Example usage for org.apache.commons.lang ArrayUtils toObject

List of usage examples for org.apache.commons.lang ArrayUtils toObject

Introduction

In this page you can find the example usage for org.apache.commons.lang ArrayUtils toObject.

Prototype

public static Boolean[] toObject(boolean[] array) 

Source Link

Document

Converts an array of primitive booleans to objects.

Usage

From source file:org.uncertml.distribution.multivariate.DirichletDistribution.java

/**
 * Constructor that takes an array of doubles for the concentration parameter.
 * /*from w  ww.j a  v  a2s  .co m*/
 * @param concentration an array of doubles representing the concentration
 * parameter.
 */
public DirichletDistribution(double[] concentration) {
    this(Arrays.asList(ArrayUtils.toObject(concentration)));
}

From source file:org.uncertml.distribution.multivariate.MultinomialDistribution.java

/**
 * Constructor taking a single number of trials and an array of doubles for
 * the probabilities./*from  w w  w.  j av  a2 s.  co  m*/
 * 
 * @param numberOfTrials the number of trials parameter.
 * @param probabilities an array of doubles representing the probabilities parameter.
 */
public MultinomialDistribution(int numberOfTrials, double[] probabilities) {
    this(numberOfTrials, Arrays.asList(ArrayUtils.toObject(probabilities)));
}

From source file:org.uncertml.distribution.multivariate.MultivariateNormalDistribution.java

/**
 * Constructor that takes an array of doubles representing the mean parameters
 * and a covariance matrix. Each mean parameter represents a marginal normal
 * distribution. The covariance matrix should contain n^2 elements where n is
 * the size of the array./*ww w  .  j  av  a2  s  . co m*/
 * 
 * @param mean an array of doubles representing the mean parameter of n marginal
 * distributions.
 * @param covarianceMatrix a covariance matrix.
 */
public MultivariateNormalDistribution(double[] mean, CovarianceMatrix covarianceMatrix) {
    this(Arrays.asList(ArrayUtils.toObject(mean)), covarianceMatrix);
}

From source file:org.uncertml.distribution.multivariate.MultivariateStudentTDistribution.java

/**
 * Constructor that takes an array of doubles for the mean parameter, a covariance
 * matrix and an array of integers for the degrees of freedom parameter. Each
 * mean and degrees of freedom pair represents a marginal distribution. The 
 * arrays must be of equal length and the covariance matrix must contain n^2
 * values where n is the length of the arrays.
 * //ww w. j  a  v a  2s  . c om
 * @param mean an array of doubles representing the mean parameter of n marginal
 * Student T distributions.
 * @param covarianceMatrix a covariance matrix.
 * @param degreesOfFreedom an array of integers representing the degrees of
 * freedom of n marginal Student T distributions.
 */
public MultivariateStudentTDistribution(double[] mean, CovarianceMatrix covarianceMatrix,
        int[] degreesOfFreedom) {
    this(Arrays.asList(ArrayUtils.toObject(mean)), covarianceMatrix,
            Arrays.asList(ArrayUtils.toObject(degreesOfFreedom)));
}

From source file:org.uncertml.sample.ContinuousRealisation.java

/**
 * Constructor that takes an array of doubles as the values of
 * the realisation.//  www.jav a 2 s  .c  o  m
 * 
 * @param values the numeric values of a single realisation.
 */
public ContinuousRealisation(double[] values) {
    this(Arrays.asList(ArrayUtils.toObject(values)));
}

From source file:org.uncertml.sample.ContinuousRealisation.java

/**
 * Constructor that takes an array of doubles as the values of
 * the realisation and a weight, used in weighted samples.
 * //from  ww w .ja v  a 2s  . c  o  m
 * @param values the numeric values of a single realisation.
 * @param weight the weight of this realisation, between 0 - 1.
 */
public ContinuousRealisation(double[] values, double weight) {
    this(Arrays.asList(ArrayUtils.toObject(values)), weight);
}

From source file:org.uncertml.sample.ContinuousRealisation.java

/**
 * Constructor that takes an array of doubles as the values of
 * the realisation,a weight used in weighted samples and an ID.
 * /*  w  ww . j  ava 2  s .  co m*/
 * @param values the numeric values of a single realisation.
 * @param weight the weight of this realisation, between 0 - 1.
 * @param id a unique identifier for this realisation. Used to track realisations
 * through processing chains.
 */
public ContinuousRealisation(double[] values, double weight, String id) {
    this(Arrays.asList(ArrayUtils.toObject(values)), weight, id);
}

From source file:org.uncertml.statistic.CentredMoment.java

/**
 * Constructor that takes a single integer order and an array of
 * doubles for the value of a centred moment statistic. Each value represents a single
 * centred moment statistic. This is in line with the UncertML syntax whereby a collection
 * of types can be represented by a single entity.
 * //  w  w  w .  j  ava 2s  . c om
 * @param order the order of the centred moment, e.g. 1st order.
 * @param values an array of doubles representing the value of n
 * centred moment statistics.
 */
public CentredMoment(int order, double[] values) {
    this(order, Arrays.asList(ArrayUtils.toObject(values)));
}

From source file:org.uncertml.statistic.ConfusionMatrix.java

/**
 * Constructor that takes an array of categories and counts. The source and
 * target categories are assumed to the same. There should be categories^2 count values.
 * /*from w  w  w.j  a va  2s .c om*/
 * @param categories the categories (both source and target) of the confusion matrix.
 * @param counts the counts for each transition from source to target categories.
 */
public ConfusionMatrix(String[] categories, int[] counts) {
    this(Arrays.asList(categories), Arrays.asList(ArrayUtils.toObject(counts)));
}

From source file:org.uncertml.statistic.ConfusionMatrix.java

/**
 * Constructor that takes an array of source and target categories and counts. 
 * There should be source categories * target categories count values.
 * /*from  w ww . ja v a 2  s .  c o m*/
 * @param categories the categories (both source and target) of the confusion matrix.
 * @param counts the counts for each transition from source to target categories.
 */
public ConfusionMatrix(String[] sourceCategories, String[] targetCategories, int[] counts) {
    this(Arrays.asList(sourceCategories), Arrays.asList(targetCategories),
            Arrays.asList(ArrayUtils.toObject(counts)));
}