Example usage for org.apache.commons.lang ArrayUtils toObject

List of usage examples for org.apache.commons.lang ArrayUtils toObject

Introduction

In this page you can find the example usage for org.apache.commons.lang ArrayUtils toObject.

Prototype

public static Boolean[] toObject(boolean[] array) 

Source Link

Document

Converts an array of primitive booleans to objects.

Usage

From source file:parquet.column.statistics.bloomfilter.BloomFilter.java

public List<Long> getBitSet() {
    return Arrays.asList(ArrayUtils.toObject(bitSet.getData()));
}

From source file:sf.net.experimaestro.manager.plans.GroupBy.java

@Override
protected String getName() {
    if (indices != null)
        return String.format("GroupBy(%s)", Output.toString(", ", ArrayUtils.toObject(indices)));
    return "GroupBy";
}

From source file:sf.net.experimaestro.manager.plans.OrderBy.java

@Override
protected String getName() {
    if (contextOrder != null) {
        return String.format("OrderBy (%s)", Output.toString(", ", ArrayUtils.toObject(contextOrder)));
    }//  ww w.j  a v  a  2  s  .  c  o  m
    return String.format("OrderBy (%d contexts)", order.size());
}

From source file:sf.net.experimaestro.manager.plans.ReorderNodes.java

@Override
protected String getName() {
    return String.format("reorder [%s]", Output.toString(", ", ArrayUtils.toObject(mapping)));
}

From source file:tachyon.worker.block.TieredBlockStoreTestUtils.java

/**
 * Sets up a specific tier's {@link TachyonConf} for a {@link TieredBlockStore}.
 *
 * @param ordinal Ordinal value of the tier
 * @param tierAlias Alias of the tier/*from   w  w  w.j  a  va 2s  .  co m*/
 * @param tierPath Absolute path of the tier
 * @param tierCapacity Capacity of the tier
 */
private static void setupTachyonConfTier(int ordinal, String tierAlias, String[] tierPath,
        long[] tierCapacity) {
    Preconditions.checkNotNull(tierPath);
    Preconditions.checkNotNull(tierCapacity);
    Preconditions.checkArgument(tierPath.length == tierCapacity.length,
            String.format("tierPath and tierCapacity should have the same length"));

    sTachyonConf.set(String.format(Constants.WORKER_TIERED_STORE_LEVEL_ALIAS_FORMAT, ordinal), tierAlias);

    String tierPathString = StringUtils.join(tierPath, ",");
    sTachyonConf.set(String.format(Constants.WORKER_TIERED_STORE_LEVEL_DIRS_PATH_FORMAT, ordinal),
            tierPathString);

    String tierCapacityString = StringUtils.join(ArrayUtils.toObject(tierCapacity), ",");
    sTachyonConf.set(String.format(Constants.WORKER_TIERED_STORE_LEVEL_DIRS_QUOTA_FORMAT, ordinal),
            tierCapacityString);
}

From source file:tools.descartes.wcf.forecasting.AbstractRForecaster.java

@Override
public final IForecastResult forecast(final int numForecastSteps) {
    if (rBridge == null)
        return null;

    final ITimeSeries<Double> history = this.getTsOriginal();

    final String varNameValues = RServerBridgeControl.uniqueVarname();
    final String varNameModel = RServerBridgeControl.uniqueVarname();
    final String varNameForecast = RServerBridgeControl.uniqueVarname();

    final double[] values;
    List<Double> allHistory = new ArrayList<Double>(history.getValues());

    // remove NullValues only if strategy is not "Croston" (forecasting for intermitted demands)
    if (strategy == ForecastStrategyEnum.CROST) {
        Double[] histValues = new Double[allHistory.size()];
        histValues = allHistory.toArray(histValues);
        values = ArrayUtils.toPrimitive(histValues);
    } else {/*from  ww  w. j av a 2 s .c  om*/
        Double[] histValuesNotNull = removeNullValues(allHistory);
        values = ArrayUtils.toPrimitive(histValuesNotNull);
    }

    /*
     * 0. Assign values to temporal variable
     */
    long startFC = System.currentTimeMillis();
    AbstractRForecaster.rBridge.assign(varNameValues, values);

    //frequency for time series object in R --> needed for MASE calculation.
    AbstractRForecaster.rBridge.toTS(varNameValues, history.getFrequency());
    /*
     * 1. Compute stochastic model for forecast
     */
    if (this.modelFunc == null) {
        // In this case, the values are the model ...
        AbstractRForecaster.rBridge.assign(varNameModel, values);
        AbstractRForecaster.rBridge.toTS(varNameModel, history.getFrequency());
    } else {
        final String[] additionalModelParams = this.getModelFuncParams();

        StringBuffer params = new StringBuffer();
        params.append(varNameValues);
        if (null != additionalModelParams) {
            for (String param : additionalModelParams) {
                params.append(",");
                params.append(param);
            }
        }
        AbstractRForecaster.rBridge.e(String.format("%s<<-%s(%s)", varNameModel, this.modelFunc, params));
    }

    /*
     * 2. Perform forecast based on stochastic model
     */
    if (this.getConfidenceLevel() == 0) {
        AbstractRForecaster.rBridge.e(String.format("%s<<-%s(%s,h=%d)", varNameForecast, this.forecastFunc,
                varNameModel, numForecastSteps));
    } else {
        AbstractRForecaster.rBridge.e(String.format("%s<<-%s(%s,h=%d,level=c(%d))", varNameForecast,
                this.forecastFunc, varNameModel, numForecastSteps, this.getConfidenceLevel()));
    }
    /*
     * 3. Calculate Forecast Quality Metric
     */
    double fcQuality;
    if (this.modelFunc == null || this.strategy == ForecastStrategyEnum.TBATS) {
        fcQuality = AbstractRForecaster.rBridge.eDbl("accuracy(" + varNameForecast + ")[6]");
    } else {
        fcQuality = AbstractRForecaster.rBridge.eDbl("accuracy(" + varNameModel + ")[6]");
    }
    final double[] lowerValues = AbstractRForecaster.rBridge.eDblArr(lowerOperationOnResult(varNameForecast));
    final double[] forecastValues = AbstractRForecaster.rBridge
            .eDblArr(forecastOperationOnResult(varNameForecast));
    final double[] upperValues = AbstractRForecaster.rBridge.eDblArr(upperOperationOnResult(varNameForecast));

    // remove temporal variable:
    AbstractRForecaster.rBridge.e(String.format("rm(%s)", varNameModel));
    AbstractRForecaster.rBridge.e(String.format("rm(%s)", varNameValues));
    AbstractRForecaster.rBridge.e(String.format("rm(%s)", varNameForecast));

    long endFC = System.currentTimeMillis();

    ITimeSeries<Double> tsForecast = this.prepareForecastTS();
    ITimeSeries<Double> tsLower;
    ITimeSeries<Double> tsUpper;
    tsForecast.appendAll(ArrayUtils.toObject(forecastValues));

    if (this.getConfidenceLevel() == 0) {
        tsLower = tsForecast;
        tsUpper = tsForecast;
    } else {
        tsLower = this.prepareForecastTS();
        tsLower.appendAll(ArrayUtils.toObject(lowerValues));
        tsUpper = this.prepareForecastTS();
        tsUpper.appendAll(ArrayUtils.toObject(upperValues));
    }
    return new ForecastResult(tsForecast, this.getTsOriginal(), this.getConfidenceLevel(), fcQuality, tsLower,
            tsUpper, strategy, endFC - startFC);
}

From source file:ubic.basecode.util.r.JRIClientTest.java

/**
 * With a continuous covariate as well a categorical one.
 * //from   w  w  w . jav  a2  s.c o m
 * @throws Exception
 */
public void testLinearModelB() throws Exception {
    if (!connected) {
        log.warn("Cannot load JRI, skipping test");
        return;
    }

    /*
     * dat<-c( 3.2969, 3.1856, 3.1638, NA, 3.2342, 3.3533, 3.4347, 3.3074); a<-factor(c( "A", "A", "A", "A", "B",
     * "B", "B", "B" )); b<-c(1, 2, 3, 4, 5, 6, 7, 8) bar<-lm(dat ~ a + b); summary(bar) anova(bar)
     */

    double[] data = new double[] { 3.2969, 3.1856, 3.1638, Double.NaN, 3.2342, 3.3533, 3.4347, 3.3074 };
    String[] f1 = new String[] { "A", "A", "A", "A", "B", "B", "B", "B" };

    List<String> fac1 = Arrays.asList(f1);

    double[] fac2 = new double[] { 1, 2, 3, 4, 5, 6, 7, 8 };

    Map<String, List<?>> factors = new LinkedHashMap<String, List<?>>();
    factors.put("foo", fac1);
    factors.put("bar", Arrays.asList(ArrayUtils.toObject(fac2)));

    LinearModelSummary lms = rc.linearModel(data, factors);

    Double p = lms.getMainEffectP("foo");
    Double t = lms.getMainEffectT("foo")[0];

    Double pp = lms.getMainEffectP("bar");
    Double tt = lms.getMainEffectT("bar")[0];

    Double ip = lms.getInterceptP();
    Double it = lms.getInterceptT();

    assertEquals(0.1586, p, 0.0001);
    assertEquals(0.64117305, t, 0.0001);
    assertEquals(0.9443, pp, 0.0001);
    assertEquals(0.07432241, tt, 0.0001);
    assertEquals(2.821526e-06, ip, 0.0001);
    assertEquals(38.14344686, it, 0.0001);

}

From source file:ubic.gemma.analysis.preprocess.normalize.ExpressionDataQuantileNormalizer.java

/**
 * Quantile normalize the matrix (in place)
 * //ww  w .  j  a va 2s .  com
 * @param matrix
 */
public static void normalize(ExpressionDataDoubleMatrix matrix) {

    DoubleMatrix<CompositeSequence, BioMaterial> rawMatrix = matrix.getMatrix();

    QuantileNormalizer<CompositeSequence, BioMaterial> normalizer = new QuantileNormalizer<CompositeSequence, BioMaterial>();
    DoubleMatrix<CompositeSequence, BioMaterial> normalized = normalizer.normalize(rawMatrix);

    for (int i = 0; i < normalized.rows(); i++) {
        matrix.setRow(i, ArrayUtils.toObject(normalized.getRow(i)));
    }

}

From source file:ubic.gemma.datastructure.matrix.ExpressionDataDoubleMatrix.java

@Override
public Double[] getRow(Integer index) {
    double[] rawRow = matrix.getRow(index);
    return ArrayUtils.toObject(rawRow);
}

From source file:ubic.gemma.persistence.service.association.coexpression.CoexpressionDaoImpl.java

@Override
@Transactional//from   ww  w .ja v  a  2  s .c o m
public GeneCoexpressionNodeDegreeValueObject updateNodeDegree(Gene g, GeneCoexpressionNodeDegree nd) {
    Session sess = this.getSessionFactory().getCurrentSession();

    List<CoexpressionValueObject> hits = this.getCoexpression(g);

    /*
     * We have to reset the support.
     */
    GeneCoexpressionNodeDegreeValueObject gcndvo = new GeneCoexpressionNodeDegreeValueObject(nd);
    gcndvo.clear();

    assert gcndvo.getMaxSupportNeg() == 0;

    for (CoexpressionValueObject hit : hits) {
        if (hit.isPositiveCorrelation()) {
            gcndvo.increment(hit.getNumDatasetsSupporting(), true);
        } else {
            gcndvo.increment(hit.getNumDatasetsSupporting(), false);
        }
    }

    assert gcndvo.total() == hits.size();

    GeneCoexpressionNodeDegree entity = gcndvo.toEntity();
    nd.setLinkCountsPositive(entity.getLinkCountsPositive());
    nd.setLinkCountsNegative(entity.getLinkCountsNegative());

    if (CoexpressionDaoImpl.log.isDebugEnabled())
        CoexpressionDaoImpl.log.debug("gene=" + g.getId() + " pos="
                + StringUtils.join(ArrayUtils.toObject(nd.getLinkCountsPositive()), " ") + " neg="
                + StringUtils.join(ArrayUtils.toObject(nd.getLinkCountsNegative()), " "));

    sess.update(nd);

    // might not be necessary, but presumption is data is stale now...
    this.gene2GeneCoexpressionCache.remove(g.getId());
    this.geneTestedInCache.remove(g.getId());

    return gcndvo;
}