" + inputAvroFile); wr.close(); assertTrue(fs.mkdirs(dataDir)); fs.copyFromLocalFile(new Path(DOCUMENTS_DIR, inputAvroFile), dataDir); JobConf jobConf = getJobConf(); if (ENABLE_LOCAL_JOB_RUNNER) { // enable Hadoop LocalJobRunner; this enables to run in debugger and set breakpoints jobConf.set("mapred.job.tracker", "local"); } jobConf.setMaxMapAttempts(1); jobConf.setMaxReduceAttempts(1); jobConf.setJar(SEARCH_ARCHIVES_JAR); jobConf.setBoolean(ExtractingParams.IGNORE_TIKA_EXCEPTION, false); int shards = 2; int maxReducers = Integer.MAX_VALUE; if (ENABLE_LOCAL_JOB_RUNNER) { // local job runner has a couple of limitations: only one reducer is supported and the DistributedCache doesn't work. // see http://blog.cloudera.com/blog/2009/07/advice-on-qa-testing-your-mapreduce-jobs/ maxReducers = 1; shards = 1; } String[] args = new String[] { "--morphline-file=" + RESOURCES_DIR + "/test-morphlines/solrCellDocumentTypes.conf", "--morphline-id=morphline1", "--solr-home-dir=" + MINIMR_CONF_DIR.getAbsolutePath(), "--output-dir=" + outDir.toString(), "--shards=" + shards, "--verbose", numRuns % 2 == 0 ? "--input-list=" + INPATH.toString() : dataDir.toString(), numRuns % 3 == 0 ? "--reducers=" + shards : (numRuns % 3 == 1 ? "--reducers=-1" : "--reducers=" + Math.min(8, maxReducers)) }; if (numRuns % 3 == 2) { args = concat(args, new String[] { "--fanout=2" }); } if (numRuns == 0) { // force (slow) MapReduce based randomization to get coverage for that as well args = concat(new String[] { "-D", MapReduceIndexerTool.MAIN_MEMORY_RANDOMIZATION_THRESHOLD + "=-1" }, args); } MapReduceIndexerTool tool = createTool(); int res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); Job job = tool.job; assertTrue(job.isComplete()); assertTrue(job.isSuccessful()); if (numRuns % 3 != 2) { // Only run this check if mtree merge is disabled. // With mtree merge enabled the BatchWriter counters aren't available anymore because // variable "job" now refers to the merge job rather than the indexing job assertEquals( "Invalid counter " + SolrRecordWriter.class.getName() + "." + SolrCounters.DOCUMENTS_WRITTEN, count, job.getCounters() .findCounter(SolrCounters.class.getName(), SolrCounters.DOCUMENTS_WRITTEN.toString()) .getValue()); } // Check the output is as expected outDir = new Path(outDir, MapReduceIndexerTool.RESULTS_DIR); Path[] outputFiles = FileUtil.stat2Paths(fs.listStatus(outDir)); System.out.println("outputfiles:" + Arrays.toString(outputFiles)); TestUtils.validateSolrServerDocumentCount(MINIMR_CONF_DIR, fs, outDir, count, shards); // run again with --dryrun mode: tool = createTool(); args = concat(args, new String[] { "--dry-run" }); res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); numRuns++; }
From source file:org.apache.solr.hadoop.MorphlineGoLiveMiniMRTest.java
License:Apache License
@Override public void doTest() throws Exception { waitForRecoveriesToFinish(false);//w w w. j ava2 s . co m FileSystem fs = dfsCluster.getFileSystem(); Path inDir = fs.makeQualified(new Path("/user/testing/testMapperReducer/input")); fs.delete(inDir, true); String DATADIR = "/user/testing/testMapperReducer/data"; Path dataDir = fs.makeQualified(new Path(DATADIR)); fs.delete(dataDir, true); Path outDir = fs.makeQualified(new Path("/user/testing/testMapperReducer/output")); fs.delete(outDir, true); assertTrue(fs.mkdirs(inDir)); Path INPATH = upAvroFile(fs, inDir, DATADIR, dataDir, inputAvroFile1); JobConf jobConf = getJobConf(); // enable mapred.job.tracker = local to run in debugger and set breakpoints // jobConf.set("mapred.job.tracker", "local"); jobConf.setMaxMapAttempts(1); jobConf.setMaxReduceAttempts(1); jobConf.setJar(SEARCH_ARCHIVES_JAR); jobConf.setBoolean(ExtractingParams.IGNORE_TIKA_EXCEPTION, false); MapReduceIndexerTool tool; int res; QueryResponse results; HttpSolrServer server = new HttpSolrServer(cloudJettys.get(0).url); String[] args = new String[] { "--solr-home-dir=" + MINIMR_CONF_DIR.getAbsolutePath(), "--output-dir=" + outDir.toString(), "--mappers=3", ++numRuns % 2 == 0 ? "--input-list=" + INPATH.toString() : dataDir.toString(), "--shard-url", cloudJettys.get(0).url, "--shard-url", cloudJettys.get(1).url, "--shard-url", cloudJettys.get(2).url, "--go-live-threads", Integer.toString(random().nextInt(15) + 1), "--verbose", "--go-live" }; args = prependInitialArgs(args); if (true) { tool = new MapReduceIndexerTool(); res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); assertTrue(tool.job.isComplete()); assertTrue(tool.job.isSuccessful()); results = server.query(new SolrQuery("*:*")); assertEquals(20, results.getResults().getNumFound()); } fs.delete(inDir, true); fs.delete(outDir, true); fs.delete(dataDir, true); assertTrue(fs.mkdirs(inDir)); INPATH = upAvroFile(fs, inDir, DATADIR, dataDir, inputAvroFile2); args = new String[] { "--solr-home-dir=" + MINIMR_CONF_DIR.getAbsolutePath(), "--output-dir=" + outDir.toString(), "--mappers=3", "--verbose", "--go-live", ++numRuns % 2 == 0 ? "--input-list=" + INPATH.toString() : dataDir.toString(), "--shard-url", cloudJettys.get(0).url, "--shard-url", cloudJettys.get(1).url, "--shard-url", cloudJettys.get(2).url, "--go-live-threads", Integer.toString(random().nextInt(15) + 1) }; args = prependInitialArgs(args); if (true) { tool = new MapReduceIndexerTool(); res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); assertTrue(tool.job.isComplete()); assertTrue(tool.job.isSuccessful()); results = server.query(new SolrQuery("*:*")); assertEquals(22, results.getResults().getNumFound()); } // try using zookeeper String collection = "collection1"; if (random().nextBoolean()) { // sometimes, use an alias createAlias("updatealias", "collection1"); collection = "updatealias"; } fs.delete(inDir, true); fs.delete(outDir, true); fs.delete(dataDir, true); INPATH = upAvroFile(fs, inDir, DATADIR, dataDir, inputAvroFile3); args = new String[] { "--output-dir=" + outDir.toString(), "--mappers=3", "--reducers=6", "--verbose", "--go-live", ++numRuns % 2 == 0 ? "--input-list=" + INPATH.toString() : dataDir.toString(), "--zk-host", zkServer.getZkAddress(), "--collection", collection }; args = prependInitialArgs(args); if (true) { tool = new MapReduceIndexerTool(); res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); assertTrue(tool.job.isComplete()); assertTrue(tool.job.isSuccessful()); results = server.query(new SolrQuery("*:*")); assertEquals(2126, results.getResults().getNumFound()); } server.shutdown(); // try using zookeeper with replication String replicatedCollection = "replicated_collection"; createCollection(replicatedCollection, 2, 3, 2); waitForRecoveriesToFinish(false); cloudClient.setDefaultCollection(replicatedCollection); fs.delete(inDir, true); fs.delete(outDir, true); fs.delete(dataDir, true); assertTrue(fs.mkdirs(dataDir)); INPATH = upAvroFile(fs, inDir, DATADIR, dataDir, inputAvroFile3); args = new String[] { "--solr-home-dir=" + MINIMR_CONF_DIR.getAbsolutePath(), "--output-dir=" + outDir.toString(), "--mappers=3", "--reducers=6", "--verbose", "--go-live", "--zk-host", zkServer.getZkAddress(), "--collection", replicatedCollection, dataDir.toString() }; args = prependInitialArgs(args); if (true) { tool = new MapReduceIndexerTool(); res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); assertTrue(tool.job.isComplete()); assertTrue(tool.job.isSuccessful()); results = cloudClient.query(new SolrQuery("*:*")); assertEquals(2104, results.getResults().getNumFound()); checkConsistency(replicatedCollection); } // try using solr_url with replication cloudClient.deleteByQuery("*:*"); cloudClient.commit(); fs.delete(inDir, true); fs.delete(dataDir, true); assertTrue(fs.mkdirs(dataDir)); INPATH = upAvroFile(fs, inDir, DATADIR, dataDir, inputAvroFile3); args = new String[] { "--solr-home-dir=" + MINIMR_CONF_DIR.getAbsolutePath(), "--output-dir=" + outDir.toString(), "--shards", "2", "--mappers=3", "--verbose", "--go-live", "--go-live-threads", Integer.toString(random().nextInt(15) + 1), dataDir.toString() }; args = prependInitialArgs(args); List<String> argList = new ArrayList<String>(); getShardUrlArgs(argList, replicatedCollection); args = concat(args, argList.toArray(new String[0])); if (true) { tool = new MapReduceIndexerTool(); res = ToolRunner.run(jobConf, tool, args); assertEquals(0, res); assertTrue(tool.job.isComplete()); assertTrue(tool.job.isSuccessful()); checkConsistency(replicatedCollection); results = cloudClient.query(new SolrQuery("*:*")); assertEquals(2104, results.getResults().getNumFound()); } }
From source file:org.apache.sysml.runtime.matrix.CSVReblockMR.java
License:Apache License
public static AssignRowIDMRReturn runAssignRowIDMRJob(String[] inputs, InputInfo[] inputInfos, int[] brlens, int[] bclens, String reblockInstructions, int replication, String[] smallestFiles) throws Exception { AssignRowIDMRReturn ret = new AssignRowIDMRReturn(); JobConf job; job = new JobConf(CSVReblockMR.class); job.setJobName("Assign-RowID-MR"); byte[] realIndexes = new byte[inputs.length]; for (byte b = 0; b < realIndexes.length; b++) realIndexes[b] = b;//from w ww. j a v a 2s.c o m //set up the input files and their format information MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false, ConvertTarget.CELL); job.setStrings(SMALLEST_FILE_NAME_PER_INPUT, smallestFiles); //set up the aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setCSVReblockInstructions(job, reblockInstructions); //set up the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); //set up the number of reducers job.setNumReduceTasks(1); // Print the complete instruction //if (LOG.isTraceEnabled()) //inst.printCompelteMRJobInstruction(); // configure mapper and the mapper output key value pairs job.setMapperClass(CSVAssignRowIDMapper.class); job.setMapOutputKeyClass(ByteWritable.class); job.setMapOutputValueClass(OffsetCount.class); //configure reducer job.setReducerClass(CSVAssignRowIDReducer.class); //turn off adaptivemr job.setBoolean("adaptivemr.map.enable", false); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); //set up the output file ret.counterFile = new Path(MRJobConfiguration.constructTempOutputFilename()); job.setOutputFormat(SequenceFileOutputFormat.class); FileOutputFormat.setOutputPath(job, ret.counterFile); job.setOutputKeyClass(ByteWritable.class); job.setOutputValueClass(OffsetCount.class); RunningJob runjob = JobClient.runJob(job); /* Process different counters */ Group rgroup = runjob.getCounters().getGroup(NUM_ROWS_IN_MATRIX); Group cgroup = runjob.getCounters().getGroup(NUM_COLS_IN_MATRIX); ret.rlens = new long[inputs.length]; ret.clens = new long[inputs.length]; for (int i = 0; i < inputs.length; i++) { // number of non-zeros ret.rlens[i] = rgroup.getCounter(Integer.toString(i)); ret.clens[i] = cgroup.getCounter(Integer.toString(i)); } return ret; }
From source file:org.apache.sysml.runtime.matrix.CSVReblockMR.java
License:Apache License
private static JobReturn runCSVReblockJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens, long[] clens, int[] brlens, int[] bclens, String reblockInstructions, String otherInstructionsInReducer, int numReducers, int replication, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos, Path counterFile, String[] smallestFiles) throws Exception { JobConf job; job = new JobConf(ReblockMR.class); job.setJobName("CSV-Reblock-MR"); byte[] realIndexes = new byte[inputs.length]; for (byte b = 0; b < realIndexes.length; b++) realIndexes[b] = b;// w w w. j a v a 2 s . c o m //set up the input files and their format information MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false, ConvertTarget.CELL); job.setStrings(SMALLEST_FILE_NAME_PER_INPUT, smallestFiles); //set up the dimensions of input matrices MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens); //set up the block size MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens); //set up the aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setCSVReblockInstructions(job, reblockInstructions); //set up the instructions that will happen in the reducer, after the aggregation instrucions MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer); //set up the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); //set up what matrices are needed to pass from the mapper to reducer HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null, reblockInstructions, null, otherInstructionsInReducer, resultIndexes); MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes, null, reblockInstructions, null, null, otherInstructionsInReducer, resultIndexes, mapoutputIndexes, false); MatrixCharacteristics[] stats = ret.stats; //set up the number of reducers int numRed = WriteCSVMR.determineNumReducers(rlens, clens, config.getIntValue(DMLConfig.NUM_REDUCERS), ret.numReducerGroups); job.setNumReduceTasks(numRed); // Print the complete instruction //if (LOG.isTraceEnabled()) // inst.printCompelteMRJobInstruction(stats); // Update resultDimsUnknown based on computed "stats" byte[] resultDimsUnknown = new byte[resultIndexes.length]; for (int i = 0; i < resultIndexes.length; i++) { if (stats[i].getRows() == -1 || stats[i].getCols() == -1) { resultDimsUnknown[i] = (byte) 1; } else { resultDimsUnknown[i] = (byte) 0; } } //set up the multiple output files, and their format information MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true, true); // configure mapper and the mapper output key value pairs job.setMapperClass(CSVReblockMapper.class); job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class); job.setMapOutputValueClass(BlockRow.class); //configure reducer job.setReducerClass(CSVReblockReducer.class); //turn off adaptivemr job.setBoolean("adaptivemr.map.enable", false); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); Path cachefile = new Path(counterFile, "part-00000"); DistributedCache.addCacheFile(cachefile.toUri(), job); DistributedCache.createSymlink(job); job.set(ROWID_FILE_NAME, cachefile.toString()); RunningJob runjob = JobClient.runJob(job); MapReduceTool.deleteFileIfExistOnHDFS(counterFile, job); /* Process different counters */ Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS); for (int i = 0; i < resultIndexes.length; i++) { // number of non-zeros stats[i].setNonZeros(group.getCounter(Integer.toString(i))); // System.out.println("result #"+resultIndexes[i]+" ===>\n"+stats[i]); } return new JobReturn(stats, outputInfos, runjob.isSuccessful()); }
From source file:org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration.java
License:Apache License
public static void setPartitioningInfo(JobConf job, long rlen, long clen, int brlen, int bclen, InputInfo ii, OutputInfo oi, PDataPartitionFormat dpf, int n, String fnameNew, boolean keepIndexes) throws DMLRuntimeException { //set basic partitioning information setPartitioningInfo(job, rlen, clen, brlen, bclen, ii, oi, dpf, n, fnameNew); //set transpose sparse column vector job.setBoolean(PARTITIONING_OUTPUT_KEEP_INDEXES_CONFIG, keepIndexes); }
From source file:org.apache.sysml.runtime.matrix.sort.PickFromCompactInputFormat.java
License:Apache License
public static Set<Integer> setPickRecordsInEachPartFile(JobConf job, MetaDataNumItemsByEachReducer metadata, double[] probs) { HashMap<Integer, ArrayList<Pair<Integer, Integer>>> posMap = new HashMap<>(); getPointsInEachPartFile(metadata.getNumItemsArray(), probs, posMap); for (Entry<Integer, ArrayList<Pair<Integer, Integer>>> e : posMap.entrySet()) { job.set(SELECTED_POINTS_PREFIX + e.getKey(), getString(e.getValue())); //System.out.println(e.getKey()+": "+getString(e.getValue())); }//ww w . j a v a 2 s.c o m job.setBoolean(INPUT_IS_VECTOR, true); return posMap.keySet(); }
From source file:org.apache.sysml.runtime.matrix.sort.PickFromCompactInputFormat.java
License:Apache License
public static void setRangePickPartFiles(JobConf job, MetaDataNumItemsByEachReducer metadata, double lbound, double ubound) { if (lbound < 0 || lbound > 1 || ubound < 0 || ubound > 1 || lbound >= ubound) { throw new RuntimeException("Invalid ranges for range pick: [" + lbound + "," + ubound + "]"); }/*from ww w . j a v a 2s .c o m*/ long[] counts = metadata.getNumItemsArray(); long[] ranges = new long[counts.length]; ranges[0] = counts[0]; for (int i = 1; i < counts.length; i++) ranges[i] = ranges[i - 1] + counts[i]; long sumwt = ranges[ranges.length - 1]; double qbegin = lbound * sumwt; double qend = ubound * sumwt; // Find part files that overlap with range [qbegin,qend] int partID = -1; long wt = 0; // scan until the part containing qbegin while (wt < qbegin) { partID++; wt += counts[partID]; } StringBuilder sb = new StringBuilder(); while (wt <= qend) { sb.append(partID + "," + (wt - counts[partID]) + ";"); // partID, weight until this part partID++; if (partID < counts.length) wt += counts[partID]; } sb.append(partID + "," + (wt - counts[partID]) + ";"); sb.append(sumwt + "," + lbound + "," + ubound); job.set(SELECTED_RANGES, sb.toString()); job.setBoolean(INPUT_IS_VECTOR, false); }
From source file:org.apache.sysml.runtime.matrix.SortMR.java
License:Apache License
@SuppressWarnings({ "unchecked", "rawtypes" }) public static JobReturn runJob(MRJobInstruction inst, String input, InputInfo inputInfo, long rlen, long clen, int brlen, int bclen, String combineInst, String sortInst, int numReducers, int replication, String output, OutputInfo outputInfo, boolean valueIsWeight) throws Exception { boolean sortIndexes = getSortInstructionType(sortInst) == SortKeys.OperationTypes.Indexes; String tmpOutput = sortIndexes ? MRJobConfiguration.constructTempOutputFilename() : output; JobConf job = new JobConf(SortMR.class); job.setJobName("SortMR"); //setup partition file String pfname = MRJobConfiguration.setUpSortPartitionFilename(job); Path partitionFile = new Path(pfname); URI partitionUri = new URI(partitionFile.toString()); //setup input/output paths Path inputDir = new Path(input); inputDir = inputDir.makeQualified(inputDir.getFileSystem(job)); FileInputFormat.setInputPaths(job, inputDir); Path outpath = new Path(tmpOutput); FileOutputFormat.setOutputPath(job, outpath); MapReduceTool.deleteFileIfExistOnHDFS(outpath, job); //set number of reducers (1 if local mode) if (!InfrastructureAnalyzer.isLocalMode(job)) { MRJobConfiguration.setNumReducers(job, numReducers, numReducers); //ensure partition size <= 10M records to avoid scalability bottlenecks //on cp-side qpick instructions for quantile/iqm/median (~128MB) if (!(getSortInstructionType(sortInst) == SortKeys.OperationTypes.Indexes)) job.setNumReduceTasks((int) Math.max(job.getNumReduceTasks(), rlen / 10000000)); } else //in case of local mode job.setNumReduceTasks(1);/*from w w w . ja v a 2s .com*/ //setup input/output format job.setInputFormat(SamplingSortMRInputFormat.class); SamplingSortMRInputFormat.setTargetKeyValueClasses(job, (Class<? extends WritableComparable>) outputInfo.outputKeyClass, outputInfo.outputValueClass); //setup instructions and meta information if (combineInst != null && !combineInst.trim().isEmpty()) job.set(COMBINE_INSTRUCTION, combineInst); job.set(SORT_INSTRUCTION, sortInst); job.setBoolean(VALUE_IS_WEIGHT, valueIsWeight); boolean desc = getSortInstructionDescending(sortInst); job.setBoolean(SORT_DECREASING, desc); MRJobConfiguration.setBlockSize(job, (byte) 0, brlen, bclen); MRJobConfiguration.setInputInfo(job, (byte) 0, inputInfo, brlen, bclen, ConvertTarget.CELL); int partitionWith0 = SamplingSortMRInputFormat.writePartitionFile(job, partitionFile); //setup mapper/reducer/partitioner/output classes if (getSortInstructionType(sortInst) == SortKeys.OperationTypes.Indexes) { MRJobConfiguration.setInputInfo(job, (byte) 0, inputInfo, brlen, bclen, ConvertTarget.CELL); job.setOutputFormat(OutputInfo.BinaryBlockOutputInfo.outputFormatClass); job.setMapperClass(IndexSortMapper.class); job.setReducerClass(IndexSortReducer.class); job.setMapOutputKeyClass(!desc ? IndexSortComparable.class : IndexSortComparableDesc.class); job.setMapOutputValueClass(LongWritable.class); job.setOutputKeyClass(MatrixIndexes.class); job.setOutputValueClass(MatrixBlock.class); } else { //default case: SORT w/wo weights MRJobConfiguration.setInputInfo(job, (byte) 0, inputInfo, brlen, bclen, ConvertTarget.CELL); job.setOutputFormat(CompactOutputFormat.class); job.setMapperClass(ValueSortMapper.class); job.setReducerClass(ValueSortReducer.class); job.setOutputKeyClass(outputInfo.outputKeyClass); //double job.setOutputValueClass(outputInfo.outputValueClass); //int } job.setPartitionerClass(TotalOrderPartitioner.class); //setup distributed cache DistributedCache.addCacheFile(partitionUri, job); DistributedCache.createSymlink(job); //setup replication factor job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); MatrixCharacteristics[] s = new MatrixCharacteristics[1]; s[0] = new MatrixCharacteristics(rlen, clen, brlen, bclen); // Print the complete instruction if (LOG.isTraceEnabled()) inst.printCompleteMRJobInstruction(s); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); //run mr job RunningJob runjob = JobClient.runJob(job); Group group = runjob.getCounters().getGroup(NUM_VALUES_PREFIX); numReducers = job.getNumReduceTasks(); //process final meta data long[] counts = new long[numReducers]; long total = 0; for (int i = 0; i < numReducers; i++) { counts[i] = group.getCounter(Integer.toString(i)); total += counts[i]; } //add missing 0s back to the results long missing0s = 0; if (total < rlen * clen) { if (partitionWith0 < 0) throw new RuntimeException("no partition contains 0, which is wrong!"); missing0s = rlen * clen - total; counts[partitionWith0] += missing0s; } else partitionWith0 = -1; if (sortIndexes) { //run builtin job for shifting partially sorted blocks according to global offsets //we do this in this custom form since it would not fit into the current structure //of systemml to output two intermediates (partially sorted data, offsets) out of a //single SortKeys lop boolean success = runjob.isSuccessful(); if (success) { success = runStitchupJob(tmpOutput, rlen, clen, brlen, bclen, counts, numReducers, replication, output); } MapReduceTool.deleteFileIfExistOnHDFS(tmpOutput); MapReduceTool.deleteFileIfExistOnHDFS(pfname); return new JobReturn(s[0], OutputInfo.BinaryBlockOutputInfo, success); } else { MapReduceTool.deleteFileIfExistOnHDFS(pfname); return new JobReturn(s[0], counts, partitionWith0, missing0s, runjob.isSuccessful()); } }
From source file:org.apache.sysml.runtime.transform.ApplyTfBBMR.java
License:Apache License
public static JobReturn runJob(String inputPath, String rblkInst, String otherInst, String spec, String mapsPath, String tmpPath, String outputPath, String partOffsetsFile, CSVFileFormatProperties inputDataProperties, long numRows, long numColsBefore, long numColsAfter, int replication, String headerLine) throws Exception { CSVReblockInstruction rblk = (CSVReblockInstruction) InstructionParser.parseSingleInstruction(rblkInst); long[] rlens = new long[] { numRows }; long[] clens = new long[] { numColsAfter }; int[] brlens = new int[] { rblk.brlen }; int[] bclens = new int[] { rblk.bclen }; byte[] realIndexes = new byte[] { rblk.input }; byte[] resultIndexes = new byte[] { rblk.output }; JobConf job = new JobConf(ApplyTfBBMR.class); job.setJobName("ApplyTfBB"); /* Setup MapReduce Job */ job.setJarByClass(ApplyTfBBMR.class); // set relevant classes job.setMapperClass(ApplyTfBBMapper.class); MRJobConfiguration.setUpMultipleInputs(job, realIndexes, new String[] { inputPath }, new InputInfo[] { InputInfo.CSVInputInfo }, brlens, bclens, false, ConvertTarget.CELL); MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens); MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens); MRJobConfiguration.setCSVReblockInstructions(job, rblkInst); //set up the instructions that will happen in the reducer, after the aggregation instrucions MRJobConfiguration.setInstructionsInReducer(job, otherInst); job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //set up what matrices are needed to pass from the mapper to reducer HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null, rblkInst, null, otherInst, resultIndexes); MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes, null, rblkInst, null, null, null, resultIndexes, mapoutputIndexes, false); //set up the number of reducers int numRed = WriteCSVMR.determineNumReducers(rlens, clens, ConfigurationManager.getNumReducers(), ret.numReducerGroups);/*ww w.j av a2 s . c om*/ job.setNumReduceTasks(numRed); //set up the multiple output files, and their format information MRJobConfiguration.setUpMultipleOutputs(job, new byte[] { rblk.output }, new byte[] { 0 }, new String[] { outputPath }, new OutputInfo[] { OutputInfo.BinaryBlockOutputInfo }, true, false); // configure mapper and the mapper output key value pairs job.setMapperClass(ApplyTfBBMapper.class); job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class); job.setMapOutputValueClass(BlockRow.class); //configure reducer job.setReducerClass(CSVReblockReducer.class); //turn off adaptivemr job.setBoolean("adaptivemr.map.enable", false); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); // Add transformation metadata file as well as partOffsetsFile to Distributed cache DistributedCache.addCacheFile((new Path(mapsPath)).toUri(), job); DistributedCache.createSymlink(job); Path cachefile = new Path(new Path(partOffsetsFile), "part-00000"); DistributedCache.addCacheFile(cachefile.toUri(), job); DistributedCache.createSymlink(job); job.set(MRJobConfiguration.TF_HAS_HEADER, Boolean.toString(inputDataProperties.hasHeader())); job.set(MRJobConfiguration.TF_DELIM, inputDataProperties.getDelim()); // Adding "dummy" string to handle the case of na_strings = "" if (inputDataProperties.getNAStrings() != null) job.set(MRJobConfiguration.TF_NA_STRINGS, TfUtils.prepNAStrings(inputDataProperties.getNAStrings())); job.set(MRJobConfiguration.TF_SPEC, spec); job.set(MRJobConfiguration.TF_SMALLEST_FILE, CSVReblockMR.findSmallestFile(job, inputPath)); job.set(MRJobConfiguration.OUTPUT_MATRICES_DIRS_CONFIG, outputPath); job.setLong(MRJobConfiguration.TF_NUM_COLS, numColsBefore); job.set(MRJobConfiguration.TF_TXMTD_PATH, mapsPath); job.set(MRJobConfiguration.TF_HEADER, headerLine); job.set(CSVReblockMR.ROWID_FILE_NAME, cachefile.toString()); job.set(MRJobConfiguration.TF_TMP_LOC, tmpPath); RunningJob runjob = JobClient.runJob(job); MapReduceTool.deleteFileIfExistOnHDFS(cachefile, job); Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS); for (int i = 0; i < resultIndexes.length; i++) { ret.stats[i].setNonZeros(group.getCounter(Integer.toString(i))); } return new JobReturn(ret.stats, runjob.isSuccessful()); }