List of usage examples for org.apache.hadoop.mapred JobConf setBoolean
public void setBoolean(String name, boolean value)
name
property to a boolean
. From source file:com.facebook.presto.hive.parquet.ParquetTester.java
License:Apache License
public void assertRoundTrip(ObjectInspector objectInspector, Iterable<?> writeValues, Iterable<?> readValues, Type type) throws Exception { for (WriterVersion version : versions) { for (CompressionCodecName compressionCodecName : compressions) { try (TempFile tempFile = new TempFile("test", "parquet")) { JobConf jobConf = new JobConf(); jobConf.setEnum(ParquetOutputFormat.COMPRESSION, compressionCodecName); jobConf.setBoolean(ParquetOutputFormat.ENABLE_DICTIONARY, true); jobConf.setEnum(ParquetOutputFormat.WRITER_VERSION, version); writeParquetColumn(jobConf, tempFile.getFile(), compressionCodecName, objectInspector, writeValues.iterator()); assertFileContents(jobConf, objectInspector, tempFile, readValues, type); }/*from w w w .ja va 2 s. c om*/ } } }
From source file:com.ibm.bi.dml.runtime.matrix.CSVReblockMR.java
License:Open Source License
public static AssignRowIDMRReturn runAssignRowIDMRJob(String[] inputs, InputInfo[] inputInfos, int[] brlens, int[] bclens, String reblockInstructions, int replication, String[] smallestFiles, boolean transform, String naStrings, String specFile) throws Exception { AssignRowIDMRReturn ret = new AssignRowIDMRReturn(); JobConf job; job = new JobConf(CSVReblockMR.class); job.setJobName("Assign-RowID-MR"); byte[] realIndexes = new byte[inputs.length]; for (byte b = 0; b < realIndexes.length; b++) realIndexes[b] = b;// ww w . j ava 2s .com //set up the input files and their format information MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false, ConvertTarget.CELL); job.setStrings(SMALLEST_FILE_NAME_PER_INPUT, smallestFiles); //set up the aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setCSVReblockInstructions(job, reblockInstructions); //set up the replication factor for the results job.setInt("dfs.replication", replication); //set up the number of reducers job.setNumReduceTasks(1); // Print the complete instruction //if (LOG.isTraceEnabled()) //inst.printCompelteMRJobInstruction(); // configure mapper and the mapper output key value pairs job.setMapperClass(CSVAssignRowIDMapper.class); job.setMapOutputKeyClass(ByteWritable.class); job.setMapOutputValueClass(OffsetCount.class); //configure reducer job.setReducerClass(CSVAssignRowIDReducer.class); //turn off adaptivemr job.setBoolean("adaptivemr.map.enable", false); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); //set up the output file ret.counterFile = new Path(MRJobConfiguration.constructTempOutputFilename()); job.setOutputFormat(SequenceFileOutputFormat.class); FileOutputFormat.setOutputPath(job, ret.counterFile); job.setOutputKeyClass(ByteWritable.class); job.setOutputValueClass(OffsetCount.class); // setup properties relevant to transform job.setBoolean(MRJobConfiguration.TF_TRANSFORM, transform); if (transform) { if (naStrings != null) // Adding "dummy" string to handle the case of na_strings = "" job.set(MRJobConfiguration.TF_NA_STRINGS, TfUtils.prepNAStrings(naStrings)); job.set(MRJobConfiguration.TF_SPEC_FILE, specFile); } RunningJob runjob = JobClient.runJob(job); /* Process different counters */ Group rgroup = runjob.getCounters().getGroup(NUM_ROWS_IN_MATRIX); Group cgroup = runjob.getCounters().getGroup(NUM_COLS_IN_MATRIX); ret.rlens = new long[inputs.length]; ret.clens = new long[inputs.length]; for (int i = 0; i < inputs.length; i++) { // number of non-zeros ret.rlens[i] = rgroup.getCounter(Integer.toString(i)); ret.clens[i] = cgroup.getCounter(Integer.toString(i)); } return ret; }
From source file:com.ibm.bi.dml.runtime.matrix.CSVReblockMR.java
License:Open Source License
private static JobReturn runCSVReblockJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens, long[] clens, int[] brlens, int[] bclens, String reblockInstructions, String otherInstructionsInReducer, int numReducers, int replication, byte[] resultIndexes, String[] outputs, OutputInfo[] outputInfos, Path counterFile, String[] smallestFiles) throws Exception { JobConf job; job = new JobConf(ReblockMR.class); job.setJobName("CSV-Reblock-MR"); byte[] realIndexes = new byte[inputs.length]; for (byte b = 0; b < realIndexes.length; b++) realIndexes[b] = b;//w w w. j a v a2 s. com //set up the input files and their format information MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, false, ConvertTarget.CELL); job.setStrings(SMALLEST_FILE_NAME_PER_INPUT, smallestFiles); //set up the dimensions of input matrices MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens); //set up the block size MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens); //set up the aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setCSVReblockInstructions(job, reblockInstructions); //set up the instructions that will happen in the reducer, after the aggregation instrucions MRJobConfiguration.setInstructionsInReducer(job, otherInstructionsInReducer); //set up the replication factor for the results job.setInt("dfs.replication", replication); //set up preferred custom serialization framework for binary block format if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION) MRJobConfiguration.addBinaryBlockSerializationFramework(job); //set up what matrices are needed to pass from the mapper to reducer HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null, reblockInstructions, null, otherInstructionsInReducer, resultIndexes); MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes, null, reblockInstructions, null, null, otherInstructionsInReducer, resultIndexes, mapoutputIndexes, false); MatrixCharacteristics[] stats = ret.stats; //set up the number of reducers int numRed = WriteCSVMR.determineNumReducers(rlens, clens, ConfigurationManager.getConfig().getIntValue(DMLConfig.NUM_REDUCERS), ret.numReducerGroups); job.setNumReduceTasks(numRed); // Print the complete instruction //if (LOG.isTraceEnabled()) // inst.printCompelteMRJobInstruction(stats); // Update resultDimsUnknown based on computed "stats" byte[] resultDimsUnknown = new byte[resultIndexes.length]; for (int i = 0; i < resultIndexes.length; i++) { if (stats[i].getRows() == -1 || stats[i].getCols() == -1) { resultDimsUnknown[i] = (byte) 1; } else { resultDimsUnknown[i] = (byte) 0; } } //set up the multiple output files, and their format information MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true, true); // configure mapper and the mapper output key value pairs job.setMapperClass(CSVReblockMapper.class); job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class); job.setMapOutputValueClass(BlockRow.class); //configure reducer job.setReducerClass(CSVReblockReducer.class); //turn off adaptivemr job.setBoolean("adaptivemr.map.enable", false); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); Path cachefile = new Path(counterFile, "part-00000"); DistributedCache.addCacheFile(cachefile.toUri(), job); DistributedCache.createSymlink(job); job.set(ROWID_FILE_NAME, cachefile.toString()); RunningJob runjob = JobClient.runJob(job); MapReduceTool.deleteFileIfExistOnHDFS(counterFile, job); /* Process different counters */ Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS); for (int i = 0; i < resultIndexes.length; i++) { // number of non-zeros stats[i].setNonZeros(group.getCounter(Integer.toString(i))); // System.out.println("result #"+resultIndexes[i]+" ===>\n"+stats[i]); } return new JobReturn(stats, outputInfos, runjob.isSuccessful()); }
From source file:com.ibm.bi.dml.runtime.matrix.mapred.MRJobConfiguration.java
License:Open Source License
public static void setMatrixValueClass(JobConf job, boolean blockRepresentation) { job.setBoolean(BLOCK_REPRESENTATION_CONFIG, blockRepresentation); }
From source file:com.ibm.bi.dml.runtime.matrix.mapred.MRJobConfiguration.java
License:Open Source License
public static void setMatrixValueClassForCM_N_COM(JobConf job, boolean weightedCellRepresentation) { job.setBoolean(WEIGHTEDCELL_REPRESENTATION_CONFIG, weightedCellRepresentation); }
From source file:com.ibm.bi.dml.runtime.matrix.mapred.MRJobConfiguration.java
License:Open Source License
public static void setParforCachingConfig(JobConf job, boolean flag) { job.setBoolean(PARFOR_CACHING_CONFIG, flag); }
From source file:com.ibm.bi.dml.runtime.matrix.mapred.MRJobConfiguration.java
License:Open Source License
public static void setPartitioningInfo(JobConf job, long rlen, long clen, int brlen, int bclen, InputInfo ii, OutputInfo oi, PDataPartitionFormat dpf, int n, String fnameNew, String itervar, String matrixvar, boolean tSparseCol) throws DMLRuntimeException { //set basic partitioning information setPartitioningInfo(job, rlen, clen, brlen, bclen, ii, oi, dpf, n, fnameNew); //set iteration variable name (used for ParFor-DPE) job.set(PARTITIONING_ITERVAR_CONFIG, itervar); //set iteration variable name (used for ParFor-DPE) job.set(PARTITIONING_MATRIXVAR_CONFIG, matrixvar); //set transpose sparse column vector job.setBoolean(PARTITIONING_TRANSPOSE_COL_CONFIG, tSparseCol); }
From source file:com.ibm.bi.dml.runtime.matrix.mapred.MRJobConfiguration.java
License:Open Source License
public static void setPartitioningInfo(JobConf job, long rlen, long clen, int brlen, int bclen, InputInfo ii, OutputInfo oi, PDataPartitionFormat dpf, int n, String fnameNew, boolean keepIndexes) throws DMLRuntimeException { //set basic partitioning information setPartitioningInfo(job, rlen, clen, brlen, bclen, ii, oi, dpf, n, fnameNew); //set transpose sparse column vector job.setBoolean(PARTITIONING_OUTPUT_KEEP_INDEXES_CONFIG, keepIndexes); }
From source file:com.ibm.bi.dml.runtime.matrix.sort.PickFromCompactInputFormat.java
License:Open Source License
public static Set<Integer> setPickRecordsInEachPartFile(JobConf job, NumItemsByEachReducerMetaData metadata, double[] probs) { HashMap<Integer, ArrayList<Pair<Integer, Integer>>> posMap = new HashMap<Integer, ArrayList<Pair<Integer, Integer>>>(); getPointsInEachPartFile(metadata.getNumItemsArray(), probs, posMap); for (Entry<Integer, ArrayList<Pair<Integer, Integer>>> e : posMap.entrySet()) { job.set(SELECTED_POINTS_PREFIX + e.getKey(), getString(e.getValue())); //System.out.println(e.getKey()+": "+getString(e.getValue())); }// ww w .j av a 2s .c om job.setBoolean(INPUT_IS_VECTOR, true); return posMap.keySet(); }
From source file:com.ibm.bi.dml.runtime.matrix.sort.PickFromCompactInputFormat.java
License:Open Source License
public static void setRangePickPartFiles(JobConf job, NumItemsByEachReducerMetaData metadata, double lbound, double ubound) { if (lbound < 0 || lbound > 1 || ubound < 0 || ubound > 1 || lbound >= ubound) { throw new RuntimeException("Invalid ranges for range pick: [" + lbound + "," + ubound + "]"); }/*w w w. j av a 2s. c o m*/ long[] counts = metadata.getNumItemsArray(); long[] ranges = new long[counts.length]; ranges[0] = counts[0]; for (int i = 1; i < counts.length; i++) ranges[i] = ranges[i - 1] + counts[i]; long sumwt = ranges[ranges.length - 1]; double qbegin = lbound * sumwt; double qend = ubound * sumwt; // Find part files that overlap with range [qbegin,qend] int partID = -1; long wt = 0; // scan until the part containing qbegin while (wt < qbegin) { partID++; wt += counts[partID]; } StringBuilder sb = new StringBuilder(); while (wt <= qend) { sb.append(partID + "," + (wt - counts[partID]) + ";"); // partID, weight until this part partID++; if (partID < counts.length) wt += counts[partID]; } sb.append(partID + "," + (wt - counts[partID]) + ";"); sb.append(sumwt + "," + lbound + "," + ubound); //System.out.println("range string: " + sb.toString()); job.set(SELECTED_RANGES, sb.toString()); job.setBoolean(INPUT_IS_VECTOR, false); }