Example usage for org.apache.hadoop.mapred JobConf setInputFormat

List of usage examples for org.apache.hadoop.mapred JobConf setInputFormat

Introduction

In this page you can find the example usage for org.apache.hadoop.mapred JobConf setInputFormat.

Prototype

public void setInputFormat(Class<? extends InputFormat> theClass) 

Source Link

Document

Set the InputFormat implementation for the map-reduce job.

Usage

From source file:DistribCountingDriver.java

License:Apache License

public int run(String args[]) throws Exception {
    long job_start_time, job_end_time;
    long job_runtime;

    JobConf conf = new JobConf(getConf());

    int minFreqPercent = Integer.parseInt(args[0]);
    int datasetSize = Integer.parseInt(args[1]);
    conf.setInt("DISTRCOUNT.datasetSize", datasetSize);
    conf.setInt("DISTRCOUNT.minFreqPercent", minFreqPercent);

    conf.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    conf.setInt("mapred.task.timeout", 60000000);

    conf.setJarByClass(DistribCountingDriver.class);

    conf.setMapOutputKeyClass(Text.class);
    conf.setMapOutputValueClass(IntWritable.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapperClass(DistribCountingMapper.class);
    conf.setCombinerClass(DistribCountingCombiner.class);
    conf.setReducerClass(DistribCountingReducer.class);

    conf.setInputFormat(SequenceFileInputFormat.class);
    SequenceFileInputFormat.addInputPath(conf, new Path(args[2]));
    FileOutputFormat.setOutputPath(conf, new Path(args[3]));

    job_start_time = System.currentTimeMillis();
    JobClient.runJob(conf);//from w  ww .  ja  v  a  2s.co  m
    job_end_time = System.currentTimeMillis();

    job_runtime = (job_end_time - job_start_time) / 1000;

    System.out.println("total job runtime (seconds): " + job_runtime);

    return 0;
}

From source file:MRDriver.java

License:Apache License

public int run(String args[]) throws Exception {
    FileSystem fs = null;/*from ww w. j  a  v  a2  s  .  c o m*/
    Path samplesMapPath = null;

    float epsilon = Float.parseFloat(args[0]);
    double delta = Double.parseDouble(args[1]);
    int minFreqPercent = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    int datasetSize = Integer.parseInt(args[4]);
    int numSamples = Integer.parseInt(args[5]);
    double phi = Double.parseDouble(args[6]);
    Random rand;

    /************************ Job 1 (local FIM) Configuration ************************/

    JobConf conf = new JobConf(getConf());

    /*
     * Compute the number of required "votes" for an itemsets to be
     * declared frequent    
     */
    // The +1 at the end is needed to ensure reqApproxNum > numsamples / 2.
    int reqApproxNum = (int) Math
            .floor((numSamples * (1 - phi)) - Math.sqrt(numSamples * (1 - phi) * 2 * Math.log(1 / delta))) + 1;
    int sampleSize = (int) Math.ceil((2 / Math.pow(epsilon, 2)) * (d + Math.log(1 / phi)));
    //System.out.println("reducersNum: " + numSamples + " reqApproxNum: " + reqApproxNum);

    conf.setInt("PARMM.reducersNum", numSamples);
    conf.setInt("PARMM.datasetSize", datasetSize);
    conf.setInt("PARMM.minFreqPercent", minFreqPercent);
    conf.setInt("PARMM.sampleSize", sampleSize);
    conf.setFloat("PARMM.epsilon", epsilon);

    // Set the number of reducers equal to the number of samples, to
    // maximize parallelism. Required by our Partitioner.
    conf.setNumReduceTasks(numSamples);

    // XXX: why do we disable the speculative execution? MR
    conf.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    conf.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    /* 
     * Enable compression of map output.
     *
     * We do it for this job and not for the aggregation one because
     * each mapper there only print out one record for each itemset,
     * so there isn't much to compress, I'd say. MR
     *
     * In Amazon MapReduce compression of the map output seems to be
     * happen by default and the Snappy codec is used, which is
     * extremely fast.
     */
    conf.setBoolean("mapred.compress.map.output", true);
    //conf.setMapOutputCompressorClass(com.hadoop.compression.lzo.LzoCodec.class);

    conf.setJarByClass(MRDriver.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(DoubleWritable.class);

    conf.setInputFormat(SequenceFileInputFormat.class);
    // We write the collections found in a reducers as a SequenceFile 
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    SequenceFileOutputFormat.setOutputPath(conf, new Path(args[9]));

    // set the mapper class based on command line option
    switch (Integer.parseInt(args[7])) {
    case 1:
        System.out.println("running partition mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(PartitionMapper.class);
        break;
    case 2:
        System.out.println("running binomial mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(BinomialSamplerMapper.class);
        break;
    case 3:
        System.out.println("running coin mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(CoinFlipSamplerMapper.class);
    case 4:
        System.out.println("running sampler mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(InputSamplerMapper.class);

        // create a random sample of size T*m
        rand = new Random();
        long sampling_start_time = System.nanoTime();
        int[] samples = new int[numSamples * sampleSize];
        for (int i = 0; i < numSamples * sampleSize; i++) {
            samples[i] = rand.nextInt(datasetSize);
        }

        // for each key in the sample, create a list of all T samples to which this key belongs
        Hashtable<LongWritable, ArrayList<IntWritable>> hashTable = new Hashtable<LongWritable, ArrayList<IntWritable>>();
        for (int i = 0; i < numSamples * sampleSize; i++) {
            ArrayList<IntWritable> sampleIDs = null;
            LongWritable key = new LongWritable(samples[i]);
            if (hashTable.containsKey(key))
                sampleIDs = hashTable.get(key);
            else
                sampleIDs = new ArrayList<IntWritable>();
            sampleIDs.add(new IntWritable(i % numSamples));
            hashTable.put(key, sampleIDs);
        }

        /*
         * Convert the Hastable to a MapWritable which we will
         * write to HDFS and distribute to all Mappers using
         * DistributedCache
         */
        MapWritable map = new MapWritable();
        for (LongWritable key : hashTable.keySet()) {
            ArrayList<IntWritable> sampleIDs = hashTable.get(key);
            IntArrayWritable sampleIDsIAW = new IntArrayWritable();
            sampleIDsIAW.set(sampleIDs.toArray(new IntWritable[sampleIDs.size()]));
            map.put(key, sampleIDsIAW);
        }

        fs = FileSystem.get(URI.create("samplesMap.ser"), conf);
        samplesMapPath = new Path("samplesMap.ser");
        FSDataOutputStream out = fs.create(samplesMapPath, true);
        map.write(out);
        out.sync();
        out.close();
        DistributedCache.addCacheFile(new URI(fs.getWorkingDirectory() + "/samplesMap.ser#samplesMap.ser"),
                conf);
        // stop the sampling timer   
        long sampling_end_time = System.nanoTime();
        long sampling_runtime = (sampling_end_time - sampling_start_time) / 1000000;
        System.out.println("sampling runtime (milliseconds): " + sampling_runtime);
        break; // end switch case
    case 5:
        System.out.println("running random integer partition mapper...");
        conf.setInputFormat(WholeSplitInputFormat.class);
        Path inputFilePath = new Path(args[8]);
        WholeSplitInputFormat.addInputPath(conf, inputFilePath);
        conf.setMapperClass(RandIntPartSamplerMapper.class);
        // Compute number of map tasks.
        fs = inputFilePath.getFileSystem(conf);
        FileStatus inputFileStatus = fs.getFileStatus(inputFilePath);
        long len = inputFileStatus.getLen();
        long blockSize = inputFileStatus.getBlockSize();
        conf.setLong("mapred.min.split.size", blockSize);
        conf.setLong("mapred.max.split.size", blockSize);
        int mapTasksNum = ((int) (len / blockSize)) + 1;
        conf.setNumMapTasks(mapTasksNum);
        //System.out.println("len: " + len + " blockSize: " 
        //      + blockSize + " mapTasksNum: " + mapTasksNum);
        // Extract random integer partition of total sample
        // size into up to mapTasksNum partitions.
        // XXX I'm not sure this is a correct way to do
        // it.
        rand = new Random();
        IntWritable[][] toSampleArr = new IntWritable[mapTasksNum][numSamples];
        for (int j = 0; j < numSamples; j++) {
            IntWritable[] tempToSampleArr = new IntWritable[mapTasksNum];
            int sum = 0;
            int i;
            for (i = 0; i < mapTasksNum - 1; i++) {
                int size = rand.nextInt(sampleSize - sum);
                tempToSampleArr[i] = new IntWritable(size);
                sum += size;
                if (sum > numSamples * sampleSize) {
                    System.out.println("Something went wrong generating the sample Sizes");
                    System.exit(1);
                }
                if (sum == sampleSize) {
                    break;
                }
            }
            if (i == mapTasksNum - 1) {
                tempToSampleArr[i] = new IntWritable(sampleSize - sum);
            } else {
                for (; i < mapTasksNum; i++) {
                    tempToSampleArr[i] = new IntWritable(0);
                }
            }
            Collections.shuffle(Arrays.asList(tempToSampleArr));
            for (i = 0; i < mapTasksNum; i++) {
                toSampleArr[i][j] = tempToSampleArr[i];
            }
        }

        for (int i = 0; i < mapTasksNum; i++) {
            DefaultStringifier.storeArray(conf, toSampleArr[i], "PARMM.toSampleArr_" + i);
        }
        break;
    default:
        System.err.println("Wrong Mapper ID. Can only be in [1,5]");
        System.exit(1);
        break;
    }

    /*
     * We don't use the default hash partitioner because we want to
     * maximize the parallelism. That's why we also fix the number
     * of reducers.
     */
    conf.setPartitionerClass(FIMPartitioner.class);

    conf.setReducerClass(FIMReducer.class);

    /************************ Job 2 (aggregation) Configuration ************************/

    JobConf confAggr = new JobConf(getConf());

    confAggr.setInt("PARMM.reducersNum", numSamples);
    confAggr.setInt("PARMM.reqApproxNum", reqApproxNum);
    confAggr.setInt("PARMM.sampleSize", sampleSize);
    confAggr.setFloat("PARMM.epsilon", epsilon);

    // XXX: Why do we disable speculative execution? MR
    confAggr.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    confAggr.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    confAggr.setJarByClass(MRDriver.class);

    confAggr.setMapOutputKeyClass(Text.class);
    confAggr.setMapOutputValueClass(DoubleWritable.class);

    confAggr.setOutputKeyClass(Text.class);
    confAggr.setOutputValueClass(Text.class);

    confAggr.setMapperClass(AggregateMapper.class);
    confAggr.setReducerClass(AggregateReducer.class);

    confAggr.setInputFormat(CombineSequenceFileInputFormat.class);
    SequenceFileInputFormat.addInputPath(confAggr, new Path(args[9]));

    FileOutputFormat.setOutputPath(confAggr, new Path(args[10]));

    long FIMjob_start_time = System.currentTimeMillis();
    RunningJob FIMjob = JobClient.runJob(conf);
    long FIMjob_end_time = System.currentTimeMillis();

    RunningJob aggregateJob = JobClient.runJob(confAggr);
    long aggrJob_end_time = System.currentTimeMillis();

    long FIMjob_runtime = FIMjob_end_time - FIMjob_start_time;

    long aggrJob_runtime = aggrJob_end_time - FIMjob_end_time;

    if (args[7].equals("4")) {
        // Remove samplesMap file 
        fs.delete(samplesMapPath, false);
    }

    Counters counters = FIMjob.getCounters();
    Counters.Group FIMMapperStartTimesCounters = counters.getGroup("FIMMapperStart");
    long[] FIMMapperStartTimes = new long[FIMMapperStartTimesCounters.size()];
    int i = 0;
    for (Counters.Counter counter : FIMMapperStartTimesCounters) {
        FIMMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMMapperEndTimesCounters = counters.getGroup("FIMMapperEnd");
    long[] FIMMapperEndTimes = new long[FIMMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMMapperEndTimesCounters) {
        FIMMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerStartTimesCounters = counters.getGroup("FIMReducerStart");
    long[] FIMReducerStartTimes = new long[FIMReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerStartTimesCounters) {
        FIMReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerEndTimesCounters = counters.getGroup("FIMReducerEnd");
    long[] FIMReducerEndTimes = new long[FIMReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerEndTimesCounters) {
        FIMReducerEndTimes[i++] = counter.getCounter();
    }

    Counters countersAggr = aggregateJob.getCounters();
    Counters.Group AggregateMapperStartTimesCounters = countersAggr.getGroup("AggregateMapperStart");
    long[] AggregateMapperStartTimes = new long[AggregateMapperStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperStartTimesCounters) {
        AggregateMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateMapperEndTimesCounters = countersAggr.getGroup("AggregateMapperEnd");
    long[] AggregateMapperEndTimes = new long[AggregateMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperEndTimesCounters) {
        AggregateMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerStartTimesCounters = countersAggr.getGroup("AggregateReducerStart");
    long[] AggregateReducerStartTimes = new long[AggregateReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerStartTimesCounters) {
        AggregateReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerEndTimesCounters = countersAggr.getGroup("AggregateReducerEnd");
    long[] AggregateReducerEndTimes = new long[AggregateReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerEndTimesCounters) {
        AggregateReducerEndTimes[i++] = counter.getCounter();
    }

    long FIMMapperStartMin = FIMMapperStartTimes[0];
    for (long l : FIMMapperStartTimes) {
        if (l < FIMMapperStartMin) {
            FIMMapperStartMin = l;
        }
    }
    long FIMMapperEndMax = FIMMapperEndTimes[0];
    for (long l : FIMMapperEndTimes) {
        if (l > FIMMapperEndMax) {
            FIMMapperEndMax = l;
        }
    }
    System.out.println("FIM job setup time (milliseconds): " + (FIMMapperStartMin - FIMjob_start_time));
    System.out.println("FIMMapper total runtime (milliseconds): " + (FIMMapperEndMax - FIMMapperStartMin));
    long[] FIMMapperRunTimes = new long[FIMMapperStartTimes.length];
    long FIMMapperRunTimesSum = 0;
    for (int l = 0; l < FIMMapperStartTimes.length; l++) {
        FIMMapperRunTimes[l] = FIMMapperEndTimes[l] - FIMMapperStartTimes[l];
        FIMMapperRunTimesSum += FIMMapperRunTimes[l];
    }
    System.out.println("FIMMapper average task runtime (milliseconds): "
            + FIMMapperRunTimesSum / FIMMapperStartTimes.length);
    long FIMMapperRunTimesMin = FIMMapperRunTimes[0];
    long FIMMapperRunTimesMax = FIMMapperRunTimes[0];
    for (long l : FIMMapperRunTimes) {
        if (l < FIMMapperRunTimesMin) {
            FIMMapperRunTimesMin = l;
        }
        if (l > FIMMapperRunTimesMax) {
            FIMMapperRunTimesMax = l;
        }
    }
    System.out.println("FIMMapper minimum task runtime (milliseconds): " + FIMMapperRunTimesMin);
    System.out.println("FIMMapper maximum task runtime (milliseconds): " + FIMMapperRunTimesMax);

    long FIMReducerStartMin = FIMReducerStartTimes[0];
    for (long l : FIMReducerStartTimes) {
        if (l < FIMReducerStartMin) {
            FIMReducerStartMin = l;
        }
    }
    long FIMReducerEndMax = FIMReducerEndTimes[0];
    for (long l : FIMReducerEndTimes) {
        if (l > FIMReducerEndMax) {
            FIMReducerEndMax = l;
        }
    }
    System.out
            .println("FIM job shuffle phase runtime (milliseconds): " + (FIMReducerStartMin - FIMMapperEndMax));
    System.out.println("FIMReducer total runtime (milliseconds): " + (FIMReducerEndMax - FIMReducerStartMin));
    long[] FIMReducerRunTimes = new long[FIMReducerStartTimes.length];
    long FIMReducerRunTimesSum = 0;
    for (int l = 0; l < FIMReducerStartTimes.length; l++) {
        FIMReducerRunTimes[l] = FIMReducerEndTimes[l] - FIMReducerStartTimes[l];
        FIMReducerRunTimesSum += FIMReducerRunTimes[l];
    }
    System.out.println("FIMReducer average task runtime (milliseconds): "
            + FIMReducerRunTimesSum / FIMReducerStartTimes.length);
    long FIMReducerRunTimesMin = FIMReducerRunTimes[0];
    long FIMReducerRunTimesMax = FIMReducerRunTimes[0];
    for (long l : FIMReducerRunTimes) {
        if (l < FIMReducerRunTimesMin) {
            FIMReducerRunTimesMin = l;
        }
        if (l > FIMReducerRunTimesMax) {
            FIMReducerRunTimesMax = l;
        }
    }
    System.out.println("FIMReducer minimum task runtime (milliseconds): " + FIMReducerRunTimesMin);
    System.out.println("FIMReducer maximum task runtime (milliseconds): " + FIMReducerRunTimesMax);
    System.out.println("FIM job cooldown time (milliseconds): " + (FIMjob_end_time - FIMReducerEndMax));

    long AggregateMapperStartMin = AggregateMapperStartTimes[0];
    for (long l : AggregateMapperStartTimes) {
        if (l < AggregateMapperStartMin) {
            AggregateMapperStartMin = l;
        }
    }
    long AggregateMapperEndMax = AggregateMapperEndTimes[0];
    for (long l : AggregateMapperEndTimes) {
        if (l > AggregateMapperEndMax) {
            AggregateMapperEndMax = l;
        }
    }
    System.out.println(
            "Aggregation job setup time (milliseconds): " + (AggregateMapperStartMin - FIMjob_end_time));
    System.out.println("AggregateMapper total runtime (milliseconds): "
            + (AggregateMapperEndMax - AggregateMapperStartMin));
    long[] AggregateMapperRunTimes = new long[AggregateMapperStartTimes.length];
    long AggregateMapperRunTimesSum = 0;
    for (int l = 0; l < AggregateMapperStartTimes.length; l++) {
        AggregateMapperRunTimes[l] = AggregateMapperEndTimes[l] - AggregateMapperStartTimes[l];
        AggregateMapperRunTimesSum += AggregateMapperRunTimes[l];
    }
    System.out.println("AggregateMapper average task runtime (milliseconds): "
            + AggregateMapperRunTimesSum / AggregateMapperStartTimes.length);
    long AggregateMapperRunTimesMin = AggregateMapperRunTimes[0];
    long AggregateMapperRunTimesMax = AggregateMapperRunTimes[0];
    for (long l : AggregateMapperRunTimes) {
        if (l < AggregateMapperRunTimesMin) {
            AggregateMapperRunTimesMin = l;
        }
        if (l > AggregateMapperRunTimesMax) {
            AggregateMapperRunTimesMax = l;
        }
    }
    System.out.println("AggregateMapper minimum task runtime (milliseconds): " + AggregateMapperRunTimesMin);
    System.out.println("AggregateMapper maximum task runtime (milliseconds): " + AggregateMapperRunTimesMax);

    long AggregateReducerStartMin = AggregateReducerStartTimes[0];
    for (long l : AggregateReducerStartTimes) {
        if (l < AggregateReducerStartMin) {
            AggregateReducerStartMin = l;
        }
    }
    long AggregateReducerEndMax = AggregateReducerEndTimes[0];
    for (long l : AggregateReducerEndTimes) {
        if (l > AggregateReducerEndMax) {
            AggregateReducerEndMax = l;
        }
    }
    System.out.println("Aggregate job round shuffle phase runtime (milliseconds): "
            + (AggregateReducerStartMin - AggregateMapperEndMax));
    System.out.println("AggregateReducer total runtime (milliseconds): "
            + (AggregateReducerEndMax - AggregateReducerStartMin));
    long[] AggregateReducerRunTimes = new long[AggregateReducerStartTimes.length];
    long AggregateReducerRunTimesSum = 0;
    for (int l = 0; l < AggregateReducerStartTimes.length; l++) {
        AggregateReducerRunTimes[l] = AggregateReducerEndTimes[l] - AggregateReducerStartTimes[l];
        AggregateReducerRunTimesSum += AggregateReducerRunTimes[l];
    }
    System.out.println("AggregateReducer average task runtime (milliseconds): "
            + AggregateReducerRunTimesSum / AggregateReducerStartTimes.length);
    long AggregateReducerRunTimesMin = AggregateReducerRunTimes[0];
    long AggregateReducerRunTimesMax = AggregateReducerRunTimes[0];
    for (long l : AggregateReducerRunTimes) {
        if (l < AggregateReducerRunTimesMin) {
            AggregateReducerRunTimesMin = l;
        }
        if (l > AggregateReducerRunTimesMax) {
            AggregateReducerRunTimesMax = l;
        }
    }
    System.out.println("AggregateReducer minimum task runtime (milliseconds): " + AggregateReducerRunTimesMin);
    System.out.println("AggregateReducer maximum task runtime (milliseconds): " + AggregateReducerRunTimesMax);

    System.out.println(
            "Aggregation job cooldown time (milliseconds): " + (aggrJob_end_time - AggregateReducerEndMax));

    System.out
            .println("total runtime (all inclusive) (milliseconds): " + (aggrJob_end_time - FIMjob_start_time));
    System.out.println("total runtime (no FIM job setup, no aggregation job cooldown) (milliseconds): "
            + (AggregateReducerEndMax - FIMMapperStartMin));
    System.out.println("total runtime (no setups, no cooldowns) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin + AggregateReducerEndMax - AggregateMapperStartMin));
    System.out.println("FIM job runtime (including setup and cooldown) (milliseconds): " + FIMjob_runtime);
    System.out.println("FIM job runtime (no setup, no cooldown) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin));
    System.out.println(
            "Aggregation job runtime (including setup and cooldown) (milliseconds): " + aggrJob_runtime);
    System.out.println("Aggregation job runtime (no setup, no cooldown) (milliseconds): "
            + (AggregateReducerEndMax - AggregateMapperStartMin));

    return 0;
}

From source file:Text2ColumntStorageMR.java

License:Open Source License

@SuppressWarnings("deprecation")
public static void main(String[] args) throws Exception {

    if (args.length != 3) {
        System.out.println("Text2ColumnStorageMR <input> <output> <columnStorageMode>");
        System.exit(-1);/*from  w w  w . j a v a 2s  .  c om*/
    }

    JobConf conf = new JobConf(Text2ColumntStorageMR.class);

    conf.setJobName("Text2ColumnStorageMR");

    conf.setNumMapTasks(1);
    conf.setNumReduceTasks(4);

    conf.setOutputKeyClass(LongWritable.class);
    conf.setOutputValueClass(Unit.Record.class);

    conf.setMapperClass(TextFileMapper.class);
    conf.setReducerClass(ColumnStorageReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat((Class<? extends OutputFormat>) ColumnStorageHiveOutputFormat.class);
    conf.set("mapred.output.compress", "flase");

    Head head = new Head();
    initHead(head);

    head.toJobConf(conf);

    int bt = Integer.valueOf(args[2]);

    FileInputFormat.setInputPaths(conf, args[0]);
    Path outputPath = new Path(args[1]);
    FileOutputFormat.setOutputPath(conf, outputPath);

    FileSystem fs = outputPath.getFileSystem(conf);
    fs.delete(outputPath, true);

    JobClient jc = new JobClient(conf);
    RunningJob rj = null;
    rj = jc.submitJob(conf);

    String lastReport = "";
    SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss,SSS");
    long reportTime = System.currentTimeMillis();
    long maxReportInterval = 3 * 1000;
    while (!rj.isComplete()) {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
        }

        int mapProgress = Math.round(rj.mapProgress() * 100);
        int reduceProgress = Math.round(rj.reduceProgress() * 100);

        String report = " map = " + mapProgress + "%,  reduce = " + reduceProgress + "%";

        if (!report.equals(lastReport) || System.currentTimeMillis() >= reportTime + maxReportInterval) {

            String output = dateFormat.format(Calendar.getInstance().getTime()) + report;
            System.out.println(output);
            lastReport = report;
            reportTime = System.currentTimeMillis();
        }
    }

    System.exit(0);

}

From source file:TestTextInputFormat.java

License:Open Source License

public static void main(String[] argv) throws IOException, SerDeException {
    try {//from  ww w .  j  a v  a  2 s  .  co  m
        if (argv.length != 2) {
            System.out.println("TestTextInputFormat <input> <output>");
            System.exit(-1);
        }

        JobConf conf = new JobConf(TestTextInputFormat.class);

        conf.setJobName("TestTextInputFormat");

        conf.setNumMapTasks(1);
        conf.setNumReduceTasks(1);

        conf.setOutputKeyClass(LongWritable.class);
        conf.setOutputValueClass(Unit.Record.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(FormatStorageOutputFormat.class);
        conf.set("mapred.output.compress", "flase");

        conf.set("mapred.input.dir", argv[0]);

        LazySimpleSerDe serDe = initSerDe(conf);
        LazySimpleStructObjectInspector oi = (LazySimpleStructObjectInspector) serDe.getObjectInspector();
        List<? extends StructField> fieldRefs = oi.getAllStructFieldRefs();

        FileInputFormat.setInputPaths(conf, argv[0]);
        Path outputPath = new Path(argv[1]);
        FileOutputFormat.setOutputPath(conf, outputPath);

        InputFormat inputFormat = new TextInputFormat();
        ((TextInputFormat) inputFormat).configure(conf);
        InputSplit[] inputSplits = inputFormat.getSplits(conf, 1);
        if (inputSplits.length == 0) {
            System.out.println("inputSplits is empty");
            return;
        } else {
            System.out.println("get Splits:" + inputSplits.length);
        }

        int totalDelay = 0;
        RecordReader<WritableComparable, Writable> currRecReader = null;
        for (int i = 0; i < inputSplits.length; i++) {
            currRecReader = inputFormat.getRecordReader(inputSplits[i], conf, Reporter.NULL);

            WritableComparable key;
            Writable value;

            key = currRecReader.createKey();
            value = currRecReader.createValue();

            long begin = System.currentTimeMillis();
            int count = 0;
            while (currRecReader.next(key, value)) {

                Object row = serDe.deserialize((Text) value);
                oi.getStructFieldsDataAsList(row);

                count++;
            }
            long end = System.currentTimeMillis();

            long delay = (end - begin) / 1000;
            totalDelay += delay;
            System.out.println(count + " record read over, delay " + delay + " s");
        }

        System.out.println("total delay:" + totalDelay);

        return;
    } catch (Exception e) {
        e.printStackTrace();
        System.out.println("get exception:" + e.getMessage());
    }
}

From source file:MapReduceRunner.java

License:Apache License

public static void main(String[] args) throws IOException {
    JobConf conf = new JobConf(MapReduceRunner.class);
    conf.setJobName("gapdeduce");

    conf.setMapOutputKeyClass(Text.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapperClass(Mapper.class);
    conf.setReducerClass(Reducer.class);

    // KeyValueTextInputFormat treats each line as an input record, 
    // and splits the line by the tab character to separate it into key and value 
    conf.setInputFormat(KeyValueTextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);

    FileInputFormat.setInputPaths(conf, new Path(args[0]));
    FileOutputFormat.setOutputPath(conf, new Path(args[1]));

    JobClient.runJob(conf);/*from  ww w. ja  v a  2 s .c o  m*/
}

From source file:WikipediaDocnoMappingBuilder.java

License:Apache License

@SuppressWarnings("static-access")
@Override//from   w  ww .  j a v  a2 s.co m
public int run(String[] args) throws Exception {
    Options options = new Options();
    options.addOption(
            OptionBuilder.withArgName("path").hasArg().withDescription("XML dump file").create(INPUT_OPTION));
    options.addOption(OptionBuilder.withArgName("path").hasArg().withDescription("output file")
            .create(OUTPUT_FILE_OPTION));
    options.addOption(OptionBuilder.withArgName("en|sv|de|cs|es|zh|ar|tr").hasArg()
            .withDescription("two-letter language code").create(LANGUAGE_OPTION));
    options.addOption(KEEP_ALL_OPTION, false, "keep all pages");

    CommandLine cmdline;
    CommandLineParser parser = new GnuParser();
    try {
        cmdline = parser.parse(options, args);
    } catch (ParseException exp) {
        System.err.println("Error parsing command line: " + exp.getMessage());
        return -1;
    }

    if (!cmdline.hasOption(INPUT_OPTION) || !cmdline.hasOption(OUTPUT_FILE_OPTION)) {
        HelpFormatter formatter = new HelpFormatter();
        formatter.printHelp(this.getClass().getName(), options);
        ToolRunner.printGenericCommandUsage(System.out);
        return -1;
    }

    String language = null;
    if (cmdline.hasOption(LANGUAGE_OPTION)) {
        language = cmdline.getOptionValue(LANGUAGE_OPTION);
        if (language.length() != 2) {
            System.err.println("Error: \"" + language + "\" unknown language!");
            return -1;
        }
    }

    String inputPath = cmdline.getOptionValue(INPUT_OPTION);
    String outputFile = cmdline.getOptionValue(OUTPUT_FILE_OPTION);
    boolean keepAll = cmdline.hasOption(KEEP_ALL_OPTION);

    String tmpPath = "tmp-" + WikipediaDocnoMappingBuilder.class.getSimpleName() + "-" + RANDOM.nextInt(10000);

    LOG.info("Tool name: " + this.getClass().getName());
    LOG.info(" - input: " + inputPath);
    LOG.info(" - output file: " + outputFile);
    LOG.info(" - keep all pages: " + keepAll);
    LOG.info(" - language: " + language);

    // Job job = Job.getInstance(getConf());
    JobConf conf = new JobConf(WikipediaDocnoMappingBuilder.class);
    conf.setJarByClass(WikipediaDocnoMappingBuilder.class);
    conf.setJobName(String.format("BuildWikipediaDocnoMapping[%s: %s, %s: %s, %s: %s]", INPUT_OPTION, inputPath,
            OUTPUT_FILE_OPTION, outputFile, LANGUAGE_OPTION, language));

    conf.setBoolean(KEEP_ALL_OPTION, keepAll);
    // .getConfiguration().setBoolean(KEEP_ALL_OPTION, keepAll);
    if (language != null) {
        conf.set("wiki.language", language);
    }
    conf.setNumReduceTasks(1);

    FileInputFormat.addInputPath(conf, new Path(inputPath));
    FileOutputFormat.setOutputPath(conf, new Path(tmpPath));
    FileOutputFormat.setCompressOutput(conf, false);

    conf.setOutputKeyClass(IntWritable.class);
    conf.setOutputValueClass(IntWritable.class);
    conf.setInputFormat(WikipediaPageInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);

    conf.setMapperClass(MyMapper.class);
    conf.setReducerClass(MyReducer.class);

    // Delete the output directory if it exists already.
    FileSystem.get(getConf()).delete(new Path(tmpPath), true);

    // job.waitForCompletion(true);

    RunningJob job = JobClient.runJob(conf);
    job.waitForCompletion();

    // JobClient jobClient = new JobClient(conf);
    long cnt = keepAll ? job.getCounters().findCounter(PageTypes.TOTAL).getValue()
            : job.getCounters().findCounter(PageTypes.ARTICLE).getValue();

    WikipediaDocnoMapping.writeDocnoMappingData(FileSystem.get(getConf()), tmpPath + "/part-00000", (int) cnt,
            outputFile);

    FileSystem.get(getConf()).delete(new Path(tmpPath), true);

    return 0;
}

From source file:SleepJob.java

License:Apache License

public JobConf setupJobConf(int numMapper, int numReducer, long mapSleepTime, int mapSleepCount,
        long reduceSleepTime, int reduceSleepCount) {
    JobConf job = new JobConf(getConf(), SleepJob.class);
    job.setNumMapTasks(numMapper);/*from  ww  w . j  a v  a2s .c om*/
    job.setNumReduceTasks(numReducer);
    job.setMapperClass(SleepJob.class);
    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(NullWritable.class);
    job.setReducerClass(SleepJob.class);
    job.setOutputFormat(NullOutputFormat.class);
    job.setInputFormat(SleepInputFormat.class);
    job.setPartitionerClass(SleepJob.class);
    job.setSpeculativeExecution(false);
    FileInputFormat.addInputPath(job, new Path("ignored"));
    job.setLong("sleep.job.map.sleep.time", mapSleepTime);
    job.setLong("sleep.job.reduce.sleep.time", reduceSleepTime);
    job.setInt("sleep.job.map.sleep.count", mapSleepCount);
    job.setInt("sleep.job.reduce.sleep.count", reduceSleepCount);
    return job;
}

From source file:update_sentiment.java

License:LGPL

public static void runjob(String input, String output) throws Exception {
    JobConf conf = new JobConf(update_sentiment.class);
    conf.setJobName("Update_Sentiment_Train");

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapperClass(Map.class);
    conf.setCombinerClass(Reduce.class);
    conf.setReducerClass(Reduce.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);

    FileInputFormat.setInputPaths(conf, new Path(input));
    FileOutputFormat.setOutputPath(conf, new Path(output));

    JobClient.runJob(conf);//from   w  w w . jav  a  2s  .  c  om
}

From source file:HadoopWordCount.java

License:Open Source License

public static void main(String[] args) throws Exception {
    System.setProperty("hazelcast.logging.type", "log4j");

    Path inputPath = new Path(HadoopWordCount.class.getClassLoader().getResource("books").getPath());
    Path outputPath = new Path(OUTPUT_PATH);

    // set up the Hadoop job config, the input and output paths and formats
    JobConf jobConfig = new JobConf();
    jobConfig.setInputFormat(TextInputFormat.class);
    jobConfig.setOutputFormat(TextOutputFormat.class);
    TextOutputFormat.setOutputPath(jobConfig, outputPath);
    TextInputFormat.addInputPath(jobConfig, inputPath);

    // Delete the output directory, if already exists
    FileSystem.get(new Configuration()).delete(outputPath, true);

    JetConfig cfg = new JetConfig();
    cfg.setInstanceConfig(new InstanceConfig()
            .setCooperativeThreadCount(Math.max(1, getRuntime().availableProcessors() / 2)));

    JetInstance jetInstance = Jet.newJetInstance(cfg);
    Jet.newJetInstance(cfg);/*from w  w  w  .  j a  va  2 s  . c o  m*/

    try {
        System.out.print("\nCounting words from " + inputPath);
        long start = nanoTime();
        jetInstance.newJob(buildDag(jobConfig)).execute().get();
        System.out.print("Done in " + NANOSECONDS.toMillis(nanoTime() - start) + " milliseconds.");
        System.out.println("Output written to " + outputPath);
    } finally {
        Jet.shutdownAll();
    }
}

From source file:BMTKeyValueLoader.java

License:Apache License

public int run(String[] args) {
    JobConf conf = new JobConf(getConf(), CassandraTableLoader.class);
    GenericOptionsParser parser = new GenericOptionsParser(conf, args);

    conf.setInputFormat(KeyValueTextInputFormat.class);
    conf.setJobName("BMTKeyValueLoader");
    conf.setMapperClass(Map.class);
    conf.setReducerClass(Reduce.class);
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    List<String> other_args = new ArrayList<String>();
    for (int i = 0; i < args.length; ++i) {
        other_args.add(args[i]);/*from w w w.j  ava 2s  .c  o  m*/
    }

    FileInputFormat.setInputPaths(conf, new Path(other_args.get(0)));
    FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
    try {
        JobClient.runJob(conf);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
    return 0;
}