List of usage examples for org.apache.commons.lang ArrayUtils toObject
public static Boolean[] toObject(boolean[] array)
Converts an array of primitive booleans to objects.
From source file:org.dkpro.tc.ml.report.util.ScatterplotRenderer.java
private double getMax(double[] values) { return Collections.max(Arrays.asList(ArrayUtils.toObject(values))); }
From source file:org.drugis.addis.util.convertors.NetworkMetaAnalysisConverter.java
private static ConsistencyResults convertConsistencyResults(NetworkMetaAnalysis ma) { ConsistencyResults results = new ConsistencyResults(); ConsistencyWrapper model = ma.getConsistencyModel(); if (model.isApproved()) { results.setMcmcSettings(convertMCMCSettings(model)); convertParameterSummaries(ma, model, results.getSummary()); results.setRelativeEffectsQuantileSummary(convertRelativeEffectQuantileSummaries(ma, model)); RelativeEffectsSummary relativeEffectSummary = new RelativeEffectsSummary(); List<Double> list = relativeEffectSummary.getCovariance(); double[][] matrix = model.getRelativeEffectsSummary().getCovarianceMatrix(); for (int row = 0; row < matrix.length; ++row) { for (int col = row; col < matrix.length; ++col) { list.add(matrix[row][col]); }/* w w w . j a v a 2 s .c o m*/ } List<Double> meanVector = Arrays .asList(ArrayUtils.toObject(model.getRelativeEffectsSummary().getMeanVector())); relativeEffectSummary.getMeans().addAll(meanVector); results.setRelativeEffectsSummary(relativeEffectSummary); RankProbabilitySummary rankProbabilities = model.getRankProbabilities(); int rankProababilitySize = rankProbabilities.getTreatments().size(); for (int row = 0; row < rankProababilitySize; ++row) { for (int col = 0; col < rankProababilitySize; ++col) { results.getRankProbabilitySummary() .add(rankProbabilities.getValue(rankProbabilities.getTreatments().get(col), row + 1)); } } return results; } return null; }
From source file:org.drugis.addis.util.jaxb.NetworkMetaAnalysisConverter.java
private static ConsistencyResults convertConsistencyResults(NetworkMetaAnalysis ma) { ConsistencyResults results = new ConsistencyResults(); ConsistencyWrapper<TreatmentDefinition> model = ma.getConsistencyModel(); if (model.isApproved()) { results.setMcmcSettings(convertMCMCSettings(model)); convertParameterSummaries(ma, model, results.getSummary()); results.setRelativeEffectsQuantileSummary(convertRelativeEffectQuantileSummaries(ma, model)); RelativeEffectsSummary relativeEffectSummary = new RelativeEffectsSummary(); List<Double> list = relativeEffectSummary.getCovariance(); double[][] matrix = model.getRelativeEffectsSummary().getCovarianceMatrix(); for (int row = 0; row < matrix.length; ++row) { for (int col = row; col < matrix.length; ++col) { list.add(matrix[row][col]); }/*from w w w .j av a 2 s .co m*/ } List<Double> meanVector = Arrays .asList(ArrayUtils.toObject(model.getRelativeEffectsSummary().getMeanVector())); relativeEffectSummary.getMeans().addAll(meanVector); results.setRelativeEffectsSummary(relativeEffectSummary); RankProbabilitySummary rankProbabilities = model.getRankProbabilities(); int rankProababilitySize = rankProbabilities.getTreatments().size(); for (int row = 0; row < rankProababilitySize; ++row) { for (int col = 0; col < rankProababilitySize; ++col) { results.getRankProbabilitySummary() .add(rankProbabilities.getValue(rankProbabilities.getTreatments().get(col), row + 1)); } } return results; } return null; }
From source file:org.eclipse.january.dataset.OutlierCorrectnessTest.java
@Before public void setUp() throws Exception { Random.seed(2468);//w w w . ja v a 2s .c o m dataNormal = Random.randn(1.0, 1.0, new int[] { 6 }); dataNormal.sort(null); dataOneToFour = DatasetFactory .createFromList(Arrays.asList(ArrayUtils.toObject(new double[] { 1, 2, 3, 4 }))); System.out.println("Normal data " + dataNormal.toString(true)); System.out.println("data 1-4 " + dataOneToFour.toString(true)); }
From source file:org.eclipse.triquetrum.scisoft.analysis.rpc.flattening.FlatteningTestAbstract.java
@Test public void testPrimitiveArrays() { int[] ints = { 1, 5, -7 }; flattenAndUnflatten(ints);/*from w w w .j a va 2 s .co m*/ flattenAndUnflatten(ArrayUtils.toObject(ints), ints); double[] doubles = { 1.4, 12.6, 0 }; flattenAndUnflatten(doubles); flattenAndUnflatten(ArrayUtils.toObject(doubles), doubles); boolean[] booleans = { true, false, false, true }; flattenAndUnflatten(booleans); flattenAndUnflatten(ArrayUtils.toObject(booleans), booleans); double[][] doubles2d = { { 1, 5, -7 }, { 1.4, 12.6, 0 } }; flattenAndUnflatten(doubles2d, new double[][] { doubles2d[0], doubles2d[1] }); flattenAndUnflatten(new double[][] { doubles2d[0], doubles2d[1] }); }
From source file:org.eclipse.triquetrum.scisoft.analysis.rpc.flattening.helpers.PrimitiveArrayHelper.java
@Override public Object flatten(Object obj, IRootFlattener rootFlattener) { if (obj instanceof int[]) { return ArrayUtils.toObject((int[]) obj); } else if (obj instanceof boolean[]) { return ArrayUtils.toObject((boolean[]) obj); } else if (obj instanceof double[]) { return ArrayUtils.toObject((double[]) obj); }//from w w w .ja v a2s . c o m throw new AssertionError(); }
From source file:org.eclipse.wb.internal.core.model.property.editor.IntegerArrayPropertyEditor.java
@Override public String getText(Property property) throws Exception { Object value = property.getValue(); if (value instanceof int[]) { int[] array = (int[]) value; return StringUtils.join(ArrayUtils.toObject(array), ' '); }/*w ww .ja v a 2 s . c o m*/ return null; }
From source file:org.eclipse.wb.internal.xwt.model.widgets.SashFormInfo.java
/** * Sets the "weights" attribute.// w w w. java 2s .c o m */ private void setWeights(int[] weights) throws Exception { String weightsString = StringUtils.join(ArrayUtils.toObject(weights), ", "); getCreationSupport().getElement().setAttribute("weights", weightsString); }
From source file:org.epochx.ge.model.epox.EvenParity.java
/** * Calculates the fitness score for the given program. The fitness of a * program for the even-parity problem is calculated by evaluating it * using each of the possible sets of input values. There are * <code>2^noInputBits</code> possible sets of inputs. The fitness of the * program is the quantity of those input sequences that the program * returned an incorrect response for. That is, a fitness value of * <code>0.0</code> indicates the program responded correctly for every * possible set of input values.//from w w w.j a v a2s . c o m * * @param p {@inheritDoc} * @return the calculated fitness for the given program. */ @Override public double getFitness(final CandidateProgram p) { final GECandidateProgram program = (GECandidateProgram) p; double score = 0; // Evaluate all possible inputValues. for (final boolean[] vars : inputValues) { // Convert to object array. final Boolean[] objVars = ArrayUtils.toObject(vars); Boolean result = null; try { result = (Boolean) interpreter.eval(program.getSourceCode(), argNames, objVars); } catch (final MalformedProgramException e) { // Assign worst possible fitness and stop evaluating. score = 0; break; } // Increment score for a correct response. if ((result != null) && (result == isEvenNoTrue(vars))) { score++; } else if (!program.isValid()) { score = 0; break; } } return inputValues.length - score; }
From source file:org.epochx.ge.model.epox.Majority.java
/** * Calculates the fitness score for the given program. The fitness of a * program for the majority problem is calculated by evaluating it * using each of the possible sets of input values. There are * <code>2^noInputBits</code> possible sets of inputs. The fitness of the * program is the quantity of those input sequences that the program * returned an incorrect response for. That is, a fitness value of * <code>0.0</code> indicates the program responded correctly for every * possible set of input values.//from w ww. j av a 2s. c o m * * @param p {@inheritDoc} * @return the calculated fitness for the given program. */ @Override public double getFitness(final CandidateProgram p) { final GECandidateProgram program = (GECandidateProgram) p; double score = 0; // Evaluate all possible inputValues. for (final boolean[] vars : inputValues) { // Convert to object array. final Boolean[] objVars = ArrayUtils.toObject(vars); Boolean result = null; try { result = (Boolean) interpreter.eval(program.getSourceCode(), argNames, objVars); } catch (final MalformedProgramException e) { // Assign worst possible fitness and stop evaluating. score = 0; break; } if ((result != null) && (result == majorityTrue(vars))) { score++; } } return inputValues.length - score; }