List of usage examples for org.apache.hadoop.mapred JobConf setInputFormat
public void setInputFormat(Class<? extends InputFormat> theClass)
From source file:com.intel.hadoop.graphbuilder.idnormalize.mapreduce.SortEdgeMR.java
License:Open Source License
public void run(String inputpath, String outputpath) throws IOException { JobConf conf = new JobConf(SortEdgeMR.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); conf.setOutputKeyClass(IntWritable.class); conf.setOutputValueClass(Text.class); conf.setMapperClass(SortEdgeMapper.class); conf.setReducerClass(SortEdgeReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); conf.setInt("numChunks", numChunks); conf.set("GraphParser", graphparser.getClass().getName()); conf.set("VidParser", vidparser.getClass().getName()); conf.set("EdataParser", edataparser.getClass().getName()); FileInputFormat.setInputPaths(conf, new Path(inputpath)); FileOutputFormat.setOutputPath(conf, new Path(outputpath)); LOG.info("==== Job: Partition the input edges by hash(sourceid) ========="); LOG.info("Input = " + inputpath); LOG.info("Output = " + outputpath); LOG.debug("numChunks = " + numChunks); LOG.debug("GraphParser = " + graphparser.getClass().getName()); LOG.debug("VidParser = " + vidparser.getClass().getName()); LOG.debug("EdataParser = " + edataparser.getClass().getName()); LOG.info("==============================================================="); JobClient.runJob(conf);//from w ww .ja v a 2s.c om LOG.info("=================== Done ====================================\n"); }
From source file:com.intel.hadoop.graphbuilder.idnormalize.mapreduce.TransEdgeMR.java
License:Open Source License
/** * @param inputpath/*from w w w . java 2s.co m*/ * path of the partitioned edge list * @param outputpath * path of the output directory * @throws IOException */ public void run(String inputpath, String outputpath) throws IOException { JobConf conf = new JobConf(TransEdgeMR.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); conf.setMapOutputKeyClass(IntWritable.class); conf.setMapOutputValueClass(Text.class); conf.setMapperClass(TransEdgeMapper.class); conf.setReducerClass(TransEdgeReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); conf.setInt("numChunks", numChunks); conf.set("GraphParser", graphparser.getClass().getName()); conf.set("VidParser", vidparser.getClass().getName()); conf.set("EdataParser", edataparser.getClass().getName()); conf.set("dictionaryPath", dictionaryPath); FileInputFormat.setInputPaths(conf, new Path(inputpath)); FileOutputFormat.setOutputPath(conf, new Path(outputpath)); LOG.info("============= Job: Normalize Ids in Edges ===================="); LOG.info("Input = " + inputpath); LOG.info("Output = " + outputpath); LOG.info("Dictionary = " + dictionaryPath); LOG.debug("numChunks = " + numChunks); LOG.debug("GraphParser = " + graphparser.getClass().getName()); LOG.debug("VidParser = " + vidparser.getClass().getName()); LOG.debug("EdataParser = " + edataparser.getClass().getName()); LOG.info("==============================================================="); JobClient.runJob(conf); LOG.info("========================= Done ==============================="); }
From source file:com.intel.hadoop.graphbuilder.partition.mapreduce.vrecord.VrecordIngressMR.java
License:Open Source License
public void run(int numProcs, String inputpath, String outputpath) throws IOException { JobConf conf = new JobConf(VrecordIngressMR.class); conf.setJobName("Vrecord Mapreduce"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); conf.setMapOutputKeyClass(IntWritable.class); conf.setMapOutputValueClass(Text.class); conf.setMapperClass(VrecordIngressMapper.class); conf.setReducerClass(VrecordIngressReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(MultiDirOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(inputpath)); FileOutputFormat.setOutputPath(conf, new Path(outputpath)); if (gzip) {//from w w w . j a va 2s . com TextOutputFormat.setCompressOutput(conf, true); TextOutputFormat.setOutputCompressorClass(conf, GzipCodec.class); } LOG.info("====== Job: Distributed Vertex Records to partitions ========="); LOG.info("input: " + inputpath); LOG.info("output: " + outputpath); LOG.info("numProc = " + numProcs); LOG.info("gzip = " + Boolean.toString(gzip)); LOG.info("=============================================================="); JobClient.runJob(conf); LOG.info("==========================Done==============================="); }
From source file:com.jyz.study.hadoop.mapreduce.datajoin.DataJoinJob.java
License:Apache License
public static JobConf createDataJoinJob(String args[]) throws IOException { String inputDir = args[0];/*from w w w.jav a 2 s. c om*/ String outputDir = args[1]; Class inputFormat = SequenceFileInputFormat.class; if (args[2].compareToIgnoreCase("text") != 0) { System.out.println("Using SequenceFileInputFormat: " + args[2]); } else { System.out.println("Using TextInputFormat: " + args[2]); inputFormat = TextInputFormat.class; } int numOfReducers = Integer.parseInt(args[3]); Class mapper = getClassByName(args[4]); Class reducer = getClassByName(args[5]); Class mapoutputValueClass = getClassByName(args[6]); Class outputFormat = TextOutputFormat.class; Class outputValueClass = Text.class; if (args[7].compareToIgnoreCase("text") != 0) { System.out.println("Using SequenceFileOutputFormat: " + args[7]); outputFormat = SequenceFileOutputFormat.class; outputValueClass = getClassByName(args[7]); } else { System.out.println("Using TextOutputFormat: " + args[7]); } long maxNumOfValuesPerGroup = 100; String jobName = ""; if (args.length > 8) { maxNumOfValuesPerGroup = Long.parseLong(args[8]); } if (args.length > 9) { jobName = args[9]; } Configuration defaults = new Configuration(); JobConf job = new JobConf(defaults, DataJoinJob.class); job.setJobName("DataJoinJob: " + jobName); FileSystem fs = FileSystem.get(defaults); fs.delete(new Path(outputDir), true); FileInputFormat.setInputPaths(job, inputDir); job.setInputFormat(inputFormat); job.setMapperClass(mapper); FileOutputFormat.setOutputPath(job, new Path(outputDir)); job.setOutputFormat(outputFormat); SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.BLOCK); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(mapoutputValueClass); job.setOutputKeyClass(Text.class); job.setOutputValueClass(outputValueClass); job.setReducerClass(reducer); job.setNumMapTasks(1); job.setNumReduceTasks(numOfReducers); job.setLong("datajoin.maxNumOfValuesPerGroup", maxNumOfValuesPerGroup); return job; }
From source file:com.kadwa.hadoop.DistExec.java
License:Open Source License
private static JobConf createJobConf(Configuration conf) { JobConf jobconf = new JobConf(conf, DistExec.class); jobconf.setJobName(NAME);/* www . jav a2s .c om*/ // turn off speculative execution, because DFS doesn't handle // multiple writers to the same file. jobconf.setMapSpeculativeExecution(false); jobconf.setInputFormat(ExecInputFormat.class); jobconf.setOutputKeyClass(Text.class); jobconf.setOutputValueClass(Text.class); jobconf.setMapperClass(ExecFilesMapper.class); jobconf.setNumReduceTasks(0); // TODO implement singleOut by setting single reducer and prepending file name to output return jobconf; }
From source file:com.linkedin.mapred.AbstractAvroJob.java
License:Open Source License
/** * Sets up various standard settings in the JobConf. You probably don't want to mess with this. * //from ww w . j a va 2 s . co m * @return A configured JobConf. * @throws IOException * @throws URISyntaxException */ protected JobConf createJobConf() throws IOException, URISyntaxException { JobConf conf = new JobConf(); conf.setJobName(getJobId()); conf.setInputFormat(AvroInputFormat.class); conf.setOutputFormat(AvroOutputFormat.class); AvroOutputFormat.setDeflateLevel(conf, 9); String hadoop_ugi = _config.getString("hadoop.job.ugi", null); if (hadoop_ugi != null) { conf.set("hadoop.job.ugi", hadoop_ugi); } if (_config.getBoolean("is.local", false)) { conf.set("mapred.job.tracker", "local"); conf.set("fs.default.name", "file:///"); conf.set("mapred.local.dir", "/tmp/map-red"); _log.info("Running locally, no hadoop jar set."); } // set JVM options if present if (_config.containsKey("mapred.child.java.opts")) { conf.set("mapred.child.java.opts", _config.getString("mapred.child.java.opts")); _log.info("mapred.child.java.opts set to " + _config.getString("mapred.child.java.opts")); } if (_config.containsKey(INPUT_PATHS)) { List<String> inputPathnames = _config.getStringList(INPUT_PATHS); for (String pathname : inputPathnames) { AvroUtils.addAllSubPaths(conf, new Path(pathname)); } AvroJob.setInputSchema(conf, AvroUtils.getAvroInputSchema(conf)); } if (_config.containsKey(OUTPUT_PATH)) { Path path = new Path(_config.get(OUTPUT_PATH)); AvroOutputFormat.setOutputPath(conf, path); if (_config.getBoolean("force.output.overwrite", false)) { FileSystem fs = FileOutputFormat.getOutputPath(conf).getFileSystem(conf); fs.delete(FileOutputFormat.getOutputPath(conf), true); } } // set all hadoop configs for (String key : _config.keySet()) { String lowerCase = key.toLowerCase(); if (lowerCase.startsWith(HADOOP_PREFIX)) { String newKey = key.substring(HADOOP_PREFIX.length()); conf.set(newKey, _config.get(key)); } } return conf; }
From source file:com.liveramp.hank.hadoop.HadoopDomainBuilder.java
License:Apache License
@Override protected void configureJob(JobConf conf) { // Input specification conf.setInputFormat(inputFormatClass); FileInputFormat.setInputPaths(conf, inputPath); // Mapper class and key/value classes conf.setMapperClass(mapperClass);/*from w w w .j av a2 s . c o m*/ conf.setMapOutputKeyClass(KeyAndPartitionWritableComparable.class); conf.setMapOutputValueClass(ValueWritable.class); // Reducer class and key/value classes conf.setReducerClass(DomainBuilderReducer.class); conf.setOutputKeyClass(KeyAndPartitionWritable.class); conf.setOutputValueClass(ValueWritable.class); // Partitioner conf.setPartitionerClass(DomainBuilderPartitioner.class); }
From source file:com.liveramp.hank.hadoop.HadoopDomainCompactor.java
License:Apache License
@Override protected void configureJob(JobConf conf) { // Input format conf.setInputFormat(HadoopDomainCompactorInputFormat.class); // Mappers//ww w .j a va 2s. c o m conf.setMapperClass(HadoopDomainCompactorMapper.class); conf.setMapOutputKeyClass(KeyAndPartitionWritable.class); conf.setMapOutputValueClass(ValueWritable.class); // No reducers conf.setNumReduceTasks(0); // Output conf.setOutputKeyClass(KeyAndPartitionWritable.class); conf.setOutputValueClass(ValueWritable.class); }
From source file:com.manning.hip.ch4.joins.improved.impl.OptimizedDataJoinJob.java
License:Apache License
public static JobConf createDataJoinJob(String args[]) throws IOException { String inputDir = args[0];/*www.j a v a 2 s.co m*/ String outputDir = args[1]; Class inputFormat = SequenceFileInputFormat.class; if (args[2].compareToIgnoreCase("text") != 0) { System.out.println("Using SequenceFileInputFormat: " + args[2]); } else { System.out.println("Using TextInputFormat: " + args[2]); inputFormat = TextInputFormat.class; } int numOfReducers = Integer.parseInt(args[3]); Class mapper = getClassByName(args[4]); Class reducer = getClassByName(args[5]); Class mapoutputValueClass = getClassByName(args[6]); Class outputFormat = TextOutputFormat.class; Class outputValueClass = Text.class; if (args[7].compareToIgnoreCase("text") != 0) { System.out.println("Using SequenceFileOutputFormat: " + args[7]); outputFormat = SequenceFileOutputFormat.class; outputValueClass = getClassByName(args[7]); } else { System.out.println("Using TextOutputFormat: " + args[7]); } long maxNumOfValuesPerGroup = 100; String jobName = ""; if (args.length > 8) { maxNumOfValuesPerGroup = Long.parseLong(args[8]); } if (args.length > 9) { jobName = args[9]; } Configuration defaults = new Configuration(); JobConf job = new JobConf(defaults, OptimizedDataJoinJob.class); job.setJobName("DataJoinJob: " + jobName); FileSystem fs = FileSystem.get(defaults); fs.delete(new Path(outputDir)); FileInputFormat.setInputPaths(job, inputDir); job.setInputFormat(inputFormat); job.setMapperClass(mapper); FileOutputFormat.setOutputPath(job, new Path(outputDir)); job.setOutputFormat(outputFormat); SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.BLOCK); job.setMapOutputKeyClass(CompositeKey.class); job.setMapOutputValueClass(mapoutputValueClass); job.setOutputKeyClass(Text.class); job.setOutputValueClass(outputValueClass); job.setReducerClass(reducer); job.setPartitionerClass(CompositeKeyPartitioner.class); job.setOutputKeyComparatorClass(CompositeKeyComparator.class); job.setOutputValueGroupingComparator(CompositeKeyOnlyComparator.class); job.setNumMapTasks(1); job.setNumReduceTasks(numOfReducers); job.setLong("datajoin.maxNumOfValuesPerGroup", maxNumOfValuesPerGroup); return job; }
From source file:com.maxpoint.cascading.avro.AvroScheme.java
License:Open Source License
@Override public void sourceConfInit(FlowProcess<JobConf> process, Tap<JobConf, RecordReader<AvroWrapper<Record>, Writable>, OutputCollector<AvroWrapper<Record>, Writable>> tap, JobConf conf) { if (dataSchema == null) retrieveSchema(process, tap);/* w w w. ja va 2 s . co m*/ conf.set(AvroJob.INPUT_SCHEMA, dataSchema.toString()); conf.setInputFormat(AvroInputFormat.class); addAvroSerialization(conf); }