Example usage for org.apache.hadoop.mapred JobConf setInt

List of usage examples for org.apache.hadoop.mapred JobConf setInt

Introduction

In this page you can find the example usage for org.apache.hadoop.mapred JobConf setInt.

Prototype

public void setInt(String name, int value) 

Source Link

Document

Set the value of the name property to an int.

Usage

From source file:com.ibm.bi.dml.runtime.matrix.sort.PickFromCompactInputFormat.java

License:Open Source License

public static void setZeroValues(JobConf job, NumItemsByEachReducerMetaData metadata) {
    job.setInt(PARTITION_OF_ZERO, metadata.getPartitionOfZero());
    job.setLong(NUMBER_OF_ZERO, metadata.getNumberOfZero());
}

From source file:com.ibm.bi.dml.runtime.matrix.SortMR.java

License:Open Source License

@SuppressWarnings({ "unchecked", "rawtypes" })
public static JobReturn runJob(MRJobInstruction inst, String input, InputInfo inputInfo, long rlen, long clen,
        int brlen, int bclen, String combineInst, String sortInst, int numReducers, int replication,
        String output, OutputInfo outputInfo, boolean valueIsWeight) throws Exception {
    boolean sortIndexes = getSortInstructionType(sortInst) == SortKeys.OperationTypes.Indexes;
    String tmpOutput = sortIndexes ? MRJobConfiguration.constructTempOutputFilename() : output;

    JobConf job = new JobConf(SortMR.class);
    job.setJobName("SortMR");

    //setup partition file
    String pfname = MRJobConfiguration.setUpSortPartitionFilename(job);
    Path partitionFile = new Path(pfname);
    URI partitionUri = new URI(partitionFile.toString());

    //setup input/output paths
    Path inputDir = new Path(input);
    inputDir = inputDir.makeQualified(inputDir.getFileSystem(job));
    SamplingSortMRInputFormat.setInputPaths(job, inputDir);
    Path outpath = new Path(tmpOutput);
    FileOutputFormat.setOutputPath(job, outpath);
    MapReduceTool.deleteFileIfExistOnHDFS(outpath, job);

    //set number of reducers (1 if local mode)
    if (InfrastructureAnalyzer.isLocalMode(job))
        job.setNumReduceTasks(1);/*  ww w. j a v a  2 s  .  c o  m*/
    else
        MRJobConfiguration.setNumReducers(job, numReducers, numReducers);

    //setup input/output format
    job.setInputFormat(SamplingSortMRInputFormat.class);
    SamplingSortMRInputFormat.setTargetKeyValueClasses(job,
            (Class<? extends WritableComparable>) outputInfo.outputKeyClass, outputInfo.outputValueClass);

    //setup instructions and meta information
    if (combineInst != null && !combineInst.trim().isEmpty())
        job.set(COMBINE_INSTRUCTION, combineInst);
    job.set(SORT_INSTRUCTION, sortInst);
    job.setBoolean(VALUE_IS_WEIGHT, valueIsWeight);
    boolean desc = getSortInstructionDescending(sortInst);
    job.setBoolean(SORT_DECREASING, desc);
    MRJobConfiguration.setBlockSize(job, (byte) 0, brlen, bclen);
    MRJobConfiguration.setInputInfo(job, (byte) 0, inputInfo, brlen, bclen, ConvertTarget.CELL);
    int partitionWith0 = SamplingSortMRInputFormat.writePartitionFile(job, partitionFile);

    //setup mapper/reducer/partitioner/output classes
    if (getSortInstructionType(sortInst) == SortKeys.OperationTypes.Indexes) {
        MRJobConfiguration.setInputInfo(job, (byte) 0, inputInfo, brlen, bclen, ConvertTarget.CELL);
        job.setOutputFormat(OutputInfo.BinaryBlockOutputInfo.outputFormatClass);
        job.setMapperClass(IndexSortMapper.class);
        job.setReducerClass(IndexSortReducer.class);
        job.setMapOutputKeyClass(!desc ? IndexSortComparable.class : IndexSortComparableDesc.class);
        job.setMapOutputValueClass(LongWritable.class);
        job.setOutputKeyClass(MatrixIndexes.class);
        job.setOutputValueClass(MatrixBlock.class);
    } else { //default case: SORT w/wo weights
        MRJobConfiguration.setInputInfo(job, (byte) 0, inputInfo, brlen, bclen, ConvertTarget.CELL);
        job.setOutputFormat(CompactOutputFormat.class);
        job.setMapperClass(ValueSortMapper.class);
        job.setReducerClass(ValueSortReducer.class);
        job.setOutputKeyClass(outputInfo.outputKeyClass); //double
        job.setOutputValueClass(outputInfo.outputValueClass); //int
    }
    job.setPartitionerClass(TotalOrderPartitioner.class);

    //setup distributed cache
    DistributedCache.addCacheFile(partitionUri, job);
    DistributedCache.createSymlink(job);

    //setup replication factor
    job.setInt("dfs.replication", replication);

    MatrixCharacteristics[] s = new MatrixCharacteristics[1];
    s[0] = new MatrixCharacteristics(rlen, clen, brlen, bclen);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(s);

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    //run mr job
    RunningJob runjob = JobClient.runJob(job);
    Group group = runjob.getCounters().getGroup(NUM_VALUES_PREFIX);
    numReducers = job.getNumReduceTasks();

    //process final meta data
    long[] counts = new long[numReducers];
    long total = 0;
    for (int i = 0; i < numReducers; i++) {
        counts[i] = group.getCounter(Integer.toString(i));
        total += counts[i];
    }

    //add missing 0s back to the results
    long missing0s = 0;
    if (total < rlen * clen) {
        if (partitionWith0 < 0)
            throw new RuntimeException("no partition contains 0, which is wrong!");
        missing0s = rlen * clen - total;
        counts[partitionWith0] += missing0s;
    } else
        partitionWith0 = -1;

    if (sortIndexes) {
        //run builtin job for shifting partially sorted blocks according to global offsets
        //we do this in this custom form since it would not fit into the current structure
        //of systemml to output two intermediates (partially sorted data, offsets) out of a 
        //single SortKeys lop
        boolean success = runjob.isSuccessful();
        if (success) {
            success = runStitchupJob(tmpOutput, rlen, clen, brlen, bclen, counts, numReducers, replication,
                    output);
        }
        MapReduceTool.deleteFileIfExistOnHDFS(tmpOutput);
        MapReduceTool.deleteFileIfExistOnHDFS(pfname);
        return new JobReturn(s[0], OutputInfo.BinaryBlockOutputInfo, success);
    } else {
        MapReduceTool.deleteFileIfExistOnHDFS(pfname);
        return new JobReturn(s[0], counts, partitionWith0, missing0s, runjob.isSuccessful());
    }
}

From source file:com.ibm.bi.dml.runtime.matrix.SortMR.java

License:Open Source License

/**
 * /*ww w .j  a  va 2s  .  co m*/
 * @param input
 * @param rlen
 * @param clen
 * @param brlen
 * @param bclen
 * @param counts
 * @param numReducers
 * @param replication
 * @param output
 * @throws Exception
 */
private static boolean runStitchupJob(String input, long rlen, long clen, int brlen, int bclen, long[] counts,
        int numReducers, int replication, String output) throws Exception {
    JobConf job = new JobConf(SortMR.class);
    job.setJobName("SortIndexesMR");

    //setup input/output paths
    Path inpath = new Path(input);
    Path outpath = new Path(output);
    FileInputFormat.setInputPaths(job, inpath);
    FileOutputFormat.setOutputPath(job, outpath);
    MapReduceTool.deleteFileIfExistOnHDFS(outpath, job);

    //set number of reducers (1 if local mode)
    if (InfrastructureAnalyzer.isLocalMode(job))
        job.setNumReduceTasks(1);
    else
        MRJobConfiguration.setNumReducers(job, numReducers, numReducers);

    //setup input/output format
    InputInfo iinfo = InputInfo.BinaryBlockInputInfo;
    OutputInfo oinfo = OutputInfo.BinaryBlockOutputInfo;
    job.setInputFormat(iinfo.inputFormatClass);
    job.setOutputFormat(oinfo.outputFormatClass);
    CompactInputFormat.setKeyValueClasses(job, MatrixIndexes.class, MatrixBlock.class);

    //setup mapper/reducer/output classes
    MRJobConfiguration.setInputInfo(job, (byte) 0, InputInfo.BinaryBlockInputInfo, brlen, bclen,
            ConvertTarget.BLOCK);
    job.setMapperClass(IndexSortStitchupMapper.class);
    job.setReducerClass(IndexSortStitchupReducer.class);
    job.setOutputKeyClass(oinfo.outputKeyClass);
    job.setOutputValueClass(oinfo.outputValueClass);
    MRJobConfiguration.setBlockSize(job, (byte) 0, brlen, bclen);
    MRJobConfiguration.setMatricesDimensions(job, new byte[] { 0 }, new long[] { rlen }, new long[] { clen });

    //compute shifted prefix sum of offsets and put into configuration
    long[] cumsumCounts = new long[counts.length];
    long sum = 0;
    for (int i = 0; i < counts.length; i++) {
        cumsumCounts[i] = sum;
        sum += counts[i];
    }
    job.set(SORT_INDEXES_OFFSETS, Arrays.toString(cumsumCounts));

    //setup replication factor
    job.setInt("dfs.replication", replication);

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    //run mr job
    RunningJob runJob = JobClient.runJob(job);

    return runJob.isSuccessful();
}

From source file:com.ibm.bi.dml.runtime.matrix.WriteCSVMR.java

License:Open Source License

public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens,
        long[] clens, int[] brlens, int[] bclens, String csvWriteInstructions, int numReducers, int replication,
        byte[] resultIndexes, String[] outputs) throws Exception {
    JobConf job = new JobConf(WriteCSVMR.class);
    job.setJobName("WriteCSV-MR");

    byte[] realIndexes = new byte[inputs.length];
    for (byte b = 0; b < realIndexes.length; b++)
        realIndexes[b] = b;//from w  w  w. ja  v  a  2  s .  c o  m

    //set up the input files and their format information
    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, inputs, inputInfos, brlens, bclens, true,
            ConvertTarget.CSVWRITE);

    //set up the dimensions of input matrices
    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);

    //set up the block size
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    MRJobConfiguration.setCSVWriteInstructions(job, csvWriteInstructions);

    //set up the replication factor for the results
    job.setInt("dfs.replication", replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    long maxRlen = 0;
    for (long rlen : rlens)
        if (rlen > maxRlen)
            maxRlen = rlen;

    //set up the number of reducers (according to output size)
    int numRed = determineNumReducers(rlens, clens,
            ConfigurationManager.getConfig().getIntValue(DMLConfig.NUM_REDUCERS), (int) maxRlen);
    job.setNumReduceTasks(numRed);

    byte[] resultDimsUnknown = new byte[resultIndexes.length];
    MatrixCharacteristics[] stats = new MatrixCharacteristics[resultIndexes.length];
    OutputInfo[] outputInfos = new OutputInfo[outputs.length];
    HashMap<Byte, Integer> indexmap = new HashMap<Byte, Integer>();
    for (int i = 0; i < stats.length; i++) {
        indexmap.put(resultIndexes[i], i);
        resultDimsUnknown[i] = (byte) 0;
        stats[i] = new MatrixCharacteristics();
        outputInfos[i] = OutputInfo.CSVOutputInfo;
    }
    CSVWriteInstruction[] ins = MRInstructionParser.parseCSVWriteInstructions(csvWriteInstructions);
    for (CSVWriteInstruction in : ins)
        stats[indexmap.get(in.output)].set(rlens[in.input], clens[in.input], -1, -1);

    // Print the complete instruction
    if (LOG.isTraceEnabled())
        inst.printCompleteMRJobInstruction(stats);

    //set up what matrices are needed to pass from the mapper to reducer
    MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, "", "", csvWriteInstructions,
            resultIndexes);

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, true,
            true);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(CSVWriteMapper.class);
    job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
    job.setMapOutputValueClass(MatrixBlock.class);

    //configure reducer
    job.setReducerClass(CSVWriteReducer.class);
    job.setOutputKeyComparatorClass(TaggedFirstSecondIndexes.Comparator.class);
    job.setPartitionerClass(TaggedFirstSecondIndexes.FirstIndexRangePartitioner.class);
    //job.setOutputFormat(UnPaddedOutputFormat.class);

    MatrixCharacteristics[] inputStats = new MatrixCharacteristics[inputs.length];
    for (int i = 0; i < inputs.length; i++) {
        inputStats[i] = new MatrixCharacteristics(rlens[i], clens[i], brlens[i], bclens[i]);
    }

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    RunningJob runjob = JobClient.runJob(job);

    /* Process different counters */

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        // number of non-zeros
        stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }

    return new JobReturn(stats, outputInfos, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.transform.ApplyTfBBMR.java

License:Open Source License

public static JobReturn runJob(String inputPath, String rblkInst, String otherInst, String specPath,
        String mapsPath, String tmpPath, String outputPath, String partOffsetsFile,
        CSVFileFormatProperties inputDataProperties, long numRows, long numColsBefore, long numColsAfter,
        int replication, String headerLine) throws Exception {

    CSVReblockInstruction rblk = (CSVReblockInstruction) InstructionParser.parseSingleInstruction(rblkInst);

    long[] rlens = new long[] { numRows };
    long[] clens = new long[] { numColsAfter };
    int[] brlens = new int[] { rblk.brlen };
    int[] bclens = new int[] { rblk.bclen };
    byte[] realIndexes = new byte[] { rblk.input };
    byte[] resultIndexes = new byte[] { rblk.output };

    JobConf job = new JobConf(ApplyTfBBMR.class);
    job.setJobName("ApplyTfBB");

    /* Setup MapReduce Job */
    job.setJarByClass(ApplyTfBBMR.class);

    // set relevant classes
    job.setMapperClass(ApplyTfBBMapper.class);

    MRJobConfiguration.setUpMultipleInputs(job, realIndexes, new String[] { inputPath },
            new InputInfo[] { InputInfo.CSVInputInfo }, brlens, bclens, false, ConvertTarget.CELL);

    MRJobConfiguration.setMatricesDimensions(job, realIndexes, rlens, clens);
    MRJobConfiguration.setBlocksSizes(job, realIndexes, brlens, bclens);

    MRJobConfiguration.setCSVReblockInstructions(job, rblkInst);

    //set up the instructions that will happen in the reducer, after the aggregation instrucions
    MRJobConfiguration.setInstructionsInReducer(job, otherInst);

    job.setInt("dfs.replication", replication);

    //set up preferred custom serialization framework for binary block format
    if (MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION)
        MRJobConfiguration.addBinaryBlockSerializationFramework(job);

    //set up what matrices are needed to pass from the mapper to reducer
    HashSet<Byte> mapoutputIndexes = MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null,
            rblkInst, null, otherInst, resultIndexes);

    MatrixChar_N_ReducerGroups ret = MRJobConfiguration.computeMatrixCharacteristics(job, realIndexes, null,
            rblkInst, null, null, null, resultIndexes, mapoutputIndexes, false);

    //set up the number of reducers
    int numRed = WriteCSVMR.determineNumReducers(rlens, clens,
            ConfigurationManager.getConfig().getIntValue(DMLConfig.NUM_REDUCERS), ret.numReducerGroups);
    job.setNumReduceTasks(numRed);/*from w  ww  . jav a 2 s  . c om*/

    //set up the multiple output files, and their format information
    MRJobConfiguration.setUpMultipleOutputs(job, new byte[] { rblk.output }, new byte[] { 0 },
            new String[] { outputPath }, new OutputInfo[] { OutputInfo.BinaryBlockOutputInfo }, true, false);

    // configure mapper and the mapper output key value pairs
    job.setMapperClass(ApplyTfBBMapper.class);
    job.setMapOutputKeyClass(TaggedFirstSecondIndexes.class);
    job.setMapOutputValueClass(BlockRow.class);

    //configure reducer
    job.setReducerClass(CSVReblockReducer.class);

    //turn off adaptivemr
    job.setBoolean("adaptivemr.map.enable", false);

    //set unique working dir
    MRJobConfiguration.setUniqueWorkingDir(job);

    // Add transformation metadata file as well as partOffsetsFile to Distributed cache
    DistributedCache.addCacheFile((new Path(mapsPath)).toUri(), job);
    DistributedCache.createSymlink(job);

    Path cachefile = new Path(new Path(partOffsetsFile), "part-00000");
    DistributedCache.addCacheFile(cachefile.toUri(), job);
    DistributedCache.createSymlink(job);

    job.set(MRJobConfiguration.TF_HAS_HEADER, Boolean.toString(inputDataProperties.hasHeader()));
    job.set(MRJobConfiguration.TF_DELIM, inputDataProperties.getDelim());
    if (inputDataProperties.getNAStrings() != null)
        // Adding "dummy" string to handle the case of na_strings = ""
        job.set(MRJobConfiguration.TF_NA_STRINGS, TfUtils.prepNAStrings(inputDataProperties.getNAStrings()));
    job.set(MRJobConfiguration.TF_SPEC_FILE, specPath);
    job.set(MRJobConfiguration.TF_SMALLEST_FILE, CSVReblockMR.findSmallestFile(job, inputPath));
    job.set(MRJobConfiguration.OUTPUT_MATRICES_DIRS_CONFIG, outputPath);
    job.setLong(MRJobConfiguration.TF_NUM_COLS, numColsBefore);
    job.set(MRJobConfiguration.TF_TXMTD_PATH, mapsPath);
    job.set(MRJobConfiguration.TF_HEADER, headerLine);
    job.set(CSVReblockMR.ROWID_FILE_NAME, cachefile.toString());
    job.set(MRJobConfiguration.TF_TMP_LOC, tmpPath);

    RunningJob runjob = JobClient.runJob(job);

    MapReduceTool.deleteFileIfExistOnHDFS(cachefile, job);

    Group group = runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS);
    for (int i = 0; i < resultIndexes.length; i++) {
        ret.stats[i].setNonZeros(group.getCounter(Integer.toString(i)));
    }
    return new JobReturn(ret.stats, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.transform.ApplyTfCSVMR.java

License:Open Source License

public static JobReturn runJob(String inputPath, String specPath, String mapsPath, String tmpPath,
        String outputPath, String partOffsetsFile, CSVFileFormatProperties inputDataProperties, long numCols,
        int replication, String headerLine) throws IOException, ClassNotFoundException, InterruptedException {
    JobConf job = new JobConf(ApplyTfCSVMR.class);
    job.setJobName("ApplyTfCSV");

    /* Setup MapReduce Job */
    job.setJarByClass(ApplyTfCSVMR.class);

    // set relevant classes
    job.setMapperClass(ApplyTfCSVMapper.class);
    job.setNumReduceTasks(0);//from  w  w  w  .  j  ava2  s. c  o m

    // Add transformation metadata file as well as partOffsetsFile to Distributed cache
    DistributedCache.addCacheFile((new Path(mapsPath)).toUri(), job);
    DistributedCache.createSymlink(job);

    Path cachefile = new Path(partOffsetsFile);
    DistributedCache.addCacheFile(cachefile.toUri(), job);
    DistributedCache.createSymlink(job);

    // set input and output properties
    job.setInputFormat(TextInputFormat.class);
    job.setOutputFormat(TextOutputFormat.class);

    job.setMapOutputKeyClass(NullWritable.class);
    job.setMapOutputValueClass(Text.class);

    job.setOutputKeyClass(NullWritable.class);
    job.setOutputValueClass(Text.class);

    job.setInt("dfs.replication", replication);

    FileInputFormat.addInputPath(job, new Path(inputPath));
    // delete outputPath, if exists already.
    Path outPath = new Path(outputPath);
    FileSystem fs = FileSystem.get(job);
    fs.delete(outPath, true);
    FileOutputFormat.setOutputPath(job, outPath);

    job.set(MRJobConfiguration.TF_HAS_HEADER, Boolean.toString(inputDataProperties.hasHeader()));
    job.set(MRJobConfiguration.TF_DELIM, inputDataProperties.getDelim());
    if (inputDataProperties.getNAStrings() != null)
        // Adding "dummy" string to handle the case of na_strings = ""
        job.set(MRJobConfiguration.TF_NA_STRINGS, TfUtils.prepNAStrings(inputDataProperties.getNAStrings()));
    job.set(MRJobConfiguration.TF_SPEC_FILE, specPath);
    job.set(MRJobConfiguration.TF_SMALLEST_FILE, CSVReblockMR.findSmallestFile(job, inputPath));
    job.set(MRJobConfiguration.OUTPUT_MATRICES_DIRS_CONFIG, outputPath);
    job.setLong(MRJobConfiguration.TF_NUM_COLS, numCols);
    job.set(MRJobConfiguration.TF_TXMTD_PATH, mapsPath);
    job.set(MRJobConfiguration.TF_HEADER, headerLine);
    job.set(CSVReblockMR.ROWID_FILE_NAME, cachefile.toString());
    job.set(MRJobConfiguration.TF_TMP_LOC, tmpPath);

    //turn off adaptivemr
    job.setBoolean("adaptivemr.map.enable", false);

    // Run the job
    RunningJob runjob = JobClient.runJob(job);

    // Since transform CSV produces part files w/ prefix transform-part-*,
    // delete all the "default" part-..... files
    deletePartFiles(fs, outPath);

    MatrixCharacteristics mc = new MatrixCharacteristics();
    return new JobReturn(new MatrixCharacteristics[] { mc }, runjob.isSuccessful());
}

From source file:com.ibm.bi.dml.runtime.transform.GenTfMtdMR.java

License:Open Source License

public static long runJob(String inputPath, String txMtdPath, String specFileWithIDs, String smallestFile,
        String partOffsetsFile, CSVFileFormatProperties inputDataProperties, long numCols, int replication,
        String headerLine) throws IOException, ClassNotFoundException, InterruptedException {
    JobConf job = new JobConf(GenTfMtdMR.class);
    job.setJobName("GenTfMTD");

    /* Setup MapReduce Job */
    job.setJarByClass(GenTfMtdMR.class);

    // set relevant classes
    job.setMapperClass(GTFMTDMapper.class);
    job.setReducerClass(GTFMTDReducer.class);

    // set input and output properties
    job.setInputFormat(TextInputFormat.class);
    job.setOutputFormat(NullOutputFormat.class);

    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(DistinctValue.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);

    job.setInt("dfs.replication", replication);

    FileInputFormat.addInputPath(job, new Path(inputPath));
    // delete outputPath, if exists already.
    Path outPath = new Path(txMtdPath);
    FileSystem fs = FileSystem.get(job);
    fs.delete(outPath, true);/*from   w w  w .j a va2s. c om*/
    FileOutputFormat.setOutputPath(job, outPath);

    job.set(MRJobConfiguration.TF_HAS_HEADER, Boolean.toString(inputDataProperties.hasHeader()));
    job.set(MRJobConfiguration.TF_DELIM, inputDataProperties.getDelim());
    if (inputDataProperties.getNAStrings() != null)
        // Adding "dummy" string to handle the case of na_strings = ""
        job.set(MRJobConfiguration.TF_NA_STRINGS, TfUtils.prepNAStrings(inputDataProperties.getNAStrings()));
    job.set(MRJobConfiguration.TF_SPEC_FILE, specFileWithIDs);
    job.set(MRJobConfiguration.TF_SMALLEST_FILE, smallestFile);
    job.setLong(MRJobConfiguration.TF_NUM_COLS, numCols);
    job.set(MRJobConfiguration.TF_HEADER, headerLine);

    job.set(MRJobConfiguration.OUTPUT_MATRICES_DIRS_CONFIG, txMtdPath);

    // offsets file to store part-file names and offsets for each input split
    job.set(MRJobConfiguration.TF_OFFSETS_FILE, partOffsetsFile);

    //turn off adaptivemr
    job.setBoolean("adaptivemr.map.enable", false);

    // Run the job
    RunningJob runjob = JobClient.runJob(job);

    Counters c = runjob.getCounters();
    long tx_numRows = c.findCounter(MRJobConfiguration.DataTransformCounters.TRANSFORMED_NUM_ROWS).getCounter();

    return tx_numRows;
}

From source file:com.ibm.jaql.fail.io.ErrorInputConfigurator.java

License:Apache License

@Override
protected void set(JobConf conf) throws Exception {
    // TODO Auto-generated method stub
    super.set(conf);
    conf.set(ErrorInputFormat.ERROR_NAME, err.toString());
    conf.setInt(ErrorInputFormat.ERROR_NEXT_MAX, errorMax);
}

From source file:com.ibm.jaql.fail.io.ErrorOutputConfigurator.java

License:Apache License

@Override
public void setParallel(JobConf conf) throws Exception {
    // TODO Auto-generated method stub
    super.setParallel(conf);
    conf.set(ErrorOutputFormat.ERROR_NAME, err.toString());
    conf.setInt(ErrorOutputFormat.ERROR_NEXT_MAX, errMax);
}

From source file:com.ibm.jaql.fail.io.ErrorOutputConfigurator.java

License:Apache License

@Override
public void setSequential(JobConf conf) throws Exception {
    // TODO Auto-generated method stub
    super.setSequential(conf);
    conf.set(ErrorOutputFormat.ERROR_NAME, err.toString());
    conf.setInt(ErrorOutputFormat.ERROR_NEXT_MAX, errMax);
}