Example usage for org.apache.hadoop.mapred JobConf setInt

List of usage examples for org.apache.hadoop.mapred JobConf setInt

Introduction

In this page you can find the example usage for org.apache.hadoop.mapred JobConf setInt.

Prototype

public void setInt(String name, int value) 

Source Link

Document

Set the value of the name property to an int.

Usage

From source file:com.intel.hadoop.graphbuilder.idnormalize.mapreduce.HashIdMR.java

License:Open Source License

/**
 * @param inputpath/*from  ww  w . j  a v a2  s .  com*/
 *          the path to a unique vertex list. Each line is parsed into (vid,
 *          data) using {@code vidparser} and {@code vdataparser}.
 * @param outputpath
 *          the path of output directory.
 * @throws IOException
 */
public void run(String inputpath, String outputpath) throws IOException {
    JobConf conf = new JobConf(HashIdMR.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setMapperClass(HashIdMapper.class);
    conf.setReducerClass(HashIdReducer.class);

    conf.setInputFormat(NLineInputFormat.class);
    conf.setOutputFormat(MultiDirOutputFormat.class);

    conf.setInt("mapred.line.input.format.linespermap", linespermap);
    conf.set("GraphParser", graphparser.getClass().getName());
    conf.set("VidParser", vidparser.getClass().getName());
    conf.set("VdataParser", vdataparser.getClass().getName());

    FileInputFormat.setInputPaths(conf, new Path(inputpath));
    FileOutputFormat.setOutputPath(conf, new Path(outputpath));

    LOG.info("====== Job: Create integer Id maps for vertices ==========");
    LOG.info("Input = " + inputpath);
    LOG.info("Output = " + outputpath);
    LOG.debug("Lines per map = 6000000");
    LOG.debug("GraphParser = " + graphparser.getClass().getName());
    LOG.debug("VidParser = " + vidparser.getClass().getName());
    LOG.debug("VdataParser = " + vdataparser.getClass().getName());
    LOG.info("==========================================================");
    JobClient.runJob(conf);
    LOG.info("=======================Done =====================\n");
}

From source file:com.intel.hadoop.graphbuilder.idnormalize.mapreduce.SortDictMR.java

License:Open Source License

/**
 * @param inputpath//from   w w  w .  java 2 s . co  m
 *          the path to a rawId to newId dictionary.
 * @param outputpath
 *          the path of output directory.
 * @throws IOException
 */
public void run(String inputpath, String outputpath) throws IOException {

    JobConf conf = new JobConf(SortDictMR.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setMapperClass(SortDictMapper.class);
    conf.setReducerClass(SortDictReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);

    conf.setBoolean("hashRawVid", hashRawVid);
    conf.setInt("numChunks", numChunks);
    conf.set("VidParser", vidparser.getClass().getName());

    String outprefix = "vidhashmap";
    for (int i = 0; i < numChunks; i++) {
        MultipleOutputs.addNamedOutput(conf, outprefix + i, TextOutputFormat.class, Text.class, Text.class);
    }

    FileInputFormat.setInputPaths(conf, new Path(inputpath));
    FileOutputFormat.setOutputPath(conf, new Path(outputpath));

    LOG.info("========== Job: Partition the map of rawid -> id ===========");
    LOG.info("Input = " + inputpath);
    LOG.info("Output = " + outputpath);
    LOG.info("======================================================");
    if (hashRawVid)
        LOG.info("Partition on rawId.");
    else
        LOG.info("Partition on newId");
    LOG.debug("numChunks = " + numChunks);
    LOG.debug("VidParser = " + vidparser.getClass().getName());
    JobClient.runJob(conf);
    LOG.info("======================= Done ==========================\n");
}

From source file:com.intel.hadoop.graphbuilder.idnormalize.mapreduce.SortEdgeMR.java

License:Open Source License

public void run(String inputpath, String outputpath) throws IOException {

    JobConf conf = new JobConf(SortEdgeMR.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setOutputKeyClass(IntWritable.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapperClass(SortEdgeMapper.class);
    conf.setReducerClass(SortEdgeReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);

    conf.setInt("numChunks", numChunks);
    conf.set("GraphParser", graphparser.getClass().getName());
    conf.set("VidParser", vidparser.getClass().getName());
    conf.set("EdataParser", edataparser.getClass().getName());

    FileInputFormat.setInputPaths(conf, new Path(inputpath));
    FileOutputFormat.setOutputPath(conf, new Path(outputpath));

    LOG.info("==== Job: Partition the input edges by hash(sourceid) =========");
    LOG.info("Input = " + inputpath);
    LOG.info("Output = " + outputpath);
    LOG.debug("numChunks = " + numChunks);
    LOG.debug("GraphParser = " + graphparser.getClass().getName());
    LOG.debug("VidParser = " + vidparser.getClass().getName());
    LOG.debug("EdataParser = " + edataparser.getClass().getName());
    LOG.info("===============================================================");

    JobClient.runJob(conf);/*w w w  .  ja  va 2  s. c  o  m*/
    LOG.info("=================== Done ====================================\n");
}

From source file:com.intel.hadoop.graphbuilder.idnormalize.mapreduce.TransEdgeMR.java

License:Open Source License

/**
 * @param inputpath//from   ww w .j  a v  a 2 s. c o  m
 *          path of the partitioned edge list
 * @param outputpath
 *          path of the output directory
 * @throws IOException
 */
public void run(String inputpath, String outputpath) throws IOException {

    JobConf conf = new JobConf(TransEdgeMR.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setMapperClass(TransEdgeMapper.class);
    conf.setReducerClass(TransEdgeReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class);

    conf.setInt("numChunks", numChunks);
    conf.set("GraphParser", graphparser.getClass().getName());
    conf.set("VidParser", vidparser.getClass().getName());
    conf.set("EdataParser", edataparser.getClass().getName());

    conf.set("dictionaryPath", dictionaryPath);

    FileInputFormat.setInputPaths(conf, new Path(inputpath));
    FileOutputFormat.setOutputPath(conf, new Path(outputpath));

    LOG.info("============= Job: Normalize Ids in Edges ====================");
    LOG.info("Input = " + inputpath);
    LOG.info("Output = " + outputpath);
    LOG.info("Dictionary = " + dictionaryPath);
    LOG.debug("numChunks = " + numChunks);
    LOG.debug("GraphParser = " + graphparser.getClass().getName());
    LOG.debug("VidParser = " + vidparser.getClass().getName());
    LOG.debug("EdataParser = " + edataparser.getClass().getName());
    LOG.info("===============================================================");

    JobClient.runJob(conf);

    LOG.info("========================= Done ===============================");
}

From source file:com.kadwa.hadoop.DistExec.java

License:Open Source License

/**
 * Initialize ExecFilesMapper specific job-configuration.
 *
 * @param conf    : The dfs/mapred configuration.
 * @param jobConf : The handle to the jobConf object to be initialized.
 * @param args    Arguments/*from ww  w .  ja  v a  2  s .  c  o m*/
 * @return true if it is necessary to launch a job.
 */
private static boolean setup(Configuration conf, JobConf jobConf, final Arguments args) throws IOException {
    jobConf.set(DST_DIR_LABEL, args.dst.toUri().toString());
    jobConf.set(EXEC_CMD_LABEL, args.execCmd);

    //set boolean values
    jobConf.setBoolean(Options.REDIRECT_ERROR_TO_OUT.propertyname,
            args.flags.contains(Options.REDIRECT_ERROR_TO_OUT));

    final String randomId = getRandomId();
    JobClient jClient = new JobClient(jobConf);
    Path stagingArea;
    try {
        stagingArea = JobSubmissionFiles.getStagingDir(jClient, conf);
    } catch (InterruptedException e) {
        throw new IOException(e);
    }

    Path jobDirectory = new Path(stagingArea + NAME + "_" + randomId);
    FsPermission mapredSysPerms = new FsPermission(JobSubmissionFiles.JOB_DIR_PERMISSION);
    FileSystem.mkdirs(FileSystem.get(jobDirectory.toUri(), conf), jobDirectory, mapredSysPerms);
    jobConf.set(JOB_DIR_LABEL, jobDirectory.toString());

    FileSystem dstfs = args.dst.getFileSystem(conf);

    // get tokens for all the required FileSystems..
    TokenCache.obtainTokensForNamenodes(jobConf.getCredentials(), new Path[] { args.dst }, conf);

    boolean dstExists = dstfs.exists(args.dst);
    boolean dstIsDir = false;
    if (dstExists) {
        dstIsDir = dstfs.getFileStatus(args.dst).isDir();
    }

    // default logPath
    Path logPath = args.log;
    if (logPath == null) {
        String filename = "_" + NAME + "_logs_" + randomId;
        if (!dstExists || !dstIsDir) {
            Path parent = args.dst.getParent();
            if (!dstfs.exists(parent)) {
                dstfs.mkdirs(parent);
            }
            logPath = new Path(parent, filename);
        } else {
            logPath = new Path(args.dst, filename);
        }
    }
    FileOutputFormat.setOutputPath(jobConf, logPath);

    // create src list, dst list
    FileSystem jobfs = jobDirectory.getFileSystem(jobConf);

    Path srcfilelist = new Path(jobDirectory, "_" + NAME + "_src_files");
    jobConf.set(SRC_LIST_LABEL, srcfilelist.toString());
    SequenceFile.Writer src_writer = SequenceFile.createWriter(jobfs, jobConf, srcfilelist, LongWritable.class,
            FilePair.class, SequenceFile.CompressionType.NONE);

    Path dstfilelist = new Path(jobDirectory, "_" + NAME + "_dst_files");
    SequenceFile.Writer dst_writer = SequenceFile.createWriter(jobfs, jobConf, dstfilelist, Text.class,
            Text.class, SequenceFile.CompressionType.NONE);

    Path dstdirlist = new Path(jobDirectory, "_" + NAME + "_dst_dirs");
    jobConf.set(DST_DIR_LIST_LABEL, dstdirlist.toString());
    SequenceFile.Writer dir_writer = SequenceFile.createWriter(jobfs, jobConf, dstdirlist, Text.class,
            FilePair.class, SequenceFile.CompressionType.NONE);

    // handle the case where the destination directory doesn't exist
    // and we've only a single src directory.
    final boolean special = (args.srcs.size() == 1 && !dstExists);
    int srcCount = 0, cnsyncf = 0, dirsyn = 0;
    long fileCount = 0L, byteCount = 0L, cbsyncs = 0L;
    try {
        for (Iterator<Path> srcItr = args.srcs.iterator(); srcItr.hasNext();) {
            final Path src = srcItr.next();
            FileSystem srcfs = src.getFileSystem(conf);
            FileStatus srcfilestat = srcfs.getFileStatus(src);
            Path root = special && srcfilestat.isDir() ? src : src.getParent();
            if (srcfilestat.isDir()) {
                ++srcCount;
            }

            Stack<FileStatus> pathstack = new Stack<FileStatus>();
            for (pathstack.push(srcfilestat); !pathstack.empty();) {
                FileStatus cur = pathstack.pop();
                FileStatus[] children = srcfs.listStatus(cur.getPath());
                for (int i = 0; i < children.length; i++) {
                    boolean skipfile = false;
                    final FileStatus child = children[i];
                    final String dst = makeRelative(root, child.getPath());
                    ++srcCount;

                    if (child.isDir()) {
                        pathstack.push(child);
                    } else {

                        if (!skipfile) {
                            ++fileCount;
                            byteCount += child.getLen();

                            if (LOG.isTraceEnabled()) {
                                LOG.trace("adding file " + child.getPath());
                            }

                            ++cnsyncf;
                            cbsyncs += child.getLen();
                            if (cnsyncf > SYNC_FILE_MAX || cbsyncs > BYTES_PER_MAP) {
                                src_writer.sync();
                                dst_writer.sync();
                                cnsyncf = 0;
                                cbsyncs = 0L;
                            }
                        }
                    }

                    if (!skipfile) {
                        src_writer.append(new LongWritable(child.isDir() ? 0 : child.getLen()),
                                new FilePair(child, dst));
                    }

                    dst_writer.append(new Text(dst), new Text(child.getPath().toString()));
                }

                if (cur.isDir()) {
                    String dst = makeRelative(root, cur.getPath());
                    dir_writer.append(new Text(dst), new FilePair(cur, dst));
                    if (++dirsyn > SYNC_FILE_MAX) {
                        dirsyn = 0;
                        dir_writer.sync();
                    }
                }
            }
        }
    } finally {
        checkAndClose(src_writer);
        checkAndClose(dst_writer);
        checkAndClose(dir_writer);
    }

    FileStatus dststatus = null;
    try {
        dststatus = dstfs.getFileStatus(args.dst);
    } catch (FileNotFoundException fnfe) {
        LOG.info(args.dst + " does not exist.");
    }

    // create dest path dir if copying > 1 file
    if (dststatus == null) {
        if (srcCount > 1 && !dstfs.mkdirs(args.dst)) {
            throw new IOException("Failed to create" + args.dst);
        }
    }

    final Path sorted = new Path(jobDirectory, "_" + NAME + "_sorted");
    checkDuplication(jobfs, dstfilelist, sorted, conf);

    Path tmpDir = new Path(
            (dstExists && !dstIsDir) || (!dstExists && srcCount == 1) ? args.dst.getParent() : args.dst,
            "_" + NAME + "_tmp_" + randomId);
    jobConf.set(TMP_DIR_LABEL, tmpDir.toUri().toString());
    LOG.info("sourcePathsCount=" + srcCount);
    LOG.info("filesToExecCount=" + fileCount);
    LOG.info("bytesToExecCount=" + StringUtils.humanReadableInt(byteCount));
    jobConf.setInt(SRC_COUNT_LABEL, srcCount);
    jobConf.setLong(TOTAL_SIZE_LABEL, byteCount);
    setMapCount(fileCount, jobConf);
    return fileCount > 0;
}

From source file:com.linkedin.mlease.regression.jobs.ItemModelTest.java

License:Open Source License

@Override
public void run() throws Exception {
    JobConfig props = super.getJobConfig();
    List<String> lambdastr = props.getStringList(LAMBDA, ",");
    String outBasePath = props.getString(OUTPUT_BASE_PATH);
    for (String lambda : lambdastr) {
        String outPath = outBasePath + "/lambda-" + lambda;
        props.put("output.path", outPath);
        JobConf conf = createJobConf(PerItemTestMapper.class, PerItemTestReducer.class);
        AvroUtils.addAvroCacheFilesAndSetTheProperty(conf, new Path(props.get(MODEL_PATH)), MODEL_PATH);
        conf.set(ITEM_KEY, props.getString(ITEM_KEY));
        conf.setFloat(LAMBDA, Float.parseFloat(lambda));
        conf.setBoolean(BINARY_FEATURE, props.getBoolean(BINARY_FEATURE, false));
        conf.setPartitionerClass(PerItemTestPartitioner.class);
        conf.setInt(NUM_REDUCERS, conf.getNumReduceTasks());
        AvroUtils.runAvroJob(conf);/*from w  w  w  .j  a v a  2 s .  co m*/
    }
}

From source file:com.linkedin.mlease.regression.jobs.RegressionAdmmTrain.java

License:Open Source License

@Override
public void run() throws Exception {
    _logger.info("Now running Regression Train using ADMM...");
    JobConfig props = super.getJobConfig();
    String outBasePath = props.getString(OUTPUT_BASE_PATH);
    JobConf conf = super.createJobConf();

    // Various configs
    int nblocks = props.getInt(NUM_BLOCKS);
    int niter = props.getInt(NUM_ITERS, 10);
    //Aggressive decay of liblinear_epsilon
    boolean aggressiveLiblinearEpsilonDecay = props.getBoolean(AGGRESSIVE_LIBLINEAR_EPSILON_DECAY, false);
    // Getting the value of the regularizer L1/L2
    int reg = props.getInt(REGULARIZER);
    if ((reg != 1) && (reg != 2)) {
        throw new IOException("Only L1 and L2 regularization supported!");
    }/*from w ww.jav a2s.com*/
    int numClickReplicates = props.getInt(NUM_CLICK_REPLICATES, 1);
    boolean ignoreValue = props.getBoolean(BINARY_FEATURE, false);
    float initializeBoostRate = props.getFloat(INITIALIZE_BOOST_RATE, 0);
    float rhoAdaptCoefficient = props.getFloat(RHO_ADAPT_COEFFICIENT, 0);

    // handling lambda and rho
    // initialize z and u and compute z-u and write to hadoop
    Map<String, LinearModel> z = new HashMap<String, LinearModel>(); // lambda ->
    List<String> lambdastr = props.getStringList(LAMBDA, ",");
    List<String> rhostr = props.getStringList(RHO, null, ",");
    if (rhostr != null) {
        if (rhostr.size() != lambdastr.size())
            throw new IOException(
                    "The number of rho's should be exactly the same as the number of lambda's. OR: don't claim rho!");
    }
    Map<Float, Float> lambdaRho = new HashMap<Float, Float>();
    for (int j = 0; j < lambdastr.size(); j++) {
        float lambda = Float.parseFloat(lambdastr.get(j));
        float rho;
        if (rhostr != null) {
            rho = Float.parseFloat(rhostr.get(j));
        } else {
            if (lambda <= 100) {
                rho = 1;
            } else {
                rho = 10;
            }
        }
        lambdaRho.put(lambda, rho);
        z.put(String.valueOf(lambda), new LinearModel());
    }

    // Get specific lambda treatment for some features
    String lambdaMapPath = props.getString(LAMBDA_MAP, "");
    Map<String, Float> lambdaMap = new HashMap<String, Float>();
    if (!lambdaMapPath.equals("")) {
        AvroHdfsFileReader reader = new AvroHdfsFileReader(conf);
        ReadLambdaMapConsumer consumer = new ReadLambdaMapConsumer();
        reader.build(lambdaMapPath, consumer);
        consumer.done();
        lambdaMap = consumer.get();
    }
    _logger.info("Lambda Map has size = " + String.valueOf(lambdaMap.size()));
    // Write lambda_rho mapping into file
    String rhoPath = outBasePath + "/lambda-rho/part-r-00000.avro";
    writeLambdaRho(conf, rhoPath, lambdaRho);

    // test-loglik computation
    boolean testLoglikPerIter = props.getBoolean(TEST_LOGLIK_PER_ITER, false);
    DataFileWriter<GenericRecord> testRecordWriter = null;
    // test if the test file exists
    String testPath = props.getString(TEST_PATH, "");
    testLoglikPerIter = Util.checkPath(testPath);
    if (testLoglikPerIter) {
        List<Path> testPathList = AvroUtils.enumerateFiles(conf, new Path(testPath));
        if (testPathList.size() > 0) {
            testPath = testPathList.get(0).toString();
            _logger.info("Sample test path = " + testPath);

            AvroHdfsFileWriter<GenericRecord> writer = new AvroHdfsFileWriter<GenericRecord>(conf,
                    outBasePath + "/sample-test-loglik/write-test-00000.avro", SampleTestLoglik.SCHEMA$);
            testRecordWriter = writer.get();
        }
    }
    if (testRecordWriter == null) {
        testLoglikPerIter = false;
        _logger.info(
                "test.loglik.per.iter=false or test path doesn't exist or is empty! So we will not output test loglik per iteration.");
    } else {
        testRecordWriter.close();
    }

    MutableFloat bestTestLoglik = new MutableFloat(-9999999);
    //Initialize z by mean model 
    if (initializeBoostRate > 0 && reg == 2) {
        _logger.info("Now start mean model initializing......");
        // Different paths for L1 vs L2 set from job file
        String initalModelPath;
        initalModelPath = outBasePath + "/initialModel";

        Path initalModelPathFromNaiveTrain = new Path(outBasePath, "models");
        JobConfig propsIni = JobConfig.clone(props);
        if (!propsIni.containsKey(LIBLINEAR_EPSILON)) {
            propsIni.put(LIBLINEAR_EPSILON, 0.01);
        }
        propsIni.put(RegressionNaiveTrain.HEAVY_PER_ITEM_TRAIN, "true");
        propsIni.put(LAMBDA_MAP, lambdaMapPath);
        propsIni.put(REMOVE_TMP_DIR, "false");

        // run job
        RegressionNaiveTrain initializationJob = new RegressionNaiveTrain(
                super.getJobId() + "_ADMMInitialization", propsIni);
        initializationJob.run();

        FileSystem fs = initalModelPathFromNaiveTrain.getFileSystem(conf);
        if (fs.exists(new Path(initalModelPath))) {
            fs.delete(new Path(initalModelPath), true);
        }
        fs.rename(initalModelPathFromNaiveTrain, new Path(initalModelPath));
        // set up lambda
        Set<Float> lambdaSet = new HashSet<Float>();
        for (String l : lambdastr) {
            lambdaSet.add(Float.parseFloat(l));
        }
        // Compute Mean model as initial model
        z = LinearModelUtils.meanModel(conf, initalModelPath, nblocks, lambdaSet.size(), true);

        if (testLoglikPerIter) {
            updateLogLikBestModel(conf, 0, z, testPath, ignoreValue, bestTestLoglik, outBasePath,
                    numClickReplicates);
        }
    }

    double mindiff = 99999999;
    float liblinearEpsilon = 0.01f;
    int i;
    for (i = 1; i <= niter; i++) {
        _logger.info("Now starting iteration " + String.valueOf(i));
        // set up configuration
        props.put(AbstractAvroJob.OUTPUT_PATH, outBasePath + "/iter-" + String.valueOf(i));
        conf = createJobConf(AdmmMapper.class, AdmmReducer.class,
                Pair.getPairSchema(Schema.create(Type.INT), RegressionPrepareOutput.SCHEMA$),
                RegressionTrainOutput.SCHEMA$);
        conf.setPartitionerClass(AdmmPartitioner.class);
        //AvroUtils.setSpecificReducerInput(conf, true);
        conf.setInt(NUM_BLOCKS, nblocks);
        //Added for L1/L2
        conf.setInt(REGULARIZER, reg);
        conf.setLong(REPORT_FREQUENCY, props.getLong(REPORT_FREQUENCY, 1000000));
        //boolean ignoreValue = props.getBoolean(BINARY_FEATURE, false);
        conf.setBoolean(BINARY_FEATURE, ignoreValue);
        conf.setBoolean(SHORT_FEATURE_INDEX, props.getBoolean(SHORT_FEATURE_INDEX, false));

        boolean penalizeIntercept = props.getBoolean(PENALIZE_INTERCEPT, false);
        String interceptKey = props.getString(INTERCEPT_KEY, LibLinearDataset.INTERCEPT_NAME);
        conf.set(INTERCEPT_KEY, interceptKey);
        //int schemaType = props.getInt(SCHEMA_TYPE, 1);

        // compute and store u into file
        // u = uplusx - z
        String uPath = outBasePath + "/iter-" + String.valueOf(i) + "/u/part-r-00000.avro";
        if (i == 1) {
            LinearModelUtils.writeLinearModel(conf, uPath, new HashMap<String, LinearModel>());
            if (initializeBoostRate > 0 && reg == 2) {

                conf.setFloat(RHO_ADAPT_RATE, initializeBoostRate);
            }
        } else {
            String uplusxPath = outBasePath + "/iter-" + String.valueOf(i - 1) + "/model";
            computeU(conf, uPath, uplusxPath, z);
            if (rhoAdaptCoefficient > 0) {
                float curRhoAdaptRate = (float) Math.exp(-(i - 1) * rhoAdaptCoefficient);
                conf.setFloat(RHO_ADAPT_RATE, curRhoAdaptRate);
            }
        }
        // write z into file
        String zPath = outBasePath + "/iter-" + String.valueOf(i) + "/init-value/part-r-00000.avro";
        LinearModelUtils.writeLinearModel(conf, zPath, z);

        // run job
        String outpath = outBasePath + "/iter-" + String.valueOf(i) + "/model";
        conf.set(U_PATH, uPath);
        conf.set(INIT_VALUE_PATH, zPath);
        conf.set(LAMBDA_RHO_MAP, rhoPath);
        if (i > 1 && mindiff < 0.001 && !aggressiveLiblinearEpsilonDecay) // need to get a more accurate estimate from liblinear
        {
            liblinearEpsilon = liblinearEpsilon / 10;
        } else if (aggressiveLiblinearEpsilonDecay && i > 5) {
            liblinearEpsilon = liblinearEpsilon / 10;
        }
        conf.setFloat(LIBLINEAR_EPSILON, liblinearEpsilon);
        //Added for logging aggressive decay
        _logger.info("Liblinear Epsilon for iter = " + String.valueOf(i) + " is: "
                + String.valueOf(liblinearEpsilon));
        _logger.info("aggressiveLiblinearEpsilonDecay=" + aggressiveLiblinearEpsilonDecay);
        AvroOutputFormat.setOutputPath(conf, new Path(outpath));
        AvroUtils.addAvroCacheFiles(conf, new Path(uPath));
        AvroUtils.addAvroCacheFiles(conf, new Path(zPath));
        AvroUtils.addAvroCacheFiles(conf, new Path(rhoPath));
        conf.setNumReduceTasks(nblocks * lambdastr.size());
        AvroJob.setInputSchema(conf, RegressionPrepareOutput.SCHEMA$);
        AvroUtils.runAvroJob(conf);
        // Load the result from the last iteration
        // compute z and u given x

        Map<String, LinearModel> xbar = LinearModelUtils.meanModel(conf, outpath, nblocks, lambdaRho.size(),
                true);
        Map<String, LinearModel> ubar = LinearModelUtils.meanModel(conf, uPath, nblocks, lambdaRho.size(),
                false);
        Map<String, LinearModel> lastz = new HashMap<String, LinearModel>();
        for (String k : z.keySet()) {
            lastz.put(k, z.get(k).copy());
        }
        for (String lambda : xbar.keySet()) {
            LinearModel thisz = z.get(lambda);
            thisz.clear();
            float l = Float.parseFloat(lambda);
            float r = lambdaRho.get(l);
            double weight;
            //L2 regularization
            if (reg == 2) {
                _logger.info("Running code for regularizer = " + String.valueOf(reg));
                weight = nblocks * r / (l + nblocks * r);
                Map<String, Double> weightmap = new HashMap<String, Double>();
                for (String k : lambdaMap.keySet()) {
                    weightmap.put(k, nblocks * r / (lambdaMap.get(k) + nblocks * r + 0.0));
                }
                thisz.linearCombine(1.0, weight, xbar.get(lambda), weightmap);
                if (!ubar.isEmpty()) {
                    thisz.linearCombine(1.0, weight, ubar.get(lambda), weightmap);
                }
                if (!penalizeIntercept) {
                    if (ubar.isEmpty()) {
                        thisz.setIntercept(xbar.get(lambda).getIntercept());
                    } else {
                        thisz.setIntercept(xbar.get(lambda).getIntercept() + ubar.get(lambda).getIntercept());
                    }
                }
                z.put(lambda, thisz);
            } else {
                // L1 regularization

                _logger.info("Running code for regularizer = " + String.valueOf(reg));
                weight = l / (r * nblocks + 0.0);
                Map<String, Double> weightmap = new HashMap<String, Double>();
                for (String k : lambdaMap.keySet()) {
                    weightmap.put(k, lambdaMap.get(k) / (r * nblocks + 0.0));
                }
                // LinearModel thisz = new LinearModel();
                thisz.linearCombine(1.0, 1.0, xbar.get(lambda));
                if (!ubar.isEmpty()) {
                    thisz.linearCombine(1.0, 1.0, ubar.get(lambda));
                }
                // Iterative Thresholding
                Map<String, Double> thisCoefficients = thisz.getCoefficients();
                for (String k : thisCoefficients.keySet()) {
                    double val = thisCoefficients.get(k);
                    if (val > weight) {
                        thisCoefficients.put(k, val - weight);
                    } else if (val < -weight) {
                        thisCoefficients.put(k, val + weight);
                    }
                }
                thisz.setCoefficients(thisCoefficients);
                if (!penalizeIntercept) {
                    if (ubar.isEmpty()) {
                        thisz.setIntercept(xbar.get(lambda).getIntercept());
                    } else {
                        thisz.setIntercept(xbar.get(lambda).getIntercept() + ubar.get(lambda).getIntercept());
                    }
                }
                z.put(lambda, thisz);
            }
        }
        xbar.clear();
        ubar.clear();
        // Output max difference between last z and this z
        mindiff = 99999999;
        double maxdiff = 0;
        for (String k : z.keySet()) {
            LinearModel tmp = lastz.get(k);
            if (tmp == null)
                tmp = new LinearModel();
            tmp.linearCombine(1, -1, z.get(k));
            double diff = tmp.maxAbsValue();
            _logger.info(
                    "For lambda=" + k + ": Max Difference between last z and this z = " + String.valueOf(diff));
            tmp.clear();
            if (mindiff > diff)
                mindiff = diff;
            if (maxdiff < diff)
                maxdiff = diff;
        }
        double epsilon = props.getDouble(EPSILON, 0.0001);
        // remove tmp files?
        if (props.getBoolean(REMOVE_TMP_DIR, false) && i >= 2) {
            FileSystem fs = FileSystem.get(conf);
            fs.delete(new Path(outBasePath + "/iter-" + String.valueOf(i - 1)), true);
        }
        // Output testloglik and update best model
        if (testLoglikPerIter) {
            updateLogLikBestModel(conf, i, z, testPath, ignoreValue, bestTestLoglik, outBasePath,
                    numClickReplicates);
        }

        if (maxdiff < epsilon && liblinearEpsilon <= 0.00001) {
            break;
        }
    }

    // write z into file
    String zPath = outBasePath + "/final-model/part-r-00000.avro";
    LinearModelUtils.writeLinearModel(conf, zPath, z);
    // remove tmp files?
    if (props.getBoolean(REMOVE_TMP_DIR, false)) {
        FileSystem fs = FileSystem.get(conf);
        Path initalModelPath = new Path(outBasePath + "/initialModel");
        if (fs.exists(initalModelPath)) {
            fs.delete(initalModelPath, true);
        }
        for (int j = i - 2; j <= i; j++) {
            Path deletepath = new Path(outBasePath + "/iter-" + String.valueOf(j));
            if (fs.exists(deletepath)) {
                fs.delete(deletepath, true);
            }
        }
        fs.delete(new Path(outBasePath + "/tmp-data"), true);
    }

}

From source file:com.linkedin.mlease.regression.jobs.RegressionNaiveTrain.java

License:Open Source License

@Override
public void run() throws Exception {
    JobConfig props = super.getJobConfig();
    String outBasePath = props.getString(OUTPUT_BASE_PATH);
    boolean heavyPerItemTrain = props.getBoolean(HEAVY_PER_ITEM_TRAIN, false);

    String partitionIdPath = "";
    if (heavyPerItemTrain) {
        partitionIdPath = outBasePath + "/partitionIds";
        props.put(AbstractAvroJob.OUTPUT_PATH, partitionIdPath);
        JobConf conf = createJobConf(PartitionIdAssignerMapper.class, PartitionIdAssignerReducer.class,
                PartitionIdAssignerCombiner.class,
                Pair.getPairSchema(Schema.create(Type.STRING), Schema.create(Type.INT)),
                Pair.getPairSchema(Schema.create(Type.STRING), Schema.create(Type.INT)));
        conf.set(LAMBDA, props.getString(LAMBDA));
        AvroJob.setInputSchema(conf, RegressionPrepareOutput.SCHEMA$);
        conf.setNumReduceTasks(1);//from   w ww .  j  a  va2s .c o m
        AvroUtils.runAvroJob(conf);
    }
    _logger.info("Start training per-key naive logistic regression model...");
    String outpath = outBasePath + "/models";
    props.put(AbstractAvroJob.OUTPUT_PATH, outpath);
    JobConf conf = createJobConf(NaiveMapper.class, NaiveReducer.class,
            Pair.getPairSchema(Schema.create(Type.STRING), RegressionPrepareOutput.SCHEMA$),
            LinearModelAvro.SCHEMA$);
    // set up conf
    boolean computeModelMean = props.getBoolean(COMPUTE_MODEL_MEAN, true);
    int nblocks = -1;
    if (computeModelMean) {
        nblocks = props.getInt(NUM_BLOCKS);
        conf.setInt(NUM_BLOCKS, nblocks);
    }
    List<String> lambdastr = props.getStringList(LAMBDA, ",");
    conf.set(LAMBDA, props.getString(LAMBDA));
    conf.setFloat(PRIOR_MEAN, props.getFloat(PRIOR_MEAN, 0.0));
    conf.setBoolean(PENALIZE_INTERCEPT, props.getBoolean(PENALIZE_INTERCEPT, false));
    conf.setBoolean(HAS_INTERCEPT, props.getBoolean(HAS_INTERCEPT, true));
    conf.set(INTERCEPT_KEY, props.getString(INTERCEPT_KEY, LIBLINEAR_INTERCEPT_KEY));
    conf.setLong(REPORT_FREQUENCY, props.getLong(REPORT_FREQUENCY, 1000000));
    boolean removeTmpDir = props.getBoolean(REMOVE_TMP_DIR, true);
    conf.setFloat(LIBLINEAR_EPSILON, props.getFloat(LIBLINEAR_EPSILON, 0.001f));
    String lambdaMap = props.getString(LAMBDA_MAP, "");
    conf.set(LAMBDA_MAP, lambdaMap);
    if (!lambdaMap.equals("")) {
        AvroUtils.addAvroCacheFiles(conf, new Path(lambdaMap));
    }
    conf.setBoolean(BINARY_FEATURE, props.getBoolean(BINARY_FEATURE, false));
    conf.setBoolean(SHORT_FEATURE_INDEX, props.getBoolean(SHORT_FEATURE_INDEX, false));
    // set up lambda
    Set<Float> lambdaSet = new HashSet<Float>();
    for (String l : lambdastr) {
        lambdaSet.add(Float.parseFloat(l));
    }

    conf.setInt(DATA_SIZE_THRESHOLD, props.getInt(DATA_SIZE_THRESHOLD, 0));
    // set up partition id
    if (heavyPerItemTrain && !partitionIdPath.equals("")) {
        conf.set(PARTITION_ID_PATH, partitionIdPath);
        AvroHdfsFileReader reader = new AvroHdfsFileReader(conf);
        ReadPartitionIdAssignmentConsumer consumer = new ReadPartitionIdAssignmentConsumer();
        reader.build(partitionIdPath, consumer);
        Map<String, Integer> partitionIdMap = consumer.get();
        int maxPartitionId = 0;
        for (int v : partitionIdMap.values()) {
            if (v > maxPartitionId) {
                maxPartitionId = v;
            }
        }
        AvroUtils.addAvroCacheFiles(conf, new Path(partitionIdPath));
        conf.setNumReduceTasks(maxPartitionId + 1);
        conf.setPartitionerClass(NaivePartitioner.class);
    }
    // run job
    AvroJob.setInputSchema(conf, RegressionPrepareOutput.SCHEMA$);
    AvroUtils.runAvroJob(conf);
    // Compute Mean
    if (computeModelMean) {
        Map<String, LinearModel> betabar = LinearModelUtils.meanModel(conf, outpath, nblocks, lambdaSet.size(),
                true);
        // Output the mean for each lambda
        // write z into file
        String finalOutPath = outBasePath + "/final-model/part-r-00000.avro";
        LinearModelUtils.writeLinearModel(conf, finalOutPath, betabar);
    }
    // remove tmp dir
    if (removeTmpDir) {
        FileSystem fs = FileSystem.get(conf);
        fs.delete(new Path(outBasePath + "/tmp-data"), true);
    }
}

From source file:com.linkedin.mlease.regression.jobs.RegressionPrepare.java

License:Open Source License

@Override
public void run() throws Exception {
    JobConfig config = super.getJobConfig();
    JobConf conf = super.createJobConf(RegressionPrepareMapper.class, RegressionPrepareOutput.SCHEMA$);
    String mapKey = config.getString(MAP_KEY, "");
    conf.set(MAP_KEY, mapKey);// www . j  a va  2  s. com
    conf.setInt(NUM_CLICK_REPLICATES, config.getInt(NUM_CLICK_REPLICATES, 1));
    conf.setBoolean(IGNORE_FEATURE_VALUE, config.getBoolean(IGNORE_FEATURE_VALUE, false));
    int nblocks = config.getInt(NUM_BLOCKS, 0);
    conf.setInt(NUM_BLOCKS, nblocks);
    _logger.info("Running the preparation job of admm with map.key = " + mapKey + " and num.blocks=" + nblocks);
    AvroUtils.runAvroJob(conf);
}

From source file:com.m6d.filecrush.crush.CrushOptionParsingTest.java

License:Apache License

@Before
public void before() throws IOException {
    crush = new Crush();

    JobConf job = new JobConf(false);
    crush.setConf(job);//from   w w  w . j  av a2s . co  m

    job.set("fs.default.name", "file:///");
    job.set("fs.file.impl", "org.apache.hadoop.fs.LocalFileSystem");
    job.setInt("mapreduce.job.reduces", 20);
    job.setLong("dfs.blocksize", 1024 * 1024 * 64);

    FileSystem fs = FileSystem.get(job);
    fs.setWorkingDirectory(new Path(tmp.getRoot().getAbsolutePath()));

    crush.setFileSystem(fs);
}